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Tribute to Chris Skinner, a colleague and friend 

Danny Pfeffermann1 

Abstract 

This brief tribute reviews Chris Skinner’s main scientific contributions. 
 

Key Words: Analysis of complex surveys; Statistical disclosure control; Official statistics. 

 
 

Chris passed away about three years ago, only a few months after Fred Smith passed away. In November 

of last year, Tim Holt, passed away. So, within 3 years, the three legendary survey sampling statisticians 

from Southampton, who edited the famous Wiley 1989 book Analysis of Complex Surveys Surveys (Skinner, 

Holt and Smith, 1989), passed away. The book summarized 10 years of research at the University of 

Southampton and in the rest of the world devoted to this topic, paving the way for new research and 

applications, which continue to evolve in all kind of directions. A second Wiley book on the same topic, 

edited by Chambers and Skinner, Analysis of Survey Data, which surveyed the rapid developments in the 

field during the 90’s, had been published in (Chambers and Skinner, 2003). Since the early 1980’s, 

Southampton became a leading international centre in social statistics and survey sampling, led by Chris, 

Fred and Tim, attracting top class researchers and students in this field from all over the world.  

Chris’ work covers many topics related to survey sampling theory and inference, making him one of the 

top social and survey statisticians in the world. In what follows, I mention briefly a few of them. Starting 

with his PhD thesis, supervised by Tim Holt, Chris was one of the first statisticians to note that the complex 

sampling designs, which are in common use to collect multivariate social data, are rarely non-informative 

as far as statistical modelling is concerned, and that there is a need for suitable adjustments to standard 

inference methods to correct for this, thus avoiding possible bias and wrong inference. He continued his 

work in this area throughout his academic career. 

Another major research area of Chris was in Statistical Disclosure Control (SDC), focusing on estimating 

the probabilities of re-identification of survey micro data and using them for computing inclusive disclosure 

risk measures. For this, Chris developed statistical models, which accounted for the type of data under risk 

(the key variables), the sampling method used for the sample selection and the method that might be used 

by the intruder to achieve disclosure. Later, Chris and Natalie Shlomo, showed that probability sampling 

methods as well as non-perturbative SDC methods, do not satisfy the requirement of differential privacy, a 

hot topic in SDC, nowadays researched jointly by statisticians and computer scientists, following among 

others Chris’ stimulus. I refer the readers to the paper by Natalie Shlomo on Chris’ very significant 

contributions to SDC, published in this issue of Survey Methodology.  
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In 2013, Chris chaired an independent review of plans for the 2021 Census in the UK. The resulting 

parliamentary report recommended that census data should be collected online rather than following more 

traditional ways of census data collection. This recommendation had been implemented very successfully, 

with an incredible high response rate. 

Throughout his academic career, Chris was heavily involved in the work of statistical agencies in the 

UK and internationally. He established strong research relationships with the Central Statistical Office and 

the Office of Population Censuses and Surveys in the UK, and later with the Office for National Statistics 

(ONS), when the two offices merged. Since then, the University of Southampton is the primary source of 

methodological advice for the ONS. During that research relationship, Chris led many high-profile projects, 

including variance estimation for the Labour Force Survey and the sample allocation for the Retail Prices 

Index. Variance estimation was one of Chris’ favourite research topics. He was also instrumental in setting 

up the MSc program in Official Statistics at Southampton, which is training official statisticians from the 

UK and other countries. During the years 2000-2011, Chris was a member of Statistics Canada Statistical 

Advisory Committee. In 2012, Chris moved to the London School of Economics (LSE), the university where 

he studied for his MSc degree in 1976, before moving to Southampton. His involvement with official 

statistics continued after his move to the LSE. 

So far for a brief review of Chris’ professional achievements and seminal contributions to survey 

sampling inference, social statistics and SDC. Chris and I came to Southampton in 1978, I as a postdoc 

student and Chris as a lecturer, starting in parallel his PhD under the supervision of Tim Holt. Being two 

young lecturers sharing similar interest in survey sampling inference, we soon became friends, which also 

included our respective families. Our friendship lasted until his tragic death. However, it was only in 1998 

that we published two joint articles, the first on estimation of gross flows, which was applied experimentally 

at the Central Bureau of Statistics in Israel, and the second on weighting in multi-level modelling. The later 

article has been read at a meeting of the royal Statistical Society and received a lot of attention in the 

literature since then. Chris authored more than 80 peer-reviewed journal papers and co-edited the two 

influential books on the analysis of complex survey data, which I mentioned before.  

In 2019, Chris was awarded the Waksberg award, one of many awards that he received during his 

academic career. As part of the award ceremony, he was supposed to present his Waksberg award paper 

during the annual symposium of Statistics Canada, on a topic of his choice. Chris initially refused to accept 

the award, stating that he is not sure that he will be able to travel to Canada because of his health condition. 

How noble of him, showing what a wonderful person he was, leave aside his outstanding professional 

achievements. As the Chair of the 2019 Waksberg Award Selection Committee, I used all my convincing 

powers to change his mind and somehow I succeeded, and Chris started working on his presentation on 

New Developments in Statistical Disclosure Control.  

How sad that Chris was unable to finish what he had started to prepare, and we are grateful to Natalie 

Shlomo for agreeing to complete and present it at the 2021 symposium. J.N.K. Rao and Jae-Kwang Kim 
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provided testimonies at the end of Natalie’s presentation, and they have kindly agreed to put them in writing 

in this issue, following Natalie’s paper. 

Chris was a highly respected statistician and a joy as a colleague. His immense scientific contributions 

will continue to be applied and form the basis for new research in the future.  
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Statistical disclosure control and developments in formal 
privacy: In memoriam to Chris Skinner 

Natalie Shlomo1 

Abstract 

I provide an overview of the evolution of Statistical Disclosure Control (SDC) research over the last decades 
and how it has evolved to handle the data revolution with more formal definitions of privacy. I emphasize the 
many contributions by Chris Skinner in the research areas of SDC. I review his seminal research, starting in the 
1990’s with his work on the release of UK Census sample microdata. This led to a wide-range of research on 
measuring the risk of re-identification in survey microdata through probabilistic models. I also focus on other 
aspects of Chris’ research in SDC. Chris was the recipient of the 2019 Waksberg Award and sadly never got a 
chance to present hisWaksberg Lecture at the Statistics Canada International Methodology Symposium. This 
paper follows the outline that Chris had prepared in preparation for that lecture. 

 
Key Words: Risk of re-identification; Data revolution; Privacy models; Differential privacy. 

 
 

1. Introduction 
 

A special memorial session was held in honour of Chris Skinner at the 2021 Statistics Canada 

International Methodology Symposium on October 22nd, 2021, with many moving contributions from 

friends and colleagues to celebrate Chris’ life and achievements. Chris was the 2019 Waksberg Award 

recipient and was planning on attending the 2019 International Methodology Symposium to deliver his 

lecture. Unfortunately his illness took a turn for the worse and he sadly passed away on February 21st, 

2020. In the memorial session and here in this paper, I describe the evolution of Statistical Disclosure 

Control (SDC) research with an emphasis on Chris’ contributions to the field. The outline for the talk and 

for the paper was based on a set of notes that Chris had drawn up in preparation for his 2019 Waksberg 

Lecture provided to me by his son, Tom Skinner. 

I had the great privilege of working with Chris as a PhD student developing the theory around 

estimating the risk of re-identification presented in Section 4.1 and later as his colleague at the University 

of Southampton where we continued to make progress on other topics of SDC. To read an excellent 

overview of Chris’ personal side and his contribution to social statistics and survey methodology, see the 

interview that was published in the International Statistical Review (Haziza and Smith, 2019). 

I discuss early SDC developments in Section 2, and move to the challenges that we are facing today 

due to the Data Revolution in Section 3. Section 4 describes Chris’ contributions and his seminal research 

in SDC. Section 5 presents ongoing and future research in SDC and data privacy, and one of Chris’ final 

contributions of embedding the Computer Science definition of Differential Privacy into the SDC tool-kit 

at government agencies. I close in Section 6 with some final words on the impact of Chris’ research in 

government statistics, social statistics and survey methodology. 
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2. Early SDC developments and history 
 

Public awareness around confidentiality and privacy arose in the 1960’s leading to the start of public 

opposition to data collection, particularly for censuses within Europe following WWII. For example, there 

were many objections against the collection of information about the population living in the Netherlands 

and their last traditional census was held in 1971. This opposition led to a need by government agencies to 

respond to public concerns about privacy and confidentiality (Dunn, 1967) and discussed in other early 

work in Barabba (1975), Cox (1976), Fellegi (1972) and Dalenius (1974). Fellegi (1972, page 8) wrote: 

“National Statistical Institutes (NSIs) live by the good will and trust of the public so that to maintain this 

trust is literally a question of life or death to them”. Based on the research carried out in Sweden, Dalenius 

(1977) was one of the first to formally define and formalize a framework for Statistical Disclosure Control 

(SDC) as follows: “An unauthorized party should not be able to learn something about an individual 

through the release of a statistic calculated from the database  , ,D f D  that cannot be learned without 

access to  ”.f D  

The work by Dalenius and others provided the framework for researching and developing SDC within 

government agencies and the establishment of formal governance boards on the release of statistical data. 

The research that was carried out in the United States included, for example, the Subcommittee on 

Disclosure-Avoidance Techniques established in 1976 by the Federal Committee on Statistical 

Methodology, and sponsored by the Statistical Policy Division of Office of Management and Budget 

(OMB) as reported in Jabine, Michael and Mugge (1977) (see also the 1978 report and Appendix A on 

Statistical Disclosure Avoidance Practices in Selected Federal Agencies). In this Appendix there are five 

sections with recommendations: the concept of SDC; what to release; disclosure avoidance techniques; 

effects of disclosure on data subjects and users; and needs for research and development. There are also 

general rules that were put in place, for example no regional areas could be published with less than 

100,000 individuals.  

Further work into the 1980’s placed an emphasis on SDC for outputs derived from survey data as it 

was originally and erroneously thought that sampling provided protection against disclosure risks 

(Dalenius, 1988). Paass (1988) was one of the first to estimate the fraction of identifiable records in survey 

microdata and took into account the sampling, the SDC method of additive noise and prior knowledge 

under an assumed “attack” on the data. In his paper, Paass (1988) wrote: “where there is large knowledge, 

the requirement for privacy protection and high-quality data perhaps may be fulfilled only if the linkage of 

such files with extensive additional knowledge is prevented by appropriate organizational and legal 

restrictions”. In addition, Bethlehem, Keller and Pannekoek (1990) was one of the first papers to use 

probabilistic modelling to estimate the risk of re-identification in survey microdata by estimating the 

number of population uniques given sample uniques on a set of cross-classified quasi-identifiers. More on 

this methodology and the contributions of Chris in this area will be presented in Section 4.1. 

Into the 1990’s there was more demand for detailed outputs particularly with the availability of better 

technological solutions and personal computers. There were also rising concerns by users of the data on 
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having to work with protected, modified and perturbed outputs. This coincided with large-scale SDC 

developments through a scientific evolution of the methodology and the international interchange of 

theoretical and practical developments, for example, the International Symposium on Statistical 

Disclosure Avoidance held in the Netherlands in 1990 (as reported in a special issue of Statistica 

Neerlandica, 1992). There were also cross-collaborations within the European Union through the 4th 

Framework research project Statistical Disclosure Control (SDC) (1996-1998) and many other EU 

projects following on from this initial project, including the development of SDC software: mu-ARGUS 

for microdata (Hundepool, van de Wetering, Ramaswamy, Franconi, Capobianchi, de Wolf, Domingo, 

Torra, Brand and Giessing, 2003) and tau-ARGUS for tabular data (specifically cell suppression for 

magnitude tables containing business statistics) (Hundepool, van de Wetering, Ramaswamy, de Wolf, 

Giessing, Fischetti, Salazar, Castro and Lowthian, 2011). See https://research.cbs.nl/casc/index.htm for 

more details of the research projects across Europe and the book by Hundepool, Domingo-Ferrer, 

Franconi, Giessing, Schulte-Nordholt, Spicer, de Wolf (2012). 

A special issue of the Journal of Official Statistics, (Vol. 14(4), 1998) titled “Disclosure Limitation 

Methods for Protecting the Confidentiality of Statistical Data” was particularly impactful during that time 

and highlighted the large-scale research undertaken in SDC in both academia and government agencies. In 

addition, a book and training course were developed (see: Willenborg and De Waal (1996) with 

contributions by Chris Skinner, and later a second edition in Willenborg and De Waal (2001)). Continuing 

work was happening simultaneously in the US and Canada, for example, the Federal Committee on 

Statistical Methodology (1994); the Committee on Maintaining Privacy and Security in Health Care 

Applications of the National Information Infrastructure (1997); Disclosure Control Issues at Statistics 

Canada (Yeo and Robertson, 1995) including the software package CONFID that also carried out cell 

suppressions for magnitude tables.  

Throughout the 1990’s, there was growing focus on the development of access and governance 

arrangements and legislation, and the notion of tiered data access to provide statistical data to researchers. 

Data Archives and Research Data Centres were set up along with data governance approaches and 

frameworks for making effective use of statistical data, for example, the “5 Safes” Framework shown in 

Table 2.1 and put in practice at the Office for National Statistics (ONS) in the UK in 2002 (Ritchie, 2009) 

and later the Anonymization Decision-Making Framework (Elliot, Mackey, O’Hara and Tudor, 2016 and 

available at https://ukanon.net/framework/).  

 

Table 2.1 

The 5 safes framework 
 

Safe Projects Is this use of the data appropriate? 

Safe People Can the users be trusted to use the data in an appropriate manner? 

Safe Settings Does the access facility limit unauthorised use? 

Safe Data Is there a disclosure risk in the data itself? 

Safe Outputs Are the statistical results non-disclosive?  
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3. The data revolution 
 

From around the year 2008, there has been an abundance of accessible data in the public domain, 

including open data and big data, leading to greater risks of breaches of privacy and confidentiality since 

these data sources can potentially be used to compromise released statistical data. In addition, more 

advanced technological tools were available that enabled better data linkages and data manipulation to 

increase the likelihood of re-identification in statistical data. Government agencies started to become 

aware that standard SDC methods may not be sufficient in protecting the confidentiality of statistical units 

and therefore initiated tighter restrictions and more controlled access to the data as a solution to SDC. This 

also manifested in changes to the legislation, particularly the 2016 European Union (EU) General Data 

Protection Regulation (GDPR) which provided provisions and requirements related to the processing of 

personal data of individuals. There was also more focus on privacy concerns in health data (El Emam, 

Jonker, Arbuckle and Malin, 2011) and genetic data (Homer, Szelinger, Redman, Duggan, Tembe, 

Muehling, Pearson, Stephan, Nelson and Craig 2008; Gymrek, McGuire, Golan, Halperin and Erlich, 

2013) where the latter were shown to be of high-risk and had implications on the dissemination and 

sharing of DNA databases. In the commercial domain, there were many examples of breaches of privacy 

which were widely publicized: AOL search keywords (Barbaro and Zeller, 2006), New York City (NYC) 

taxi trips (Douriez, Doraiswamy, Freire and Silva, 2016), Cambridge Analytica and Facebook (Meredith, 

2018), and others.  

With greater technological advancements and the possibility to link data sources, this led to the 

development of trusted third parties to carry out data linkages and secure multi-party computing. Secure 

multi-party computing was originally developed in the Computer Science literature and made a cross-over 

to the statistical literature on how to run advanced statistical modelling under this approach (Slavkovic, 

Nardi and Tibbits, 2007; Snoke, Brick, Slavkovic and Hunter, 2018). In addition, collaborations between 

computer scientists and the statistical community grew and led to important developments on database 

privacy within government agencies (see Section 5 for more details). In the privacy literature, Dwork, 

Smith, Steinke and Ullman (2017) wrote: “beginning in the mid-2000s, the field of privacy-preserving 

statistical analysis of data has witnessed an influx of ideas developed some two decades earlier in the 

cryptography community”. 

 
4. Contributions of Chris Skinner to SDC research 
 

Chris’s formal research in Statistical Disclosure Control (SDC) began with his collaborations at the 

University of Manchester to argue for the release of sample microdata (the SARs) from the 1991 UK 

Census (Marsh, Skinner, Arber, Penhale, Openshaw, Hobcraft, Lievesley and Walford, 1991; Skinner, 

Marsh, Openshaw and Wymer, 1994; Marsh, Dale and Skinner, 1994). This led to his interest on 

measuring the risk of re-identification in survey microdata through probabilistic modelling first published 

in Skinner (1992) and described in Section 4.1. He also started his long career of advising for government 



Survey Methodology, June 2023 9 

 

 
Statistics Canada, Catalogue No. 12-001-X 

statistics and data access committees, for example: UK Census Design and Methodology Advisory 

Committee Statistical Disclosure Control (SDC) Subgroup (2008-2010); Understanding Society Data 

Access Committee (2010-2013); Expert Advisory Group on Data Access (EAGDA), Wellcome Trust, 

Medical Research Council (MRC), Economic and Social Research Council (ESRC) and Cancer Research 

UK (2012-2014).  

 
4.1 Measuring the risk of re-identification in survey microdata and 

extensions 
 

Since the 1990’s, many government agencies have been releasing microdata from large-scale 

government surveys where the sample is drawn randomly from a finite general population and the sample 

fractions are small. Examples are samples from the Labour Force Survey and Family Expenditure Survey. 

Typically, the researcher would have to go through an application process to gain access to the data, either 

received on a floppy disc or via a Data Archive. Nevertheless it was soon recognized that sampling alone 

could not provide enough protection in the microdata and a wealth of research was generated on the 

subject of measuring the risk of re-identification in sample microdata and disclosure avoidance 

techniques. 

The disclosure risk scenario for the release of sample microdata drawn from a general population is 

based on the following assumptions: (1) there is an “intruder” (someone with malicious intent to discredit 

the statistical office) who has access to the microdata and other auxiliary information about the population 

that allows him/her to link data sources in order to identify individuals in the sample microdata; (2) there 

is no “response knowledge” meaning that the intruder does not know who was drawn into the sample of 

the survey. The basic definition of the risk of re-identification is therefore the probability of correctly 

being able to make this match. Chris was among the first to develop a statistical modelling framework to 

estimate the probability of re-identification, conditional on the released data and assumptions about how 

the data is generated (knowledge of the sampling process). The model is with respect to key variables 

defined as a set of quasi-identifiers in both data sources and typically categorical such as age, sex, 

location, ethnic group. Cross-classifying the key variables leads to large contingency tables of sample 

counts, where many of the cells of the table have a value of zero or a value of one, and we particularly 

focus on the disclosure risk from the cells of size one, i.e., the sample uniques. The risk of re-identification 

is based on the notion of population uniqueness in the contingency table: given an observed sample unique 

in a cell of a table generated from cross-classifying the key variables, what is the probability that the cell 

is also a population unique? Individual per-record risk measures in the form of a probability of re-

identification are estimated. These per-record risk measures are then aggregated to obtain global risk 

measures for the entire file which are useful to make informed decisions about the release of the data and 

the level of access via data governance boards. 

The probabilistic modelling framework developed by Chris takes a simplified approach that restricts 

the information that would be known to intruders (Skinner and Holmes, 1998; Elamir and Skinner, 2006). 
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We denote kF  the population size in cell k  of a table spanned by key variables having K  cells, kf  the 

sample size in cell , kk
k F N  and .kk

f n  The set of sample uniques, is defined:  SU : 1kk f   

and these are the high-risk records with the potential to be population uniques. Two global disclosure risk 

measures (where I  is the indicator function) are the following:  

1. Number of sample uniques that are population uniques:  1 1,   1 .k kk
I f F     

2. Expected number of correct links if we were to match the sample uniques to the population 

(assuming a random assignment of the population within cell ).k  For example, if a sample 

unique matches to three individuals in the population, the match probability for that sample 

unique would be 1 3.  Aggregating all match probabilities over the sample uniques leads us to: 

2   1 1 .k kk
I f F  

 

If the population frequencies kF  are known then the global disclosure risk measures are straight-

forward to calculate. However, it is generally assumed that the population frequencies kF  are unknown 

and we need to use probabilistic modelling to estimate the disclosure risk measures as follows: 

        1 2
ˆ ˆτ 1 1 1 and τ 1 1 1 .ˆ ˆ

k k k k k kk k
I f P F f I f E F f         (4.1) 

Given that we are modelling population counts based on a contingency table of sample counts spanned 

by the key variables, Chris assumed a Poisson distribution and a log-linear model to estimate disclosure 

risk measures in (4.1). In this model, he and his co-authors assume that kF  are realizations of independent 

Poisson random variables:  oi~ P sk kF   for each cell .k  A sample is drawn by Poisson or Bernoulli 

sampling with a sampling fraction k  in cell  .: Bin ,~k k k kk f F F   It follows that:  

     Pois and Pois~ ~ 1k k k k k k kf F f     (4.2) 

and population cell counts kF  given the sample cell counts kf  are also realizations of independent 

Poisson random variables. 

As typical in this type of framework, the parameters k  are estimated using log-linear modeling. The 

sample frequencies kf  are independent Poisson distributed with a mean of .k k k    A log-linear model 

for the k  is expressed as:  log x βk k   where  xk  is a design vector which denotes the main effects and 

interactions of the model for the key variables. The maximum likelihood (MLE) estimator β̂  are obtained 

by solving the score equations: 

   xp 0. e x β xk k k kk
f     (4.3) 

The fitted values are then calculated by:  p ˆˆ ex x βk k   and .ˆ ˆ
k k k    Individual disclosure risk 

measures for cell k  under the assumption of the Poisson distribution are: 

       1 1 exp 1k k k kP F f        

and 
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         1 1 1 exp 1 1 . k k k k k kE F f          (4.4) 

Plugging ˆ
k  for k  in (4.4) leads to the record-level disclosure risk measure estimates 

 1 1ˆ
k kP F f   and  1ˆ 1 k kE F f   and these are aggregated to obtain global disclosure risk measure 

estimates 1̂  and 2̂  for (4.1). 

As an example, assume that the statistical agency would like to release microdata from the Labor Force 

Survey. The agency assumes the following quasi-identifiers (key variables) that they would like to release 

in the microdata and on which to assess the risk of re-identification (number of categories in parentheses): 

sex (2), age group (10), marital status (3), ethnic groups (10), employment status (3) and occupation 

groups (10). When cross-classified, these key variables lead to cells ,  1, ,  k k K   where 18,000K   

cells. The agency identifies those cells of the cross-classified key variables where there is a single sample 

unit: 1 kf   (a sample unique). For each cell that is a sample unique, we estimate the record-level 

disclosure risk measure according to the probability that the sample unique is also a population unique 

 1 1 .k kP F f   We also estimate the match probability for the sample unique based on (hypothetically) 

matching the sample unique to a population using the key variables as matching variables to obtain 

1 1 .k kE F f    These record level risk measures are then aggregated to obtain estimates for the global 

disclosure risk measures 1  and 2  assuming that for a large  , ,k kK F f  are independent.  

Skinner and Shlomo (2008) develop a method for selecting the main effects and interaction terms for 

the log-linear model that finds the right balance in accounting for random and structural zeros in the 

contingency table. The method is based on estimating and (approximately) minimizing the bias of the risk 

estimates 1̂  and 2
ˆ .  Defining    11 k k kh P F f    for 1  and    1 1k k kh E F f    for 2 ,  

they consider the expression:  

        .ˆ1k k kk
B E I f h h      

A Taylor expansion of h  leads to the approximation  

                                2

exp 2ˆ ˆ
k k k k k k k k kk

' ''B h h               

and the relations  k k kE f    and     
2 2

2

 

ˆ ˆ k k k k k k kE f f E         under the hypothesis of a 

Poisson distribution fit lead to a further approximation of B  of the form: 

                           
2

.ˆ ˆ ˆ ˆˆ exp   2k k k k k k k k k k k k kk

' ''B h f h f f                 
 

  (4.5) 

For example, for 1 :   

                       2

1 .ˆ ˆ ˆ ˆˆ exp 1 1 2  k k k k k k k k k k k kk
B f f f                

  
  (4.6) 

As can be seen, the goodness-of-fit criteria B̂  are related to the notion of measuring over and under-

dispersion as was developed in the Econometrics literature (Cameron and Trivedi, 1998). The method 
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selects the model using a forward search algorithm which minimizes the standardized bias estimate 

ˆ ˆ
i iB v  for ,ˆ ,  1, 2i i   where îv  are variance estimates of ˆ .iB  The goodness-of-fit criteria ˆ ˆ

i iB v  have 

an approximate standard normal distribution under the hypothesis that the expected value of ˆiB  is zero.  

Skinner and Shlomo (2008) also address the estimation of disclosure risk measures under complex 

survey designs with stratification, clustering and survey weights. While the method described assumes that 

all individuals within cell k  are selected independently using Bernoulli sampling, i.e.,  1k kP f F   

 
1

1 ,kF

k k kF  


  this may not be the case if sampling clusters (households). In practice, key variables 

typically include variables such as age, sex and occupation that tend to cut across clusters. Therefore the 

above assumption holds in practice in most household surveys and does not cause bias in the estimation of 

the risk measures. Inclusion probabilities may vary across strata, the most common stratification is on 

geography. Strata indicators should always be included in the key variables to take into account 

differential inclusion probabilities in the log-linear model. Under complex sampling, the k  can be 

estimated consistently using pseudo-maximum likelihood estimation (Rao and Thomas, 2003), where the 

estimating equation in (4.3) is modified as:  

     ˆ exp 0x β xk k kk
F    (4.7) 

and ˆ
kF  is obtained by summing the survey weights in cell :   .ˆ

k ii k
k F w


  The resulting estimates k  

are plugged into expressions in (4.4) and k  is replaced by the estimate .ˆˆ
k k kf F   The goodness-of-fit 

criteria B̂  is also adapted to the pseudo-maximum likelihood method. See Skinner and Shlomo (2008) for 

a simulation and real application demonstrating this approach for both a survey with an equal probability 

design and a survey with a complex design. 

The probabilistic modelling presented here and in other related work in the literature assume that there 

is no measurement error in the way the data is recorded. Besides typical errors in data capture, key 

variables can also purposely be misclassified as a means of masking the data, for example through record 

swapping or the post randomization method (PRAM) (Gouweleeuw, Kooiman, Willenborg and De Wolf, 

1998). Shlomo and Skinner (2010) adapt the estimation of the risk of re-identification based on 2   to take 

into account measurement errors. Denoting the cross-classified key variables in the population and the 

microdata as X  and assuming that X  in the microdata have undergone some misclassification or 

perturbation error denoted by the value X  and determined independently by a misclassification matrix 

:M  

  .kjM P X k X j    (4.8) 

The record-level disclosure risk measure of a match with a sample unique under measurement error is:  

 
 

 
1 1

.
1

kk k kk

kj kj k kjj

M M

FF M M









 (4.9) 
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Under assumptions of small sampling fractions and small misclassification errors, the disclosure risk 

measure can be approximated by: kk j kjj
M F M  or kk kM F  where kF  is the population count with 

.X k  Aggregating the per-record disclosure risk measures, the global risk measure 2    is now: 

                                                        2 1   . k kk kk
I f M F     (4.10) 

Note that to calculate the measure only the diagonal of the misclassification matrix needs to be known, 

i.e., the probabilities of not being perturbed. Population counts are generally not known so the estimate in 

(4.10) can be obtained by probabilistic modelling on the misclassified sample as shown above:  

    2 .ˆˆ 1   1k kk k kk
I f M E F f      (4.11) 

In more recent work with Chris and presented for the first time in Shlomo and Skinner (2022), a new 

direction is explored to measure the risk of re-identification for non-probability data sources. More 

specifically, there are registers in the public domain, where the membership of the register is not known 

and is sensitive. Examples of registers are of persons with a medical condition, such as Cancer or HIV, or 

registers that include membership to a loyalty card scheme. The approach can also be extended to the case 

where samples are drawn from the registers and more generally to non-probability samples, such as those 

arising from web-surveys. Extending the framework above, the microdata from a random sample can still 

be used to estimate population parameters according to the probabilistic modelling framework for 

estimating the risk of re-identification as above, however the complication is to also estimate the 

propensity of membership for the individuals in the register.  

More specifically, let U  and 1 U  denote the population and the register population, respectively, with 

1 .U U  Let iR  be the register indicator variable for individual i  with 1iR   if 1i U  and 0iR   

otherwise. As mentioned, we suppose that membership iR  is a sensitive variable for which disclosure is 

undesirable.  

We denote the register population frequencies in cell k  by 1.kF  The most risky records are for cells 

with 1 1kF   and, analogous to the derivation presented in Skinner and Shlomo (2008), a risk measure is 

given by 

    * 1 1
1 1 1 1 .k k kk

P F F I F      (4.12) 

There is no way that these measures can be estimated consistently from the register microdata alone. 

The microdata provide information about the 1
kF  but not about the kF  in U  and distribution of X  in 1U  

may be quite different to that in U  so the microdata carries no direct information about the .kF  Therefore, 

we use the random sample microdata file in which the values of X  are recorded for a probability sample 

s  from .U  Let   kf  denote the frequency in cell k  in .s  Note that the kf  and 1
kF  are observed, but the kF  

are not. If the intruder has access to the sample microdata file, then it may be advantageous to restrict 

attention to cells with 1,kf   leading to the following risk measure  

                           1 1
1 1 1, 1 1, 1 .k k k k kk

P F F f I F f        (4.13) 
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Following Skinner and Shlomo (2008), suppose that kF  is Poisson distributed,  oi~ P sk kF   where 

the parameter k  obeys the log-linear model:  

                                                                       log .x βk k   (4.14) 

Suppose that within cell k  the unknown membership variable iR  takes the value 1 with probability 

,kp  independently for each of the kF  units, so that  1 oi~ P sk kF   where ,k k kp   and the 1
kF  are 

binomially distributed  1 ~ in ,Bk k k kF F F p  conditional on the .kF  Further, we assume that kp  follows 

the logistic model: 

                                                                    logit .x ξk kp   (4.15) 

As shown in Shlomo and Skinner (forthcoming), the risk measure 1  is estimated by: 

  
   
 

1
exp 1

1 1, 1
1 1 ( )

k k k

k k k

k k k

P F F f
  

  

  
   

  
  

and to evaluate *
1 ,  we use 

       1 11 1 0 expk k k k k kP F F P F F           (4.16) 

since  1 Pois .~k k k kF F     

Therefore, the estimation of these measures requires both the estimation of β  from  Pois ,~k k kf    

and in a second step, the estimate ,ξ  fixing k  at the value implied by (4.14). We then use (4.16) and the 

fact that k k kp   to write 

   log log log 1 expx ξ x ξk k k k        (4.17) 

and estimate ξ  from the fact that  1 oi~ P sk kF   using maximum likelihood estimation and treating k  as 

known. Alternative approaches of estimation are proposed in Shlomo and Skinner (2022), however, more 

work is needed to improve the simultaneous estimation of the model parameters ξ  and .β  

Another type of design-based estimator for measuring disclosure risk in sample microdata is called the 

DIS measure and was developed in Skinner and Elliot (2002) and extended in Skinner and Carter (2003) 

for more complex survey designs. The disclosure risk is based on a different disclosure risk scenario 

where an intruder draws a unit at random from the population, checks if the unit is in the sample, and if so, 

estimates the probability that there will be a correct match to the unit in the sample (this is known as a 

“fishing scenario”). Notice that this scenario is quite different than the scenario mentioned under the 

probabilistic modelling where the intruder has access to a unit in the released microdata and attempts to 

match the unit to the population. The advantage of this “fishing scenario” is that the measure can be 

estimated easily without the need for probabilistic modelling. The DIS measure is defined as 
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               1 1  k k kk k
I f I f F      (4.18) 

and estimated by:  

  1 1 22ˆ 1n n n          (4.19) 

where 1n  are the sample uniques:  SU : 1kk f   and 2n  are the sample duplicates:  SD : 2 .kk f   

Skinner and Shlomo (2012) extend this approach to estimate frequencies of frequencies in finite 

populations beyond sample uniques. 

 
4.2 Separating disclosure risk and harm 
 

Chris provided a conceptual framework in Skinner (2012) for separating potential disclosure risk from 

harm, thus linking earlier papers by Duncan and Lambert (1986) and Lambert (1993). The framework is 

based on decision theory where the actors are the agency, the intruder and the user and they are analysed 

with respect to their actions and loss functions. Chris emphasized the importance of separating out what 

can be measured by statistical theory (potential disclosure risk) and what aspects of decision-making 

requires other inputs, such as policy judgements (potential disclosure harm). This work was also 

motivated by the Disclosure Risk-Data Utility framework in Duncan, Keller-McNulty and Stokes (2001) 

and the Economics of Privacy in Abowd and Schmutte (2019).  

As can be seen from these examples, Chris expanded the depth and breadth of SDC research. Other 

areas of research where Chris had considerable impact was on the associations between measuring 

disclosure risks in SDC with other related areas of research, such as record linkage (Skinner, 2009) and 

forensic science (Skinner, 2007). Chris’ more recent work on disclosure risk and privacy will be the topic 

of the next section. 

 
5. Disclosure risk and privacy 
 

In the Computer Science privacy literature, there are formal definitions of privacy via privacy models 

that aim to protect against a class of attacks. The privacy models are parameterized by a threshold of 

disclosure risk determined a priori. Once the privacy model is defined, a perturbation technique is 

developed to guaranty protection against the attack subject to the prescribed threshold. Some examples of 

privacy models are k-anonymity, t-closeness, l-diversity and Differential Privacy. As mentioned, the 

privacy literature uses perturbative techniques resulting in a greater loss of information compared to some 

of the more standard techniques developed in the SDC literature. The class of attacks in the privacy 

literature are typically based on dealing with inferential disclosure which encompasses both identity and 

attribute disclosure risks, although k-anonymity (Sweeney, 2002) aims to avoid linkage attacks similar to 

the SDC approach described in Section 4. We note that even with increasing focus on protecting against 

attribute and inferential disclosure, government agencies are always obliged to protect against identity 

disclosure through possible linkage attacks because of legislation and codes-of-practice on protecting 
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statistical entities from re-identification. The SDC literature is based on matching quasi-identifying 

variables whilst in the privacy literature there is no distinction between identifying and sensitive variables. 

It is important to point out, however, that many concepts in the privacy literature are not new to SDC. 

For example, the reconstruction attacks, mentioned in Garfinkel, Abowd and Martindale (2018) for 

motivating the use of Differential Privacy to protect 2021 US Census outputs, have the same 

considerations as those that motivated the development of complementary cell suppression. This approach 

was developed in the 1980’s for protecting magnitude tables of business statistics. When selecting 

complementary cell suppressions, the lower and upper bounds of the suppressed cells are calculated based 

on information from the margins of the table and assumptions of non-negativity. Indeed, the 

reconstruction attack is not about linkage rather it is concerned with attribute disclosure through small cell 

counts, particularly on the margins. As mentioned the privacy literature mainly focuses on attribute and 

inferential disclosures although the SDC literature have also covered these topics, for example the 

predictive disclosure risk mentioned in Fuller (1993). Another privacy model in the Computer Science 

literature is tracing attacks where one can infer whether an individual is in a sensitive dataset, e.g., Homer 

et al. (2008), but the SDC literature has also focused on whether a data subject is visible in a dataset.  

Since 2005, there have been four collaborative meetings between the SDC community and the 

Computer Science privacy community and this has led to substantial understanding of the different 

approaches both with respect to guarantying privacy and maintaining sufficient utility in the data. For 

example, in Nissim, Steinke, Wood, Altman, Bembenek, Bun, Gaboardi, O’Brien and Vadhan (2018, 

page 5), it is mentioned: “Privacy is a property of an informational relationship between input and output 

not a property of output alone”, and this has led to some relaxations of the strict privacy guarantees in the 

Computer Science literature. An example of one relaxation can be found below in Section 5.1 formula 

(5.2). On the other hand, the SDC community has recognized the need to have more formal privacy 

guarantees, particularly with increasing demands for government agencies to allow accessing statistical 

data via web-based dissemination applications (for example, flexible table builders, remote access, remote 

analysis). Dissemination via open applications means that the agencies are relinquishing some of the strict 

control of what data can be released. The collaborations between the SDC community and the Computer 

Science privacy community have led to a journal that was initiated in 2005, titled the Journal of Privacy 

and Confidentiality (https://journalprivacyconfidentiality.org) of which Chris served as one of the first co-

editors (Abowd, Nissim and Skinner, 2009).  

In the next section we focus on the privacy model of Differential Privacy since Chris had a direct 

involvement in developing this approach as a possible method to be included in the SDC tool-kit at 

statistical agencies. 

 

5.1 Differential privacy 
 

One privacy model that has gained considerable traction in the SDC community is Differential Privacy 

(Dwork, 2006). Dwork and Naor (2010) show that the Dalenius (1977) definition of a privacy breach 
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introduced in Section 2 is impossible to prevent and proposed that instead of comparing information with 

and without the statistic   ,f D  they compare  f D  and  f D  where D  is the database D  without a 

single unit.  

In Differential Privacy, a “worst case” scenario is allowed for, in which the potential intruder has 

complete information about all units in the database except for one unit of interest. The definition of a 

perturbation mechanism M  satisfies  -differential privacy if for all queries on neighbouring databases 

,D D A  where A  is the domain of databases and ,D D  differ by one individual, and for all possible 

outcomes defined as subsets  Range  S M  we have:  

      .p M D S e p M D S     (5.1) 

A relaxation is offered by the definition of  ,  -differential privacy: 

            .p M D S e p M D S      (5.2) 

This means that having observed a perturbed output ,S  little can be learnt (up to a degree of )e  and 

the intruder is unable to determine whether the output was generated from database D  or .D  In other 

words, the ratio       p M D S p M SD   is bounded and the probability in the denominator cannot 

be zero. Thus, Differential Privacy formally bounds increased disclosure risk for an individual due to their 

data being in database D  and that they would not have faced had their data not been part of D  (Dwork 

and Roth, 2014). Under the  ,  -differential we allow a small amount of slippage to this constraint.  

The solution to guarantee Differential Privacy in the Computer Science literature is to add 

noise/perturbation to the outputs of the queries under specific parameterizations, for example by 

generating additive noise from the Laplace Distribution (or a discretized Laplace Distribution for adding 

noise to count data). 

Shlomo and Skinner (2012) first looked at whether standard SDC methods are differentially private 

mechanisms according to the definition in (5.1). They found that sampling, as well as other non-

perturbative SDC methods such as coarsening variables, are not differentially private. In this setting, there 

are two possible definitions of the database: the population database  1, ,xU Nx x   and the sample 

database  1, ,xs nx x   where N  is the size of the population U  and n  is the size of the sample .s  

Assume that a vector of counts of size K  is released from the sample:  1, ,f Kf f   where 

 .k ii s
f I x k


   Let  f xUP  denote the probability of f  with respect to the sampling and xU  is 

treated as fixed. According to this set-up,  -differential privacy holds if:  

 
 
 

max ln
f x

f x

U

U

P

P


 
 

  
 (5.3) 

for some 0,   where the maximum is over all pairs  ,x xU U
  which differ in only one element and 

across all possible values of .f  Now in random sampling strategies there is generally a positive probability 

that a sample unique for a cell k  can be a population unique: 1.k kf F   For any given f  and any 
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sampling scheme where   kf  can equal kF  with positive probability, there exists a databases xU  where 

1k kf F   for some k  and   .f x 0UP   If we change an element of xU  which takes the value k  to 

construct xU
  then we obtain 1k k kF F f     and   .f x 0UP    

On the other hand, perturbative methods in the SDC tool-kit can be made differentially private if the 

perturbation mechanisms do not have zero probabilities of perturbation. As an example, SDC methods 

traditionally do not perturb zero cells in census tables containing whole population counts, but rather 

stochastically introduce more zeros through the perturbation using an approach such as random rounding. 

However, to make this perturbation approach differentially private, the (random) zeros of the table also 

need to be perturbed.  

 
5.2 Online flexible table builders 
 

There has been much interest by government agencies to develop online flexible table builders through 

bespoke web-based platforms. Users generate and download their own census tables from a set of 

predefined variables and categories selected through drop-down lists. Light disclosure checks are carried 

out on each generated table to determine whether the table can be released or not, and if so, disclosure 

control methods are applied to the table before release. One such application was developed at the 

Australian Bureau of Statistics (ABS) (see: https://www.abs.gov.au/statistics/microdata-tablebuilder/ 

tablebuilder). The application uses a perturbation vector to change values of cell counts depending on the 

original cell value, where the perturbation mechanism has the properties of being bounded, unbiased, has 

maximal entropy, only allows for non-negative perturbations and zero cells are not perturbed. Shlomo and 

Young (2008) introduced an approach to transform the perturbation vectors in such a way that the 

marginal counts are preserved in expectation by introducing the property of invariance into the 

perturbation mechanism. 

In the ABS online flexible table builder, a small random number is assigned to each individual in the 

census microdata. Then, when a table is requested and the individuals are aggregated into the cells of the 

table, the random numbers of the individuals in each cell are also aggregated. This aggregated random 

number is then used as the seed to determine the perturbation (Fraser and Wooton, 2005). This means that 

any time a same cell appears in any requested census table, it will always have the same perturbation. 

Therefore, there is no risk of being able to “unpick” a true cell value by averaging out independent 

perturbations under multiple requests of the same table. In addition, this approach ensures that the 

perturbation mechanism is a “non-interactive” mechanism since essentially all outcomes of perturbation 

on requested census tables within the online flexible table builder are pre-determined in advance.  

One of Chris’ last initiatives prior to his illness was to take the lead on organizing a collaborative 

programme between statisticians, computer scientists, social scientists and practitioners held at the Isaac 

Newton Institute, University of Cambridge. Together with Professor David Hand, they successfully 

launched the Data Linkage and Anonymization Programme (supported by the UK Engineering and 
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Physical Sciences Research Council (EPSRC) grant no. EP/K032208/1) held from July to December 2016. 

It was during this programme that a group of statisticians looked at whether Differential Privacy could be 

a viable solution for an online flexible table builder for generating census tables, resulting in the paper by 

Rinott, O’Keefe, Shlomo and Skinner (2018). The main difference with the original ABS approach was to 

use a differentially private perturbation mechanism (known as the Exponential Mechanism which is 

essentially a discretized Laplace Distribution) and to perturb the (random) zero cells. Any resulting 

negative perturbations are then pushed to zeros in the census tables. Assuming independent pertubations, 

the Exponential Mechanism is defined as follows: for a given cell count value ,a  choose b B  (where  B  

is the range of )b  with probability proportional to   exp 2 u u   where u  is the perturbation and u  

is the maximum difference of a cell count in database D  versus ,D  which for the case of census tables of 

internal cells, takes the value of one. Accounting for marginals in the census tables raises the complexity 

of u  and the perturbation vector (see Rinott et al., 2018 for more information about marginals). In order 

to ensure utility, the perturbations are capped at 7  thus the mechanism satisfies  ,  -differential 

privacy and we allow for a slippage of an unbounded ratio provided that   is very small.  

Here, we also implement the methodology of “same cell-same perturbation” of Fraser and Wooton 

(2005) which essentially makes this a non-interactive differentially private mechanism, and hence there is 

one privacy budget that is needed to protect the queries for tables within the online flexible table builder. 

Any request for the same table will always result in the same perturbed table and there is no further 

privacy budget spent beyond the initial perturbation. 

An example of a pertubation vector for 1.5   and 0.00002   and a perturbation cap at 7  is in 

Table 5.1 where the probability of perturbation is based on a discretized Laplace Distribution: 

   1 expCp u u   and C  is a normalizing constant so that the perturbation vector sums to 1. As 

mentioned, any resulting negative values are pushed to zero and this does not violate the property of 

Differential Privacy. Examples and applications are shown in Rinott et al. (2018). The authors also show 

how to adjust statistical inferences when carried out on perturbed census tables since the perturbation 

mechanism under Differential Privacy is known and not secret. This is in sharp contrast to the SDC 

approach where parameters of the SDC methods are generally held secret and not released to researchers. 

For example, when adding noise to continuous variables, the variance of the noise distribution would not 

be released.  

 
Table 5.1 

Perturbation vector for differentially private mechanism 1.5,ε  0.00002δ   and a cap at 7  
 

 u -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
 p(u) 0.00002 0.00008 0.00035 0.00157 0.00706 0.03162 0.14172 0.63516 0.14172 0.03162 0.00706 0.00157 0.00035 0.00008 0.00002 

 
Differential Privacy has more formal by-design privacy guarantees and protects against attribute and 

inferential disclosure risks. Therefore, Differential Privacy may provide a better solution for protecting 
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statistical data that is disseminated as open data or via web-based open applications where there is less 

control and intervention by data custodians at statistical agencies. For this reason, Differential Privacy 

should be included as an additional method in the SDC tool-kit. The US Census Bureau will be applying 

Differential Privacy in their 2021 census products (Abowd, 2018). Further research is needed on how 

privacy budgets are influenced when combined with other SDC approaches, such as coarsening, sampling 

and variable suppression. There is also ongoing research within the privacy literature to improve the utility 

of differentially private perturbation mechanisms, for example the bounded Differential Privacy in Kifer 

and Machanavajjhala (2014). 

 
6. Final words 
 

In summary, a key feature of Chris’s approach to research on SDC, as well as other areas of research, 

was that it was based on finding practical solutions to real statistical problems. His research was 

influential because he was able to put theory to practice and solve real problems, thus advancing scientific 

knowledge in the social sciences, government and social statistics and survey methodology. Chris had 

considerable influence on other research areas besides SDC. He has edited influential books and authored 

many journal articles in diverse research areas in survey statistics, including missing data, measurement 

error, data integration, the analysis of complex survey designs, multiple frame estimation and more. Chris 

was a definitive voice of a generation in the research and development of social statistics and he will be 

missed.  
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Abstract 

My comments consist of three components: (1) A brief account of my professional association with Chris 
Skinner. (2) Observations on Skinner’s contributions to statistical disclosure control, (3) Some comments on 
making inferences from masked survey data. 
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My professional association with Skinner. In 1978, my good friend Professor Fred Smith of the 

University of Southampton invited me to spend four months of my sabbatical leave (April through July) at 

his university to collaborate on a research project dealing with the analysis of complex survey data. 

Alastair Scott, Gad Nathan, and Tim Holt were the other members of the team. Our team’s initial work 

stimulated a lot of research on the analysis of complex survey data, including methods for categorical data 

taking account of design features and regression analysis under informative sampling. Southampton group 

since then evolved into a leading survey research center.  

Our team’s joint research on the analysis of complex survey data resulted in a conference held in 

Southampton in 1985, and, based on the presented papers, in a Wiley book edited by Skinner, Holt and 

Smith (1989). Skinner finished his PhD at the University of Southampton in 1982 and became a faculty 

member there. I met Skinner for the first time at the 1985 conference and I was most impressed by his 

deep understanding of the issues underlying the analysis of complex survey data. He took a major share in 

editing the book, particularly Part A of the book. This important book is widely cited. A second 

conference on the same topic was held in Southampton in 1999 to mark Fred Smith’s retirement. A second 

Wiley book, edited by Chambers and Skinner (2003), was based on the presentations at the conference. 

Skinner visited me several times for joint research and collaboration. I have also visited him. Our 

collaboration led to three joint papers dealing with different topics of importance: (1) Estimation in dual 

frame surveys with complex designs: Skinner and Rao (1996) proposed estimators that use the same 

sampling weights for all variables of interest, based on the design induced by the two separate designs. (2) 

Jackknife variance estimation under hot-deck imputation for multivariate statistics: Skinner and Rao 

(2002) derived bias-adjusted estimators under common donor imputation and associated jackknife 

variance estimators. (3). Quasi-score test with survey data: Rao, Scott and Skinner (1998) developed 

analogues of customary score tests for use with survey data where the use of multi-stage sampling and 

variable selection probabilities cause special problems.  
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In 2017, Skinner presented an overview paper on analysis of categorical survey data at a conference 

held in Kunming, China, to celebrate my 80th birthday. The paper is now published (Skinner, 2019). In the 

same year, he gave an invited talk at the World Statistics Congress in Marrakesh, Morocco, in a session I 

organized. His talk studied alternative weighting options in regression analysis of survey data. That was 

the last occasion I interacted with Skinner before he passed away in 2021. Skinner and I served on 

Statistics Canada Advisory Committee on Statistical Methods for several years.  

Skinner’s seminal contributions to SDC. Shlomo provides an informative account of early statistical 

disclosure control (SDC) developments in Section 2. She highlights major contributions of Skinner to 

SDC in Section 4. In Section 4.1, Shlomo gives a detailed account of Skinner’s seminal work on 

measuring risk of reidentification in survey micro data through probabilistic models. In this connection, I 

found Skinner’s (2007) paper, establishing correspondence between SDC and forensic statistics regarding 

their common use of the concept of “probability of identification”, very informative and interesting. 

Skinner showed that one cannot ignore the search method that an intruder employs to achieve disclosure, 

in the sense that the probability of disclosure varies with the search method employed. He also proposed 

methods to handle the impact of search methods. 

Differential privacy (DP) is a hot topic currently. Shlomo gives a succinct account of DP in 

Section 5.1. Her joint paper with Skinner (Shlomo and Skinner, 2012) studied whether SDC methods are 

differentially private. They showed that probability sampling and other non-perturbative methods are not 

differentially private. In Section 5.2, Shlomo notes that Skinner, prior to his illness, initiated a 

collaborative program on SDC between statisticians, computer scientists, social scientists, and 

practitioners. This is indeed commendable, and his untimely death is a set back to this important 

collaborative program. 

Making inferences from masked data. Shlomo did not cover issues related to making inferences 

from masked data. Analysts of survey data would like to use standard methods and software on the 

masked data. On the other hand, it appears that specialized DP-based methods and some other masking 

techniques used to preserve confidentiality of micro data require knowledge of the masking techniques 

used to generate the masked data and specialized software tailored to those methods, as noted by 

Raghunathan, Reiter and Rubin (2003).  

Raghunathan et al. (2003) proposed imputation methods to create multiple sets of fully synthetic data. 

Standard methods and software, like those used in the context of multiple imputation for missing data, are 

then used to make inferences. Raghunathan (2016), Section 8.5, illustrated a mass imputation method for 

doing a regression analysis of a dependent variable y  on an independent variable x  by creating multiple 

data sets of synthetic variables * *( , ).y x  The proposed methods typically require more synthetic data sets 

than those used in the context of multiple imputation for missing data. Also, the methods might retain the 

problems of making inferences using methods based on multiple imputation for missing data, when the 

data are based on a complex survey design (Fay, 1996). 
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Comments on “Statistical disclosure control and 
developments in formal privacy: In memoriam to 

Chris Skinner”: A note on weight smoothing in survey 
sampling 

Jae Kwang Kim and HaiYing Wang1 

Abstract 

Weight smoothing is a useful technique in improving the efficiency of design-based estimators at the risk of 
bias due to model misspecification. As an extension of the work of Kim and Skinner (2013), we propose using 
weight smoothing to construct the conditional likelihood for efficient analytic inference under informative 
sampling. The Beta prime distribution can be used to build a parameter model for weights in the sample. A 
score test is developed to test for model misspecification in the weight model. A pretest estimator using the 
score test can be developed naturally. The pretest estimator is nearly unbiased and can be more efficient than 
the design-based estimator when the weight model is correctly specified, or the original weights are highly 
variable. A limited simulation study is presented to investigate the performance of the proposed methods. 

 
Key Words: Conditional maximum likelihood method; Analytic inference; Score test; Pretest estimation. 

 
 

1. Introduction 
 

Suppose that the finite population of  ,i ix y  is an independent and identically distributed (IID) 

realization of the superpopulation model with density    ; ,f y x g x  where   is the parameter of 

interest and the marginal density  .g  is completely unspecified. From the finite population, we obtain a 

probability sample A  with a known first-order inclusion probability .i  We observe  ,i ix y  in the 

sample. We are interested in estimating the model parameter   from the complex sample, which is the 

main problem in the area of analytic inference in survey sampling. See Korn and Graubard (1999) and 

Fuller (2009, Chapter 6) for comprehensive overviews of analytic inference in survey sampling. 

For efficient estimation, we can construct the conditional likelihood function from the sample as 

follows:  

     
   

     

; ,

; ,

i i i i

c
i A i i

f y x x y
L

f y x x y d y

 


  

 





 (1.1) 

where  

                                                   , ,x y E x y   (1.2) 

is the conditional inclusion probability and     is the dominating measure. See Section 8.2 of Kim and 

Shao (2021) for some details of the conditional maximum likelihood method. 
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To compute the conditional inclusion probability in (1.2), we can use the formula of Pfeffermann and 

Sverchkov (1999):  

  
 

1
, ,

,s

E x y
E w x y

   (1.3) 

where 1w    and  
sE   is the expectation with respect to the sample distribution, the conditional 

distribution given the sample. 

The conditional inclusion probability obtained from (1.3) can be used to calculate the smoothed weight 

  
1

, .i i iw x y


   The weight smoothing can reduce the variability of the sampling weight 1
i iw    in 

estimating parameters and thus can lead to more efficient estimation, as discussed by Beaumont (2008) 

and Kim and Skinner (2013). To compute the conditional expectation  , ,sE w x y  we need to build a 

regression model for ,w  which can be called a weight model. 

In this article, we explore some particular parametric classes of weight models. In Section 2, a weight 

model using the Beta prime distribution is introduced. In Section 3, a score test for correct model 

specification in the weight model is proposed. In Section 4, results from a limited simulation study are 

presented. Some concluding remarks are made in Section 5. 

 
2. Weight model 
 

Because the sampling weights satisfy  1 1, , ,iw i n  …  it is assumed that 1
iw  are modeled as a Beta 

distribution      Beta , , 1 , .i i i im x y m x y   Thus, the density function satisfies  

      
 1 1 11 1 1, 1 ,

m m

f w x y w w
         

and the conditional expectation and variance are  

      
    1 1

, 1 ,
, , , and , ,

1

m x y m x y
E w x y m x y V w x y


 


 


  

respectively, where   is the precision parameter. An example of a mean function is the logistic model:  

  
 
 

0 1 2

0 1 2

exp
, ; .

1 exp

x y
m x y

x y

  


  

 


  
 (2.1) 

This is essentially a beta regression model. Further details on beta regression can be found in Ferrari and 

Cribari-Neto (2004). 

Unfortunately, the beta regression approach cannot be applied directly because the regression model 

does not necessarily hold in the sample due to informative sampling. To avoid this problem, we can derive 

the distribution of the sampled data. Recall that if  ~ Beta ,X    then 1 X  follows  Beta ,   and 
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 1 X X  follows a Beta prime distribution  Beta , .   Therefore, 1o w   follows 

     Beta 1 , , , ,i im x y m x y    and the density function is expressed as  

      1 1, 1 .mf o x y o o
      

Based on Bayes’ theorem and  
11 1 ,w o
    the sampled distribution of o  satisfies  

          
11 1, , 1 , , 1 ,m

sf o x y f o x y P x y w o o


       (2.2) 

which implies        , , 1 ~ Beta 1 , , , 1 .o x y m x y m x y      Thus, we obtain the following.  

             
 

1
, 1 ,

, ;
s sE w x y E o x y

m x y 
    (2.3) 

and  

 

 
 

   
 

   

1 , 1
Var ,

, , 1

1 , 1

, ,

s

m x y
w x y

m x y m x y

m x y

m x y m x y








 






  

for sufficiently large .  Thus, we obtain the following method of moments estimator of :  

                         
  
 

2
, ; 11ˆ

1 , ;

i i i

i A i i

w m x y

n m x y






 



  (2.4) 

which depends on unknown parameter .  

We can use the following iterative estimation procedure estimate model parameters.   

1. Compute  

    
   

2

0 11ˆ
1 1

i

i A

w w

n w








   

as an initial estimator of ,  where 1 .ii S
w n w


   

2. Using 
 ˆ ,t  compute 

 ˆ t  by finding the maximizer of  

            ˆ ˆlog , ; ,t t
c s i i i

i S

f o x y   


    

with respect to ,  where  

                     
 

   
 

111
, ; , 1 ,

1
m

sf o x y o o
m m

 
 

  

   
 

   
  

and  , ; .m m x y   

3. Compute 
 1ˆ t 

 by applying (2.4) with 
 ˆ .t   Iteratively update ̂  and ̂  until convergence.  
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3. Score test for weight model specification 
 

The weight smoothing method in Section 2 is justified under the assumption that the weight model is 

correctly specified. In practice, we may wish to test for the validity of the weight model before we use the 

model-based estimator. In this section, we consider a version of the score test for model specification. 

Let ˆc  be the maximizer of the conditional likelihood function in (1.1). Let ˆd  be the design-based 

estimator of   that is obtained by maximizing the pseudo log-likelihood function  

       
1

log ; .xp i i
i A i

f y 


   (3.1) 

The pseudo MLE has been discussed in Chambers and Skinner (2003). Thus, we can develop a test for the 

following null hypothesis:  

                                                               ˆ ˆ .d cE E   (3.2) 

However, developing a Wald-type test statistics for the null hypothesis in (3.2) can be cumbersome as the 

variance-covariance matrix of ˆ ˆ
d c   needs to be estimated. 

Instead of testing (3.2), we can consider testing the following null hypothesis  

   0 0
ˆ: 0,cH E S    (3.3) 

where 0  is the true parameter and    1ˆ logc cS n L      is the score function obtained from the 

conditional log-likelihood in (1.1). That is,  

                                         
1ˆ ; , ; , ,c i i s i i

i A

S S x y E S x Y x
n

  


      

where    ; , log ;S x y f y x      and  

                                           
     

   

; , , ;
; , .

, ;
s

S x y x y f y x dy
E S x Y x

x y f y x dy

  


 








  

Under some regularity conditions (Binder, 1983), we can establish that  

       ˆ ˆ 0, ,c c cn S E S N         

L

I  (3.4) 

as ,n   where 
L

 denotes the convergence in distribution and  

                                           

   

    
 

2

1

1

;
; .

;

x
x

x

c c

n
i i i

i i i i
i i i

E S

E S
n E S S

E

 


 
 

 







 
    

 
  

 
 







I

 

(3.5)

 

The proposed test statistic is  
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          
1

ˆ ˆ ˆ ˆ ˆ ˆ
d c d c d c dT nS S   


 I   

where ˆd  is the pseudo MLE of 0 .  Note that  

                  
0

ˆ 1 ,d pT T o     

as  
0

ˆ 1 ,d po    regardless of whether the weight model holds or not. Under the null hypothesis in 

(3.3), by (3.4), we can establish that T  converges to  2 q  distribution where  .q dim   If the null 

hypothesis is rejected, then it implies that  ,x y  in constructing the conditional likelihood in (1.1) is 

incorrectly specified. Otherwise, we can safely use the conditional ML estimator. 

Strictly speaking, the information matrix in (3.5) ignores the uncertainty of ̂  in  ˆ, ; .i i ix y     To 

incorporate the uncertainty in ˆ,  we can consider another information matrix for .  Ignoring the 

uncertainty in ̂  will overestimate the variance and lead to a conservative test. See the simulation study in 

the next section. 

 
4. Simulation study 
 

To test our theory, we performed a limited simulation study. In the simulation, we generate a finite 

population of size 10,000N   and use Poisson sampling to select a sample of expected size 1,000.n   

We repeat this procedure independently 1,000B   times. 

In each Monte Carlo sample, we generate  , ,i i ix y   for 1, ,i N …  where  ~ 0, 2 ,ix 0 1i iy x   

,ie    0 1, 0.5, 0.5 ,    2~ 0, 0.5 ,ie N  and      , ~ Beta , , 1 , ,i i i i i i ix y m x y m x y    where  

                                                  
 
 

0 1 2

0 1 2

exp
, ;

1 exp

x y
m x y

x y

  


  

 


  
 (4.1) 

with 1 1,  2 1,   and 0  being different values for different cases to ensure that 1,000.n   We used 

two different values of , 100   versus 1,000,   in the simulation study. The weight distribution is 

less skewed for 1,000.   

We have four different sampling designs as follows: 

Case 1. 100;   weight model is specified correctly.  

Case 2. 100;   lowest 30% ’si  are multiplied by 0.25, i.e., top 30% ’siw  in the full data are 

multiplied by 4. Thus, the weight model (4.1) is incorrectly specified.  

Case 3. 1,000;   weight model is correctly specified.  

Case 4. 1,000;   the lowest 30% ’si  are multiplied by 4, i.e., the top 30% ’siw  in the full data 

are multiplied by 0.25. Thus, the weight model (4.1) is incorrectly specified.  
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We are interested in estimating 0  and 1.  The following three estimators are considered.   

1. PMLE: The pseudo maximum likelihood estimator ˆd  maximizing (3.1).  

2. CMLE: The conditional maximum likelihood estimator ˆc  maximizing (1.1) with  ,x y   

  
1

,w x y


  and  ,w x y  is the smoothed weight under the specified weight model. To avoid 

numerical problems, we estimate 2  in a design-based way. 

3. PreTest: The pretest estimator using the score test in Section 3. That is, the pretest estimator 

pre̂  with 0.05   is defined as  

 
   2

0.95 2
pre

ˆ ˆifˆ
ˆ otherwise,
d

c

T q  




 
 


  

where  2
0.95 2q   is the 0.95 quantile of the  2 2  distribution.  

 

Table 4.1 presents the biases, standard errors, and root mean square errors (RMSE) of the three 

estimators using Monte Carlo samples. The simulation results can be summarized as follows.   

1. The PMLE is nearly unbiased for all cases, but it is less efficient than the other methods in 

Cases 1 and 3, where the weight model is correctly specified.  

2. The CMLE is the most efficient but is subject to significant biases when the weight model is 

incorrectly specified. The efficiency gain is higher for a smaller ,  as the distribution of ’siw  is 

more skewed and the advantage of weight smoothing is more significant.  

3. The pretest estimator is nearly unbiased for all cases and can be more efficient than the PMLE 

when the weight model is correctly specified (Case 1 and Case 3), or the original weights are 

highly variable (Case 2).  

 
Table 4.1 

Monte Carlo biases, standard errors (SE) and root mean square errors (RMSE) of the three estimators based 

on 1,000 Monte Carlo samples 
 

Case Method 

0  1  

SE Bias RMSE SE Bias RMSE 
1 PMLE 0.0768 -0.001 0.0768 0.0799 0.001 0.0800 

CMLE 0.0608 -0.001 0.0608 0.0425 0.001 0.0425 
PreTest 0.0701 0.006 0.0704 0.0672 -0.004 0.0673 

2 PMLE 0.1198 -0.000 0.1198 0.1182 0.008 0.1185 
CMLE 0.0750 0.020 0.0777 0.0375 0.066 0.0764 
PreTest 0.1198 0.001 0.1198 0.1179 0.008 0.1182 

3 PMLE 0.0651 0.000 0.0651 0.0645 0.000 0.0645 
CMLE 0.0525 0.002 0.0526 0.0413 -0.002 0.0413 
PreTest 0.0561 0.003 0.0563 0.0499 -0.003 0.0500 

4 PMLE 0.0455 0.001 0.0456 0.0432 0.000 0.0432 
CMLE 0.0472 0.053 0.0713 0.0432 -0.127 0.1345 
PreTest 0.0456 0.001 0.0456 0.0433 0.000 0.0433 

Note: Pseudo maximum likelihood estimator (PMLE); Conditional maximun likelihood estimator (CMLE). 
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The rejection rates for the score test are 0.119, 0.952, 0.051, and 0.997 for the four cases, respectively, 

where the level of significance is 0.05.   The high rejection rate of 0.119 in Case 1 is due to the effect 

of ignoring uncertainty in weight smoothing. The effect of ignoring the uncertainty in weight smoothing is 

negligible in Case 3, since the effect of weight smoothing is less significant when   is large. The higher 

rejection rate indicates that the score test is conservative in adopting the CMLE using iw  over the PMLE. 

 
5. Concluding remark 
 

This article is dedicated to the memory of Professor Chris Skinner. The first author collaborated on 

various projects with Chris Skinner, and their first research outcome was published in Kim and Skinner 

(2013). When J.K. Kim visited Chris Skinner at Southampton in the summer of 2011, they first worked on 

analytic inference under informative sampling, studying the work of Pfeffermann and Sverchkov (1999), 

but they did not make a connection with weight smoothing at that time. Instead, they mainly focused on 

the weight smoothing method. About ten years later, we present a method connecting weight smoothing to 

the likelihood framework.  

Weight smoothing is potentially useful, but the correct model specification is required. The pretest 

estimator using the score test in Section 3 can be used in practice, as it compromises the efficiency of 

weight smoothing and the robustness of design-based estimation. How to estimate the variance of the 

pretest estimator has yet to be explored in this paper and will be investigated in the future. 
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Official Statistics based on the Dutch Health Survey during 
the Covid-19 Pandemic 

Jan van den Brakel and Marc Smeets1 

Abstract 

The Dutch Health Survey (DHS), conducted by Statistics Netherlands, is designed to produce reliable direct 
estimates at an annual frequency. Data collection is based on a combination of web interviewing and face-to-
face interviewing. Due to lockdown measures during the Covid-19 pandemic there was no or less face-to-face 
interviewing possible, which resulted in a sudden change in measurement and selection effects in the survey 
outcomes. Furthermore, the production of annual data about the effect of Covid-19 on health-related themes 
with a delay of about one year compromises the relevance of the survey. The sample size of the DHS does not 
allow the production of figures for shorter reference periods. Both issues are solved by developing a bivariate 
structural time series model (STM) to estimate quarterly figures for eight key health indicators. This model 
combines two series of direct estimates, a series based on complete response and a series based on web 
response only and provides model-based predictions for the indicators that are corrected for the loss of face-to-
face interviews during the lockdown periods. The model is also used as a form of small area estimation and 
borrows sample information observed in previous reference periods. In this way timely and relevant statistics 
describing the effects of the corona crisis on the development of Dutch health are published. In this paper the 
method based on the bivariate STM is compared with two alternative methods. The first one uses a univariate 
STM where no correction for the lack of face-to-face observation is applied to the estimates. The second one 
uses a univariate STM that also contains an intervention variable that models the effect of the loss of face-to-
face response during the lockdown. 

 
Key Words: Small area estimation; Structural time series model; Corona crisis. 

 
 

1. Introduction 
 

The Dutch Health Survey (DHS) is a continuing survey conducted by Statistics Netherlands that 

measures health, healthcare use and lifestyle in the Netherlands. Data collection is based on a sequential 

mixed-mode design where a combination of web participation (Computer-assisted web interviewing 

(CAWI)) and face-to-face interviewing (Computer-assisted personal interviewing (CAPI)) is applied. Due 

to Dutch lockdown measures during the Covid-19 pandemic face-to-face interviewing was not allowed in 

parts of 2020 and 2021. Figure 1.1 displays a timeline of the lockdowns in the Netherlands and the 

restrictions on the CAPI mode for the DHS. In the rest of these years, there were restrictions on the normal 

way of data collection. This results in an abrupt change in the composition of selection effects and 

measurement bias and therefore results in a systematic effect on the outcomes of the DHS. A second issue 

is that the DHS is designed to produce reliable estimates on an annual basis, using standard direct 

estimators like the general regression (GREG) estimator (Särndal, Swensson and Wretman, 1992). The 

DHS normally publishes on an annual basis for year   in the month of March of year 1.   The Covid-

19 pandemic that started in the beginning of 2020 made clear that the release of annual data about the 

effect of Covid-19 on health-related themes with a delay of about one year strongly compromises the 
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relevance of this survey. Another disadvantage of annual figures is that the period of the corona crisis is 

not well-delineated in the reference period of the DHS. In the second quarter of 2020, there was indeed a 

strong external demand for quarterly figures of the DHS, since quarterly figures are more timely and better 

delineate the corona period. The sample size of the DHS, however, does not allow the production of 

sufficiently precise direct estimates for quarterly reference periods.  

 
Figure 1.1 Timeline of Dutch coronavirus lockdowns and restrictions on CAPI mode for DHS, January 2020 

to June 2021. 

 

 

 

 

 

 

 

 
 

 
To solve these issues, a bivariate structural time series model (STM) is developed for eight key 

variables of the DHS, defined on a quarterly frequency. This model is used to correct for the changes of 

measurement and selection errors due to the loss of CAPI response and is used as a form of small area 

estimation (Rao and Molina, 2015) since the model uses sample information observed in previous 

reference periods to produce sufficiently reliable model-based estimates for quarterly DHS figures. In 

small area estimation this is commonly called borrowing strength over time.  

The models proposed in this paper can be considered as an extension of the area level model (Fay and 

Herriot, 1979). The extension of the area level model with a temporal component is originally proposed by 

Rao and Yu (1994). In this paper a time series multilevel model is applied where an AR(1) component for 

the domain irregular terms is assumed. Other authors who proposed time series multilevel models as an 

extension of the area level model are Datta, Lahiri, Maiti and Lu (1999), You, Rao and Gambino (2003), 

You (2008), Boonstra, van den Brakel and Das (2021) and Boonstra and van den Brakel (2022). Another 

class of time series models that are frequently used as a form of small area estimation are state-space 

models. Pfeffermann and Burck (1990), Pfeffermann and Bleuer (1993), Pfeffermann and Tiller (2006) 

and Krieg and van den Brakel (2012) use multivariate state-space models as a form of small area 

estimation to borrow strength over time and space. Pfeffermann (1991), Harvey and Chung (2000) and 

van den Brakel and Krieg (2016) propose multivariate time series models as a form of small area 

estimation for Labour Force surveys that are designed as a rotating panel. The basic difference of the 

state-space models with aforementioned time series multilevel models is that the population irregular 

terms are combined with the sampling error into one measurement error. Another difference is that these 
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models are also applied to time series at the national level to borrow strength over time only in situations 

where the reference period is too short to collect sufficient data to use a direct estimator even at the 

national level, see e.g., Pfeffermann (1991), Tiller (1992) and Harvey and Chung (2000). This paper 

follows the aforementioned state space approach. 

Buelens and van den Brakel (2015) proposed a weighting method for sequential mixed-mode designs 

to stabilize the bias in period-to-period changes that arise from fluctuations in the distributions of 

respondents over the data collection modes in subsequent editions of a repeated survey. This method 

assumes a fixed distribution of the population over the different data collection modes, which is added as 

an additional component to the weighting model of the GREG estimators. This method cannot be 

considered as an alternative to compensate for the loss of CAPI during the lockdown. The method indeed 

increases the weights of the CAPI respondents, but will in this case increase selection bias as well because 

the CAPI respondents are all observed outside the lockdown period. 

The net effect of the lack of CAPI is computed based on the response of previous years. This is done 

by removing CAPI from the response and by reweighting the remaining response. This leads to two direct 

estimates for one target variable: one based on the complete response (CAWI and CAPI) and one based on 

only web response (CAWI). In this way quarterly time series can be constructed for DHS that start in the 

first quarter of 2014: the complete series based on full response and the web series based on web response 

only. Both series are the input for the bivariate STM. The web series is available in all quarters, also 

during the lockdown. In quarters without CAPI there are no estimates available for the complete series and 

the bivariate STM then provides nowcasts for the missing figures based on the web series. 

In this paper the bivariate STM is compared with two alternative and more straightforward models. 

The first one is a univariate STM where no correction for the lack of CAPI is applied. This method applies 

a univariate STM to the series of direct estimates based on all available response in every quarter. In 

quarters where CAPI is available the direct estimates are based on both CAWI and CAPI, so they are 

equal to the estimates of the complete series. In quarters where no CAPI is available the direct estimates 

are based on only CAWI and are thus equal to the estimates of the web series. The second one is a 

univariate STM that also contains an intervention variable that models the effect of the loss of CAPI 

during the lockdown.  

The paper is organized as follows. Section 2 gives a description of the Dutch Health Survey and both 

the univariate and bivariate structural time series models are developed in Section 3. Section 4 explores 

the results and Section 5 discusses the officially published quarterly DHS figures by Statistics 

Netherlands. The paper ends with a discussion in Section 6. 

 
2. Dutch Health Survey 
 

The Dutch Health Survey is a continuing survey that measures health, healthcare use and lifestyle in 

the Netherlands on a yearly basis. The target population is the Dutch population living in private 



42 van den Brakel and Smeets: Official Statistics based on the Dutch Health Survey during the Covid-19 Pandemic 

 

 
Statistics Canada, Catalogue No. 12-001-X 

households. Each month a single-stage stratified sample of approximately 1,250 persons is drawn from the 

Dutch Personal Records Database. The strata are defined by the municipalities.  

Sampled persons are asked to participate via web interviewing (CAWI). Non-respondents are re-

approached to participate in a face-to-face interview (CAPI). To reduce administration costs, the fraction 

of CAWI responses is increased by selecting samples from the CAWI non-respondents that are re-

approached through CAPI using a target group strategy that has been used since 2018. CAWI non-

respondents are first divided into so-called target groups based on age, income and migration background. 

From each target group only a sample is re-approached.  

Until 2020 there was a yearly response of approximately 10,000 persons, of whom 6,500 responded by 

CAWI and 3,500 by CAPI. The response is more or less evenly divided over the months. Due to the 

Covid-19 pandemic that started in 2020 there was a lockdown in the Netherlands that started mid-March 

2020. The first relaxations were implemented in May 2020. Due to this lockdown no face-to-face 

interviews were allowed from mid-March 2020 to the end of July 2020. A second lockdown started in 

mid-December 2020, which was gradually relaxed from March 2021. This lockdown resulted in a stop of 

face-to-face interviewing from mid-December 2020 until the end of March 2021. From April 2021 face-

to-face interviews were possible again. In order to increase response during the pandemic, persons 

selected for CAPI were given the opportunity to respond via the internet. This was done by sending an 

invitation letter when face-to-face interviewing was not allowed and by handing over this letter otherwise. 

In 2020 only few people used this option and they were considered as CAWI respondents. In 2021 a 

substantial part of the people selected for CAPI responded via the internet. This response mode will be 

referred to as CAPI/CAWI response. The resulting response sizes per month and response mode are 

shown in Table 2.1. 

Table 2.1 shows that in 2020 CAPI response is lower in the months March and December and is 

completely missing from April to July. The large CAWI response size in May is the result of 

compensation measures taken by Statistics Netherlands for the response gaps that arose due to the 

lockdown. In 2021 CAPI response is completely missing in the first quarter and is lower in April and 

May. From June CAPI response seems to recover.  

Annual figures are obtained by weighting the response by means of the general regression estimator 

(Särndal et al., 1992). In this way it is corrected, at least partially, for selective non-response. The 

weighting model is given by Gender_2   Age_16 + MaritalStatus_4 + Urbanization_5 + Region_16 + 

HouseholdSize_5 + Gender_2   Age_3   MaritalStatus_4 + Region_4   Age_3 + Migration 

Background_4 + SurveySeason_4 + Income_5 + Wealth_5 + TargetGroup_12. The numbers refer to the 

number of categories and the times sign indicates the use of interaction terms between variables. Note that 

TargetGroup_12 is included since 2018. 
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Table 2.1 

Response DHS 2020 per mode and month  
 

   CAPI CAPI/CAWI CAWI Total 

2020 January 265  584 849 

 February 261  586 847 

 March 104  917 1,021 

 April 0  455 455 

 May 0  1,118 1,118 

 June 0  708 708 

 July 0  483 483 

 August 193  527 720 

 September 286  259 545 

 October 149  763 912 

 November 181  587 768 

 December 53  286 339 

 Total 1,492  7,273 8,765 

2021 January 0 48 738 786 

February 0 36 546 582 

March 0 22 655 677 

April 38 77 460 575 

May 51 62 738 851 

June 109 62 283 454 

Total 198 307 3,420 3,925 
Note: Dutch Health Survey (DHS); Computer-assisted personal interviewing (CAPI); Computer-assisted web interviewing (CAWI). 

 
In consultation with the main data users of the DHS, i.e., the National Institute for Public Health and 

Environmental Protection, the Ministry of Health, Welfare and Sports and the Netherlands Institute for 

Social Research, eight DHS indicators were selected for which a model-based inference method is 

developed to produce quarterly figures that are corrected for the loss of CAPI during lockdown periods. 

These eight indicators are perceived health, fraction of people feeling mentally unhealthy, dental visit, GP 

consult, specialist consult, daily smoking, excessive alcohol consumption and overweight. These 

indicators cover the three main topics of the survey (perceived) health, healthcare use and lifestyle. 

This paper only shows the results of perceived health, dental visit, daily smoking and excessive alcohol 

consumption. The results of mentally unhealthy are similar to perceived health and the results of the 

healthcare use variables GP consult and specialist consult are similar to dental visit. Overweight turns out 

to be a steady indicator and is hardly affected by the Covid-19 pandemic. Perceived health is measured for 

people of all ages. There are five possible answers: very good, good, fair, poor and very poor. Perceived 

health is the percentage of people that has given one of the positive answers very good or good. Dental 

visit measures the percentage of people of all ages that has visited a dentist in the past four weeks. Daily 

smoking concerns the percentage of people with a daily smoking habit and is measured for people aged 18 

years or older. Excessive alcohol consumption is measured for the population aged 18 years or older and 

measures the percentage of people that report a consumption of 21 or more units per week for men or a 

consumption of 14 or more units per week for women. 
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3. Structural time series method 
 

3.1 Univariate models 
 

Two univariate STMs are considered. Let Aˆ
ty  denote the GREG estimate in quarter t  for the unknown 

population parameter based on all the available response. The first univariate STM ignores the loss of 

CAPI and starts with a measurement error model that states that the sample estimates is the result of the 

true population parameter, say ,t  for quarter t  and a sampling error, say A .t  This leads to the following 

measurement error model: A Aˆ .t t ty     In a next step the population parameter is modelled with a trend 

that describes the low frequency variation in the series, say ,tL  a seasonal component for seasonal 

fluctuations, say ,tS  and a population white noise for the unexplained variation of the population 

parameter, say .tI  This implies the following so-called basic STM for the population parameter: 

.t t t tL S I     Inserting the STM for the population parameter into the measurement error model gives 

the first univariate STM:  

           A A Aˆ .t t t t t t t ty L S I L S e        (3.1) 

Note that in (3.1) the population white noise and sampling error are conveniently combined into one 

measurement error, i.e., A A .t t te I    The trend tL  is modelled by a smooth trend model (Durbin and 

Koopman, 2012, Chapter 3), given by 

                                                            
1 1

R
1 ,

t t t

t t t

L L R

R R 
 



 

 
 

(3.2)
 

where 

    R 2 R R
R0, , Cov , 0 .~ ,   for , and 1't t t tt

'f t t fN         

The trend model consists of a level tL  and a slope tR  with a slope disturbance term R .t  In a standard 

smooth trend model, the variance of the slope disturbance terms are time invariant, i.e., 1tf   for all .t  

The variance of the slope disturbance terms 2
R ,  which are estimated by maximum likelihood (see 

Subsection 3.4), determines the flexibility of trend model (3.2). For some variables the Covid-19 

pandemic causes a sudden strong increase in the quarter-to-quarter changes of the direct estimates. 

Particularly at the start of the Covid-19 pandemic, the maximum likelihood estimates for 2
R  are based on 

the period-to-period changes observed in the past. A sudden increase in the period-to-period changes of 

the input series therefore results in a temporarily miss-specification of the STM. Or to phrase it 

differently, for some variables the assumption that the volatility of the period-to-period changes is not 

affected by the Covid-19 pandemic is violated. To avoid temporal miss-specification of the STM model at 

the start of the Covid-19 pandemic, the flexibility of the trend model is increased by defining a time-

dependent variance for the slope disturbance terms. This is achieved by multiplying the maximum 
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likelihood estimate for 2
R  with a factor 1.tf   As a result, the variance of the slope disturbance terms is 

equal to 2
R .tf   Values for tf  are determined outside the model, as explained in Section 4. This approach 

is initially proposed by van den Brakel, Souren and Krieg (2022) and is compared with alternative 

approaches to account for sudden shocks in the input series of an STM due to the Covid-19 pandemic.  

Increasing the variance of the slope disturbance terms through factors tf  has the following 

interpretation. As the variance of the slope disturbance terms increases, the influence of more distant 

observations on the level of the trend becomes smaller. The proposed approach implies that the filtered 

estimates attach less weight to the prediction based on observations from the past and more weight to the 

direct estimates obtained in the last month. This seems reasonable in periods where the world suddenly 

changes and becomes incomparable with the past, as was the case with the COVID-19 pandemic. 

The seasonal component tS  is modelled by a trigonometric seasonal model (Durbin and Koopman, 

2012, Chapter 3), given by 

                                                   1, 2,    ,t t J tS      (3.3) 

where 

   *
,  ,  1 ,  1 , cos sin  

2 2
j t j t j t j t

j j

J J

 
    

   
     

   
  

                                     * * *
, , 1 ,   1 ,cos sin   1, , 2.

2
for

2
j t j t j t j t

j j
j J

J J

 
    

   
       

   
  

For quarters 4,J   it holds that 

 1, 2,  ,t t tS     (3.4) 

with harmonics 

   *
1, 1, 1 1,  ,t t t      

     * *
1, 1, 1 1, ,t t t       

        2, 2, 1 2,  .t t t       

Note that the last component defined by (3.3) equals * * *
2, 2, 1 2,   t t t     and can be left out since *

2, t  is 

not used in the previous three harmonics and also does not play a role in the measurement equation. The 

following assumptions for the seasonal disturbance terms, 

      2 * 2 2
1, ω 1, ω 2, ω0, , 0, , 0, ,~~ ~t t tN N N        

and 
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       , ,
Cov , 0, for and 1,  2'j t j t

't t j       

            * *
1, 1,

Cov , 0, for't t

't t      

         *
, 1,Cov , 0, for all and 1,  2j t t t j      

             1, 2,Cov , 0, for all .t t t     

The Covid-19 pandemic may influence both the trend and the seasonal pattern. Since it is not possible 

to estimate a structural change in the seasonal pattern due to the Covid-19 pandemic, with less than one 

year of observations during the Covid-19 pandemic it is assumed that there is only an effect on the 

development of the trend. The seasonal component tS  is therefore modelled by a trigonometric seasonal 

model with a time-independent variance. In this way the seasonal pattern is modelled dynamically and 

therefore has the flexibility to accommodate effects of the Covid-19 pandemic on the seasonal pattern. 

To accommodate heteroscedasticity caused by e.g., changes in response size and the sample design, the 

measurement error A
te  is scaled with the standard error of the input series of Aˆ

ty  (Binder and Dick, 1990): 

    A A AV̂ ˆ , t t te y e   (3.5) 

  A 2
e, A0, ,~te N    

  A A ,Cov , 0, for't t

'e e t t     

and with  AV̂ ˆ
ty  the variance estimate of Aˆ .ty  It is understood that  AV̂ ˆ

ty  is estimated outside the STM 

from the sample data and that these estimates are used as a priori known values in the STM. Note that in 

(3.5) a multiplicative model is chosen for the variance structure of the measurement error. As an 

alternative an additive structure of the form could be considered. Note that  AV̂ ˆ
ty  in (3.5) is not the real 

population variance but an estimate of the variance that is subject to uncertainty and can over or under 

estimate the real variance. The advantage of a multiplicative model is that it scales the variance of the 

GREG estimator and has the flexibility to reduce the variance if  AV̂ ˆ
ty  over-estimates the real variance. 

Similar variance structures are used by e.g., Binder and Dick (1990), van den Brakel and Krieg (2015), 

Elliot and Zong (2019) and Gonçalves, Hidalgo, Silva and van den Brakel (2022). 

Model (3.1) borrows strength from the past through both the trend tL  and the seasonal pattern tS  in 

order to improve the accuracy of the direct estimates. Model (3.1) also accounts for a sudden increase of 

the volatility of the population parameter by making the trend temporarily more flexible. To account for 

sudden changes in measurement and selection errors due to the loss of CAPI during the lockdown, model 

(3.1) is extended with an intervention variable. This gives rise to the second univariate model: 
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                                                              A Aˆ .
3

t
t t t t

x
y L S e     (3.6) 

Here tx  is the number of months in quarter t  without CAPI response and   a regression coefficient 

that can be interpreted as the net effect of the change in measurement and selection bias due to the loss of 

CAPI. In a quarter with full CAPI response, 3 0tx   and   is switched off. In a quarter without any 

CAPI respondents, 3 1tx   and   absorbs the effect of the loss of CAPI and avoids that the model 

estimates for the population parameter t  are affected, at least partially. If a quarter only contains one or 

two months without CAPI, then 3 1 3tx   or 3 2 3tx   respectively and the correction of   

contributes proportionally to the number of months without CAPI in that quarter. The trend, seasonal 

component and measurement error are defined in (3.2), (3.3), and (3.5), respectively. 

Compared to model (3.1) it is expected that model (3.6) better accommodates for the loss of CAPI 

during the lockdown. Model (3.6), however, assumes no structural change in the evolution of the 

population parameter .t  If the lockdown results in e.g., strong turning points in the population parameter, 

it can be expected that this is partially and incorrectly absorbed in the regression coefficient of the 

intervention variable. To accommodate for this risk, the bivariate model, proposed in the next section is 

developed. 

 
3.2 Bivariate model 
 

The input series for the bivariate model are the quarterly direct estimates based on the complete 

response, denoted Cˆ
ty  (complete series) and the quarterly direct estimates based on the web response only, 

denoted Wˆ
ty  (web series). The systematic difference between both series observed during the years before 

the start of the Covid-19 pandemic is used in a bivariate STM to make model-based estimates for the 

population parameter that correct for the loss of CAPI during the lockdown. The bivariate STM given by: 

     
C C

W W
.

ˆ 01

ˆ 1
t t

t t

tt t

y e
L S

y e

     
        
      

 (3.7) 

The first component states that Cˆ
ty  and Wˆ

ty  are two estimates for the unknown population parameter 

that is decomposed in a trend and a seasonal component. The population irregular term tI  is combined 

with the sampling errors, similar to the univariate models. The trend tL  is modelled by the smooth trend 

model were the variance of the slope disturbance terms is made time varying, as defined by equation (3.2) 

and the seasonal component tS  by the trigonometric model given by equation (3.4). The second 

component of (3.7), i.e., ,t  models the systematic difference between the regular series and the web 

series as a random walk, given by  

     1 λ, ,t t t     (3.8) 

where 

  2
λ, λ,~ 0t N    



48 van den Brakel and Smeets: Official Statistics based on the Dutch Health Survey during the Covid-19 Pandemic 

 

 
Statistics Canada, Catalogue No. 12-001-X 

  λ, λ,
.Cov , 0, for't t

t t      

Because a random walk is assumed, the model accommodates gradual changing differences between 
Cˆ
ty  and Wˆ .ty  The third component of (3.7) contains the measurement error. They contain the sampling 

error of ˆ k
ty  and the population irregular term, i.e.,  k k

t t te I    for  C, W .k  The measurement error 

component accommodates heteroscedasticity by scaling the measurement error with the sampling error of 

the input series and accounts for the positive correlation between Cˆ
ty  and Wˆ

ty  that arises because both 

estimates use the same web respondents. This is achieved with the following measurement error model: 

    ˆ ˆˆ ˆ ˆ, with sV   V the variance e timate ofk k k k k
t t t t te y e y y   (3.9) 

and 
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                 Cov , 0, for .'

k k
t t

e e t t     

The covariance between the measurement errors is obtained as follows. Following Kish (1965), the 

correlation between two variables observed in two partial overlapping samples is given by 

                  1 2

1 2

1 2

Cor , ,
n

z z
n n




   

where 

 1z  the variable observed in sample 1s  of size 1,n  

 2z  the variable observed in sample 2s  of size 2 ,n  

 1 2n   the size of the sample overlap between 1s  and 2 ,s  

   the correlation between 1z  and 2z  based on the 1 2n   respondents that are included in 1s  

and 2 .s  
 

In this application, sample 1s  is the sample with complete response and 2s  the sample with CAWI 

respondents. Suppose that C
1

ˆ ,tz y W
2

ˆ ,tz y C
1 ,tn n  and W

2 ,tn n  with C
tn  is the size of the complete 

response in quarter t  and W
tn  the size of the web response in quarter .t  In this case the sample overlap is 

also the sample with CAWI respondents. Therefore we have W
1 2 tn n   and 1.   From this it follows 

that 
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and 
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C W C W

C
Cov , V V .ˆ ˆˆ ˆ ˆ ˆt

t t t t

t
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y y y y

n
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As a result, the covariance matrix for the measurement errors in (3.7) is given by 

 
   
   

C 2 C WC
e, C

W C W W 2
e, W

ˆ ˆ ˆ ˆ

ˆˆ

V Cov ,0
~ , .

0 Cov , Vˆ ˆ

t t tt

t t t t

y y ye
N

e y y y





                 

 (3.10) 

Similar to the univariate models,  CV̂ ˆ ,ty  WV̂ ˆ ,ty  and  C WCov ˆ,ˆ
t ty y  are estimated outside the STM 

from the sample data. These estimates are used as a priori known values in STM (3.7). 

During the lockdown, Cˆ
ty  is missing but Wˆ

ty  is observed. With bivariate STM (3.7) it is possible to 

obtain estimates for the trend  tL  and the signal  t tL S  of the population parameters of interest. These 

estimates are corrected for the bias due to the loss of CAPI, because the model accounts for the systematic 

difference between Cˆ
ty  and Wˆ

ty  through the second model component  .t  This correction relies on the 

assumption that the systematic difference between Cˆ
ty  and Wˆ

ty  as observed before the start of the Covid-

19 pandemic does not change during the lockdown. 

 
3.3 Direct estimates for time series models 
 

For the DHS direct quarterly estimates can be computed starting in the first quarter of 2014. From the 

first quarter of 2014 up to the last quarter of 2019 these direct estimates are based on the weighted annual 

DHS response obtained by applying the GREG estimator. Quarterly estimates Cˆ
ty  for the complete series 

are obtained by computing the domain estimator based on the GREG estimator with quarter t  as domain. 

Quarterly estimates Wˆ
ty  are obtainedby recalculating the GREG estimator using the CAWI response only 

and subsequently computing the domain estimator based on the GREG estimator with quarter t  as the 

domain. In the quarters before 2020 there was no loss of CAPI and the direct estimates Aˆ
ty  are equal to 

Cˆ .ty  Standard errors are computed in R (R Core Team, 2015) with the package “survey” (Lumley, 2014). 

For the estimation of the standard errors the sample design of the DHS is taken into account, where the 

stratification is based on the cross-classification of months and provinces. Here provinces are used, 

because the subdivision into municipalities leads to strata with too little response. 

Since the decision to publish quarterly figures was made in June 2020, the direct estimates for the first 

two quarters of 2020 are based on the weighted response based on the GREG estimator available from 

January to June 2020. Estimates for the third quarter of 2020 are based on the weighted response available 

from January to September 2020 and the fourth quarter is based on the weighted annual response of 2020. 

For all quarters the same weighting model and the same population totals of the covariates are used. Direct 

estimates for the first quarter of 2021 are computed in a similar way and are based on the response from 
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January to March 2021. Estimates for the second quarter of 2021 are based on the response from January 

to June 2021. In this way the estimates Wˆ
ty  for the web series are obtained for all quarters of 2020 and for 

the first two quarters of 2021.  

Adding quarterly samples during an ongoing year results in a progressively larger annual data set. The 

main advantage of this approach is that all available data are used for the weighting scheme of the GREG 

estimator. Note that this will only slightly increases the heterogeneity between the quarterly direct 

estimates, since the variance of the quarterly direct estimates is of the order of the quarterly sample size, 

not the total sample size. There might be a minor effect since the fluctuation of the GREG weights 

decreases if the sample used for weighting increases. This is, however, not an issue since the variance of 

the measurement errors is taken proportional to the variance of the GREG estimates used in the input 

series, as can be seen from formula (3.9) and (3.10). This approach also does not create additional 

dependency between the quarterly estimates, since there is no sample overlap between the quarterly 

estimates and the variance of the GREG estimates are based on the GREG residuals, which are assumed to 

be independent. 

For the complete series Cˆ
ty  in 2020 the second quarter is missing and the other quarters are based on 

response where CAPI is partially missing (Table 2.1). In the first quarter of 2020 CAPI is only missing in 

the last two weeks of March and for this quarter it is assumed that sufficient CAPI response is available to 

obtain plausible estimates. So in the first quarter of 2020 the estimates C Aˆ ˆ
t ty y  are based on the available 

CAWI and CAPI response and in the second quarter of 2020 Cˆ
ty  is missing and A Wˆ ˆ .t ty y  In the third 

quarter of 2020 CAPI response is only available in August and September. Here a correction is applied to 
Cˆ
ty  based on the bivariate model (3.7). The direct estimate Cˆ

ty  for the third quarter of 2020 is obtained by 

computing the domain estimator of the GREG applied to the available response in August and September 

minus 1 3  of the difference ˆt  estimated by model (3.7) in the second quarter. No correction is applied to 

the corresponding standard errors. The direct estimate Aˆ
ty  in the third quarter is equal to the uncorrected 

weighted mean of the available response in August and September. In the fourth quarter of 2020 CAPI is 

also missing for only two weeks and it is assumed that there is enough CAPI response available to obtain 

plausible estimates, so C Aˆ ˆ .t ty y  

In 2021 there is besides CAPI and CAWI also CAPI/CAWI response (Section 2). To find out how to 

use the CAPI/CAWI response in the best possible way, two scenarios were elaborated. In the first scenario 

quarterly figures are computed where CAPI/CAWI response is considered as CAPI and in the second 

scenario CAPI/CAWI response is considered as CAWI. Since there were no major differences in the 

results of both scenarios the CAPI/CAWI response is considered as CAWI. Results of this comparison are 

not shown in this paper. In the first quarter of 2021 Cˆ
ty  is missing and A Wˆ ˆ

t ty y  and in the second quarter 

of 2021 CAPI is available and so C Aˆ ˆ .t ty y  

In this way input series for models (3.1), (3.6) and (3.7) are obtained. The series run from the first 

quarter in 2014 up to the second quarter in 2021. The series Aˆ
ty  and Wˆ

ty  are available for all quarters and 

for the series Cˆ
ty  estimates are missing in the second quarter of 2020 and in the first quarter of 2021. 
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3.4 Model-based estimates  
 

Given the series of direct estimates Aˆ ,ty Cˆ
ty  and Wˆ ,ty  model-based estimates based on one of the 

models (3.1), (3.6) or (3.7) can be produced. To this end the three models are expressed in state space 

representation, where after the Kalman filter is applied to obtain optimal estimates for the state variables, 

i.e., the variables that define the trend   ,, t tL R  the seasonal component  *
1, 1, 2,,  ,, t t t    and the bias 

parameter  .t  The Kalman filter assumes that values for the hyperparameters, i.e., the variances of the 

measurement errors and state disturbance terms  2 2 2 2 2 2
R ω λ e, A e, C e, W,  ,  ,   ,, ,       are known. Estimates for 

these hyperparameters are obtained with maximum likelihood. To this end a likelihood function, obtained 

by the one-step-ahead error decomposition, is maximized using numerical optimization algorithm 

MaxBFGS. The Kalman filter is a recursive algorithm that runs from 1t   to the last observation of the 

series and gives optimal estimates with their standard errors for the state variables and the signal for each 

period t  based on the observed series until period .t  These are the so-called filtered estimates. The 

filtered estimates of past state vectors can be updated if new data become available. This procedure is 

referred to as smoothing and results in smoothed estimates that are based on the completely observed time 

series. In this application, interest is mainly focused on the filtered estimates, since they are based on the 

complete set of information that would be available in the regular production process to produce a model-

based estimate for quarter .t  The state variables in the Kalman filter are initialized with a diffuse 

initialization, which means that the starting values for the state variables are equal to zero with a very 

large standard error. After a few iterations, the filtered estimates for the states converge to a proper 

distribution. For this reason the filtered estimates for the states of the first d  periods of the series are 

ignored in the analysis, where d  equals the number of state variables with a diffuse initialization. See 

Durbin and Koopman (2012) for more details of the state space representation of the STMs, the Kalman 

filter and the maximum likelihood estimation procedure for the hyperparameters. The computations are 

conducted with Ssfpack 3.0 (Koopman, Shephard and Doornik, 2008) in combination with Ox (Doornik, 

2009). 

The Kalman filter provides optimal estimates for the state variables. For this application the trend  tL  

and the signal  t tL S  of the population parameter are of particular interest, since these are the variables 

that are published as official quarterly health indicators. Standard errors of these estimates are obtained 

from the Kalman filter recursion. These standard errors do not account for the additional uncertainty that 

arises since the values of the hyperparameters are replaced by their maximum likelihood estimates in the 

Kalman filter recursions. This is the standard approach in state space applications, but it will result in 

over-optimistic estimates for the standard errors. Note that Pfeffermann and Tiller (2005) propose a 

bootstrap that accounts for the additional uncertainty of the maximum likelihood estimates of the 

hyperparameters in the Kalman filter. 

Model selection is based on likelihood-based model diagnostics such as the AIC and BIC (Durbin and 

Koopman, (2012, Chapter 7)). The normality assumptions of the state disturbance terms in the STMs 

presented in Subsections 3.1 and 3.2 imply that the standardized innovations or one-step-ahead predictions 

are standard normally distributed. For all three models it is evaluated whether they meet these underlying 
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assumptions by testing to which extent the standardized innovations are standard normally and 

independently distributed. This is done by testing the standardized innovations on normality using 

Bowman-Shenton normality test, drawing QQ-plots and histograms of the standardized innovations. 

Sample autocorrelograms and the Durbin Watson test are applied to test for serial correlation in the 

standardized innovations. An F-test for heteroscedasticity is applied to test for equal variance of the 

standardized innovations. Finally, time series plots of the standardized innovations are drawn to check for 

outliers. For more details on these tests it is referred to Durbin and Koopman (2012, Chapter 2). These 

model diagnostics indicate that the underlying model assumptions of the finally selected models are not 

seriously violated. 

In quarters where CAPI is missing, additional assumptions for the three STMs are required. For the 

univariate STM (3.1) it is assumed that there are no mode effects between CAPI and CAWI. For the 

univariate STM (3.6) it is assumed that the trend and the seasonal component correctly describe the 

evolution of the population parameter and that sudden strong changes in the true values of the population 

parameter, such as turning points, are not partially absorbed in the level intervention component. These 

assumptions are evaluated in Section 4. For the bivariate STM (3.7) it is assumed that the difference 

between CAWI and CAPI response does not change due to the Covid-19 pandemic. This implies that the 

composition of the web response does not change during the Covid-19 pandemic. It is not possible to 

verify whether is assumption is met. A response analysis showed that no structural change in the CAWI 

response and non-response distributions before and after the start of the corona crisis is observed. There 

were also no structural difference between the answer categories under the CAPI and the CAWI response 

before the first lockdown and the third and fourth quarter of 2020 where CAPI was started up again. See 

also the results for the bias parameter t  in the bottom-right panels of Figures 4.5-4.8 in Section 4. 

 
4. Results time series models 
 

The three models are fitted to the series of direct estimates as described in Subsection 3.3. Due to the 

Covid-19 pandemic some DHS variables show a strong increase in the quarter-to-quarter changes, 

especially at the beginning of the two lockdown periods. In these periods, the smooth trend model is not 

flexible enough to follow the increased period-to-period movements of the input series. This can be 

expected since the flexibility of the trend, which is determined by the variance of the slope disturbance 

terms of the trend model, is based on the quarter-to-quarter movements observed in the period before the 

Covid-19 crisis. A sudden increase in the dynamics of the population parameter results in temporary miss-

specification of the STM, which becomes visible in large values for the standardized innovations in these 

periods. To accommodate in the STM for the suddenly increased volatility of the population parameters, 

the flexibility of the smooth trend is temporarily increased by multiplying the variance of the slope 

disturbance terms  2
R  in (3.2) by a time-dependent factor 1,tf   as explained in Subsection 3.1.  

The values for tf  are chosen in such a way that the standardized innovations in the period during the 

start of the Covid-19 pandemic have values within or just outside the admissible range of 1.96 in absolute 
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terms. In this way, the value of the factor 1tf   is kept as small as possible, so that the model can still 

borrow strength from the past. Note that adjusting the variance 2
R  in quarter t  influences the slope 

disturbance term from quarter 1t   and the trend only from quarter 2.t   So there is a lag of two quarters 

in the effect of the outcomes after adjustment of 2
R .  Thus to increase the flexibility of the slope in Q2 of 

2020, the value of 2
R  must be increased at the latest in Q4 of 2019. For several variables it was necessary 

to increase the variance already in Q3 2019. To avoid a large sudden change in the variance of the slope 

disturbance terms, the values of tf  are slightly increased in the quarters preceding Q3 2019. In the 

quarters after the first lockdown in Q2 2020, the values of tf  are reduced to 1 as soon as possible.  

From the analysis of the standardized innovations it follows that for most variables it is necessary to 

make the slope more flexible during the pandemic. Table 4.1 shows the values of the factors 1tf   for 

models (3.1), (3.6) and (3.7). In quarters where 1tf   no values are shown. Variables for which it was not 

necessary to make the slope more flexible are not shown in the tables either. For a correct interpretation, 

the values for tf  must be compared with the maximum likelihood estimates for 2
R  in Table 4.2. For 

perceived health and dental visit a flexible slope is applied in the quarters before the first lockdown, i.e., 

the second quarter of 2020. For daily smoking, 1tf   only for the univariate STM without intervention 

(3.1) and only before the second lockdown. For excessive alcohol assumption it is not necessary to make 

the trend more flexible. The factors in Table 4.1 are relatively large compared to the values R̂  of in 

Table 4.2. Because the variances of the slope disturbance terms are generally small, large values for tf  are 

required to give the trend component sufficient flexibility to follow the strong period-to-period changes at 

the start of the corona crisis. Note this is an empirical result that differs between applications. 

 
Table 4.1 

Values of flexibility parameter tf  in quarters where 1.tf   In quarters and for variables where no value is 

displayed, 1.tf   In the first two quarters of 2021 and in the quarters before the third quarter of 2018, 

1tf   for all variables 
 

  2018 2019 2019 2019 2019 2020 2020 2020 2020 

  Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Univariate STM 
without intervention 

Perceived health   10 100 100 100 10    

Dental visit    10 100 100 10    

Daily smoking             10 50 

Univariate STM with 
intervention 

Perceived health  10 100 200 100 100 10    

Dental visit 10 100 1,000 5,000 8,000 100 10    

Bivariate STM 
Perceived health   10 100 100 100 10    

Dental visit    10 100 100 10    

Note: Structural time series model (STM). 

 
Figures 4.1-4.4 display the standardized innovations for perceived health estimated by the three models 

(3.1), (3.6) and (3.7). For all series the innovations, estimated by the model where the variance of the 

slope disturbance terms is not temporarily increased (black dashed line), exceed the interval of 

(-1.96, 1.96) implying that the model is miss-specified at the start of the first lockdown. By making the 
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slope more flexible the standardized innovations (red solid line) get admissible values. The standardized 

innovations for the other variables are not shown here. After setting the values for ,tf  the underlying 

model assumptions are evaluated by testing whether the standardized innovations are standard normally 

and independently distributed. For all three models the performed tests (Section 3.4) show some small 

violations of these assumptions for some of the variables. Alternative model formulations did not further 

improve the model diagnostics. 

 

Figure 4.1 Standardized innovations for perceived health estimated by univariate STM without intervention 
(3.1). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2 Standardized innovations for perceived health estimated by univariate STM with intervention 
(3.6). 

 

 
 

                

Standardized innovations direct series for perceived health  
univariate model with intervention 

                                                   no flexible slope                     flexible slope                   95% confidence interval 

Standardized innovations direct series for perceived health  
univariate model without intervention 

                  no flexible slope                     flexible slope                   95% confidence interval 
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Figure 4.3 Standardized innovations complete series for perceived health estimated by bivariate STM, given 
by (3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Standardized innovations web series for perceived health estimated by bivariate STM, given by 

(3.7). 
 

 

 
Table 4.2 gives the real-time or concurrent maximum likelihood estimates of the hyperparameters of 

the three STMs. This means that the maximum likelihood estimates are based on the series observed until 

the particular quarter in the table. In order to show the values of the hyperparameters before the pandemic, 

the estimates are also displayed for the second quarter of 2019. Even though the variance 2
R  is multiplied 

by a factor tf  in the model, it can be seen that in many cases the (square root of the) variance estimate R̂  

Standardized innovations complete series for perceived health  
by bivariate STM 

                                                  no flexible slope                     flexible slope                   95% confidence interval 

Standardized innovations web series for perceived health  
by bivariate STM 

                                                   no flexible slope                     flexible slope                   95% confidence interval 
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increases. The largest increases occur for dental visit before the first lockdown. For daily smoking the 

variance estimate R̂  increases in the second quarter of 2021 for the univariate model.  

The estimates of some of the variance components in Table 4.2 are very small. This is the case with 

R̂  for perceived health, daily smoking and excessive alcohol consumption and ω̂  for daily smoking. 

These hyperparameters could, on the one hand, be removed from the model and it can therefore be 

assumed that the trend and seasonal components are time invariant. The slope disturbance terms, however, 

cannot be removed from the model because the flexibility of the trends needed to be increased during the 

corona crisis by increasing the variance of the slope disturbance terms. Also the variance of the seasonal 

disturbance terms are kept to make the models more robust for changes in the seasonal pattern during the 

corona crisis. In a similar way the λ̂  for dental visits could be set to zero, but that would make the 

assumption that the difference between CAPI and CAWI after the start of the corona crisis did not change 

even stronger. 

Figures 4.5-4.8 show the results of the estimates for the variables under the three models. The 

displayed series start in the first quarter of 2017. Since a diffuse initialisation of the Kalman filter is 

applied, the model predictions for the first three years obtained with the STM are ignored. For all 

variables, four graphs are displayed. The first one compares the direct estimates Cˆ
ty  (dir compl) and Wˆ

ty  

(dir web) with the model-based estimates ˆˆ
t tL S  based on the bivariate STM (STM biv), the univariate 

model without intervention (STM univ) and the univariate model with intervention (STM univ with int). 

The second graph shows the estimated standard errors of the quarterly estimates of the point estimates 

presented in the first graph. The graphs in the bottom-left panel shows the intervention coefficient   of 

the univariate model (intervention STM univ) of STM (3.6). The graph in the bottom-right panel shows the 

systematic difference t  (syst. diff. web and compl. resp.) of STM (3.7) together with the 95% confidence 

intervals.  

By comparing the series of the direct estimates based on the complete response and the web response 

and by analysing the estimates of the systematic difference  t  it follows for most variables that there is 

a clear mode effect between the CAPI and CAWI response. This is picked up by the t  parameter of the 

bivariate model. For perceived health the differences between the series with and without CAPI are 

relatively small (Figure 4.5, top panel). For dental visit, CAWI respondents score higher than CAPI 

respondents and the systematic difference t  varies between 1.5% and 2% (Figure 4.6, top panel). For 

daily smoking and excessive alcohol consumption it is just the other way around (Figures 4.7 and 4.8, top 

panel). For these variables CAPI scores are higher than CAWI and for daily smoking the difference is the 

largest with a systematic difference, measured by ,t  of around -4%. This illustrates that ignoring the 

effect of the loss of CAPI during the lockdown, results in a substantial bias in the direct estimates. 

Combining direct quarterly estimates that are based on CAWI only for the lockdown periods with 

estimates based the complete response obtained in forgoing or preceding periods of the lockdown in one 

time series, would result in misleading period-to-period changes during the Covid-19 period. See e.g., the 

top panel of Figure 4.7 for daily smoking. 
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Table 4.2 

Concurrent maximum likelihood estimates hyperparameters STM 
 

 Perceived health Daily smoking 

 2019 2020 2020 2020 2021 2021 2019 2020 2020 2020 2021 2021 

 Q2 Q2 Q3 Q4 Q1 Q2 Q2 Q2 Q3 Q4 Q1 Q2 

 Univariate STM without intervention Univariate STM without intervention 

R̂  <0.001 0.001 <0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 

ω̂  <0.001 0.002 0.001 0.002 0.002 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

e, A̂  0.007 0.007 0.008 0.007 0.007 0.007 0.010 0.011 0.010 0.01 0.010 0.010 

 Univariate STM with intervention Univariate STM with intervention 

R̂  <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ω̂  <0.001 0.002 0.002 0.002 0.002 0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.002 

e, A̂  0.007 0.006 0.006 0.007 0.008 0.008 0.010 0.009 0.010 0.009 0.009 0.009 

 Bivariate STM Bivariate STM 

R̂  <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ω̂  <0.001 <0.001 0.002 0.002 0.002 0.002 <0.001 <0.001 <0.001 0.001 0.003 0.003 

λ̂  <0.001 <0.001 0.002 <0.001 <0.001 0.004 0.002 0.003 0.007 0.01 0.002 0.002 

e, C̂  0.957 1.120 0.979 0.934 0.928 0.862 1.310 1.220 1.200 1.250 1.710 1.710 

e, W̂  1.310 1.340 1.180 1.240 1.240 1.040 1.280 1.210 1.100 0.653 0.718 0.760 

 Dental visit Excessive alcohol consumption 

 Univariate STM without intervention Univariate STM without intervention 

R̂  <0.001 0.003 0.005 <0.001 0.002 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ω̂  <0.001 <0.001 <0.001 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 <0.001 

e, A̂  0.009 0.008 0.008 0.011 0.009 0.010 0.008 0.010 0.009 0.009 0.009 0.010 

 Univariate STM with intervention Univariate STM with intervention 

R̂  <0.001 0.003 0.005 <0.001 0.002 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ω̂  <0.001 <0.001 <0.001 0.004 0.003 0.002 0.002 <0.001 <0.001 0.001 0.001 <0.001 

e, A̂  0.009 0.008 0.008 0.011 0.009 0.010 0.008 0.010 0.010 0.010 0.009 0.009 

 Bivariate STM Bivariate STM 

R̂  <0.001 0.003 0.006 0.004 0.003 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ω̂  <0.001 <0.001 <0.001 0.004 0.004 0.001 0.002 0.004 <0.001 <0.001 <0.001 <0.001 

λ̂  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 0.002 0.002 0.002 0.003 0.002 

e, C̂  1.080 1.130 1.100 0.713 0.624 0.954 1.360 1.460 1.450 1.480 1.490 1.470 

e, W̂  1.070 1.080 1.140 1.050 1.010 1.190 0.822 1.070 1.050 1.040 1.040 1.050 

Note: Structural time series model (STM). 
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Figure 4.5 Results STM for perceived health. 
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Figure 4.6 Results STM for dental visit. 
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Figure 4.7 Results STM for daily smoking. 
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Figure 4.8 Results STM for excessive alcohol consumption. 
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Until 2020 there was no loss of CAPI and the STM estimates based on the univariate and bivariate 

models are very similar. During the Covid-19 pandemic that started in 2020 there are more clear 

differences between the STM estimates. Especially in quarters where CAPI is missing and for variables 

with a clear mode effect the univariate STM without intervention produces estimates at the level of the 

web series while the STM estimates by the bivariate model are at the level of the complete series. That is 

for example the case in the first quarters of 2020 for perceived health (Figure 4.5, top panel) and dental 

visit (Figure 4.6, top panel) and in the first quarter of 2021 for daily smoking (Figure 4.7, top panel). For 

excessive alcohol consumption similar effects are found in 2020 and 2021 (Figure 4.8, top panel), but to a 

lesser extent. The univariate STM without intervention produces, as expected, biased estimates during the 

Covid-19 pandemic in quarters where CAPI is partially or completely missing.  

The univariate STM with intervention also leads to biased estimates in quarters where CAPI is partially 

or completely missing during one of the lockdowns. This is because the model incorrectly interprets a part 

of the sudden changes in the real quarterly developments as differences in measurement bias and selection 

effects. This can result in a large estimate for the intervention coefficient .  The effect can be seen for all 

variables, but is the largest for dental visit (Figure 4.6, bottom-left panel). For dental visit the resulting 

bias is the largest in the second quarter of 2020, when dentists in the Netherlands were only open for 

emergency treatments. 

The bivariate STM avoids that sudden changes in the developments of the population parameter are 

interpreted as differences in measurement and selection bias, because nowcasts are obtained for the 

missing estimates based on the complete response by means of the systematic difference t  in the model 

observed in the period before the lockdown. Estimates based on the bivariate STM are at the level of the 

complete series and are therefore used as the official quarterly DHS figures, since they provide the most 

plausible correction for the loss of the CAPI respondents. 

For most variables the standard errors of the STM estimators are smaller than those of the direct 

estimators and the standard errors of the estimates based on the univariate models are generally smaller 

than those based on the bivariate model. At first sight it might come as a surprise that the standard errors 

under the bivariate model are larger than those of the univariate models. It should be understood that the 

series based on CAWI is based on the same respondents that are also used in the series of the complete 

response. Therefore the CAWI series does not provide new sample information to the time series model. 

This is reflected in the covariance structure of the measurement errors (3.10). From that perspective the 

univariate models are more parsimonious resulting in smaller standard errors for the parameter estimates 

of interest. In quarters where the flexibility parameter 1,tf   the models assign more weight to the direct 

estimates and less strength is borrowed from the past. This results in larger standard errors that sometimes 

exceed the standard errors of the direct estimates. For the univariate STM with intervention this effect is 

large in the second quarter of 2020 (see e.g., the middle panel of Figure 4.5). 
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5. Official publications based on the DHS 
 

Official quarterly figures have been published for the eight selected DHS variables (Section 2) based 

on the bivariate STM (3.7). The first quarterly series were published in August 2020. These series ran 

from the first quarter in 2017 up to the second quarter of 2020. Subsequently, new estimates were 

published every quarter. The quarterly figures are computed in real time and will not be revised after 

publication. Based on the quarterly figures also quarterly and annual developments are published. 

Quarterly developments are defined as the difference between two consecutive quarters and the annual 

developments as the difference between the same quarters in two consecutive years. The developments 

can be directly derived from the published quarterly figures. Standard errors for the quarterly 

developments are obtained by calculating the linear combination Q

1 1t t t t t t t t t
L L S S

 
      via the 

Kalman filter recursion in (3.10) and (3.11). For the annual developments the standard errors are 

computed by calculating the linear combination of trends A

4
.t t t t t

L L


    Here the linear combination of 

signals 4 4t t t t t t t t
L L S S

 
    has not been used, because in that case many extra state variables should 

be kept in the state vector in order to compute the seasonal components 4
.

t t
S

  This may lead to unstable 

estimates.  

The annual DHS figures for 2020 and 2021 have been benchmarked with the quarterly figures by 

extending the regular weighting model described in Section 2 with the quarterly STM estimates for the 

eight variables for which STMs are developed. For each variable a component is constructed with eight 

categories that is added to the weighting model. Each target variable specifies the distribution over two 

categories, i.e., the fraction of people that meet the characteristic of that variable (e.g., daily smoker) and a 

rest category (e.g., not being a daily smoker). The components in the weighting model specify the 

distribution of the population over these two categories on a quarterly basis. The numbers per quarter are 

divided by four, such that the sum over the eight categories is equal to the size of the target population. In 

this way numerical consistency is achieved between the annual and quarterly publications. There is also a 

correction for the loss of CAPI for more detailed breakdowns of the eight variables. And finally a best 

possible correction is realized for the loss of CAPI for other related variables for which no model-based 

quarterly estimates are developed. Quarterly and annual publications for 2017, 2018 and 2019 have not 

been made consistent with each other, since revisions are undesired and since the size of the revision is 

small because there was no loss of CAPI response during this period.  

The extension of the weighting model with the quarterly STM estimates resulted in a slight increase of 

the dispersion of the regression weights. Table 5.1 shows some results of the annual DHS figures for 

2020, including the variables cancer (ever had) and bronchitis (past 12 months). The estimates in the table 

are percentages and the corresponding standard errors are given in parentheses. The corrections to the 

annual figures for the variables for which quarterly figures have been estimated are in line with the 

previous results discussed in Section 4. For perceived health and dental visit there is a negative correction 

for the loss of CAPI in 2020, while CAWI respondents score higher than CAPI respondents (Section 4). 

For daily smoking, and excessive alcohol consumption the correction is positive, while CAWI scores 
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lower than CAPI. One would expect that cancer is related to the lifestyle variables, but this variable is 

negatively corrected from 6.47 (regular weighting) to 6.44 (extended weighting). At first sight it appears 

that for this variable the correction by means of the model-based quarterly figures does not work very 

well. On the other hand, this variable concerns all types of cancer and the relationship may be less strong 

and it can be anticipated that the majority of people that faced cancer in the past gave up smoking 

afterwards. For bronchitis, where a strong relation is expected with daily smoking, the correction is indeed 

in the same direction as for daily smoking.  

 
Table 5.1 

Results annual figures DHS 2020. Estimates are in percentages and standard errors in parentheses 
 

Variable Regular weighting Extended weighting 

Perceived health 81.70 (0.45) 81.46 (0.46) 

Dental visit 16.83 (0.42) 16.08 (0.42) 

Daily smoking 13.61 (0.45) 14.87 (0.49) 

Excessive alcohol consumption 6.43 (0.30) 6.93 (0.33) 

Cancer 6.47 (0.26) 6.44 (0.26) 

Bronchitis 4.28 (0.23) 4.33 (0.23) 

Note: Dutch Health Survey (DHS). 

 
6. Discussion 
 

Based on the Dutch Health Survey (DHS), until 2020 only annual figures on health, healthcare use and 

lifestyle were published by Statistics Netherlands. As a result of the Covid-19 pandemic and the 

associated lockdown it was decided in June 2020 to publish a series of quarterly figures based on a 

structural time series model (STM) for a selection of eight DHS key variables. This serves multiple 

purposes. Firstly, with quarterly figures the period of the corona crisis can be better delineated, so that 

possible effects of the crisis on the health figures is portrayed more clearly. Secondly, quarterly figures are 

more timely available, namely already during the statistical year and not only after the end of the reference 

year. This clearly increases the relevance of the health figures. Because the sample size of the DHS is too 

small to produce sufficiently precise quarterly figures with a direct estimator, structural time series models 

are used as a form of small area estimation to improve the precision of the quarterly figures with sample 

information from preceding reference periods. And finally, the bivariate time series model corrects for the 

bias that is a result of the loss of face-to-face observation during the lockdown.  

The bivariate STM combines two series of direct estimates, a series based on complete response and a 

series based on web response. The differences between the complete series and the series based on web 

response are modelled dynamically in a separate component as a random walk. In quarters where face-to-

face response is missing, there are no estimates available based on the complete response. For these 

periods, the bivariate model provides nowcasts for the population parameter of interest that are not 

affected by the sudden change in measurement and selection effects that are the result of the loss of CAPI 
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because the model accommodates this difference in the aforementioned component. This approach is 

based on the assumption that the observed differences between the two input series in the period before 

the lockdown, do not change during the lockdown. The validity of this assumption is difficult to evaluate, 

but it has been established through a response analysis that the composition of the web response did not 

change during the corona crisis. 

Two univariate STMs are considered as an alternative. The univariate model without an intervention 

component to model the shock in the input series that is the result of the loss of CAPI response, assumes 

that there are no mode effects between web response and face-to-face response. For the selected DHS 

variables there are clearly mode effects implying that this univariate STM produces biased estimates in 

quarters during the lockdown when there is no or less face-to-face observation possible. The second 

univariate STM attempts to model the change in measurement and selection bias with a level intervention 

variable. This is also a less optimal solution, since the lockdown also has a strong effect on the population 

parameters. A part of the real evolution of the population parameters is incorrectly absorbed in the level 

intervention, resulting in biased model predictions for the population parameters of interest. For these 

reasons the univariate models are unsuitable for estimating quarterly figures during the Covid-19 

pandemic. Based on the bivariate STM official quarterly figures are published for the eight selected DHS 

variables. 

The corrections for the loss of face-to-face interviewing have been incorporated in the annual figures 

of 2020 and 2021 by including in the weighting model of the annual response a table with the corrected 

model-based quarterly figures for the eight selected DHS variables. This provides numerical consistency 

between quarterly and annual figures. In this way a correction is also realized for the loss of face-to-face 

response for more detailed breakdowns of the annual figures of these eight variables and to some extent 

also for other related variables for which no model-based quarterly estimates are developed. 

An essential advantage of using the STM is that model-based estimates are more accurate than direct 

estimates. In particular, period-by-period developments can be estimated much more accurately thanks to 

the positive correlation between trend estimates and consecutive periods.  

For some variables the pandemic has had a major effect on the development. In order to account for the 

sudden increase in the dynamics of these figures in the time series model, it is necessary to make the trend 

component more flexible during the pandemic. This has been done by increasing the variance of the 

disturbance terms of the trend component during the pandemic. A consequence is that the standard errors 

of the model-based estimates increase for these quarters and are in some cases larger than the standard 

errors of the direct estimates.  

The Covid-19 crisis increased the awareness that variance is not the only quality concept for official 

statistics, but that other quality dimensions such as timeliness and comparability over time are at least as 

important. As a result of this, Statistics Netherlands extended the traditional design-based inference 

approach for the annual publications of the DHS, with a model-based inference method as a form of small 

area estimation to produce more timely figures. At the same time, the proposed method compensates for 
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the bias that occurs as a result of the temporal loss of CAPI responses to maintain comparability over time 

and avoid a sudden increased MSE.  
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Combining data from surveys and related sources 

Dexter Cahoy and Joseph Sedransk1 

Abstract 

To improve the precision of inferences and reduce costs there is considerable interest in combining data from 
several sources such as sample surveys and administrative data. Appropriate methodology is required to ensure 
satisfactory inferences since the target populations and methods for acquiring data may be quite different. To 
provide improved inferences we use methodology that has a more general structure than the ones in current 
practice. We start with the case where the analyst has only summary statistics from each of the sources. In our 
primary method, uncertain pooling, it is assumed that the analyst can regard one source, survey r, as the single 
best choice for inference. This method starts with the data from survey r and adds data from those other sources 
that are shown to form clusters that include survey r. We also consider Dirichlet process mixtures, one of the 
most popular nonparametric Bayesian methods. We use analytical expressions and the results from numerical 
studies to show properties of the methodology. 

 
Key Words: Administrative data; Bayesian methods; Clustering; Dirichlet process mixture; Pooling data; Survey 

sampling. 

 
 

1. Introduction 
 

With substantially reduced response rates and limited budgets there has been an increased emphasis on 

efficient use of all of the information available to the survey analyst. Specifically, one may be able to 

improve inferences by using results from several sample surveys and related sources such as 

administrative records. The methodology that we use to combine information has more structure than the 

methods currently used in survey sampling, so should lead to better inferences. Starting with the data from 

the survey that is the best choice for inference, these data are augmented with other, concordant, data. We 

use analytical expressions and the results from numerical studies to show properties of the methodology. 

This research was motivated by a study (Ha and Sedransk, 2019) of health insurance coverage in 

Florida’s counties where the authors noted very different estimates from three surveys. Correspondingly, 

we could have estimates from a well established probability survey and two non-probability surveys. In 

either case there is the question about how to make better inferences. 

In the sequel we refer to the collection of studies as “surveys”, recognizing that these may be 

probability surveys, non-probability surveys, administrative records and other sources. We consider the 

case where the analyst has only a point estimate and associated standard error from each survey. This is 

common, as noted in Section 7 of the review paper, Lohr and Raghunathan (2017). In the motivating 

example, and in many other cases, there are not any covariates that can be used to improve inferences. Our 

methodology extends to cases where the inferential objectives and models are more complex. 

With survey estimates,  ˆ : =1, , ,iY i L…  it is commonly assumed that the ˆiY  are independent 

  ˆ ~ ,i i iY N V  (1.1) 
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where the iV  are assumed to be known. 

A common prior distribution expressing similarity among  1, , L …  is  

  2 2, ~ ,i N      (1.2) 

independently for each ,i  and   and   are assigned locally uniform prior distributions. 

The resulting posterior expected value of i  is a convex combination of the estimate, ˆ ,iY  for that 

survey, and a weighted average of  1
ˆ ˆ, , .LY Y…  The weakness of this approach is that the prior distribution 

in (1.2) assumes independent sampling of the i  from a common distribution. The posterior mean is  

    1
ˆ ˆ ˆ ˆ,..., = 1i L i i i wE Y Y Y Y     (1.3) 

where  2 2=i iV     and 
=1 1

ˆ ˆ= .
L L

w i i ii i
Y Y 

   This may lead to unsatisfactory inferences when, 

e.g., 1, , b …  are each close to *  while 1, ,b L  …  are each close to **  and * **.   Here, 

estimation of 1  would include, perhaps inappropriately, a large contribution from 1
ˆ ˆ, , .b LY Y …  The 

difficulty is that the prior distribution is not sufficiently flexible. Here we use more flexible prior 

distributions that permit the amount and nature of the pooling to be determined by the sample data. 

The specification in (1.1) and (1.2) is common in meta-analyses and in situations where inferences for 

small subpopulations and geographical areas are desired. For example, the U.S. Census Bureau uses such 

models (augmented by terms to accommodate covariates) to make inference for U.S. county level poverty 

rates: see example 6.1.2 in Rao and Molina (2015). However, as just noted, the assumptions in (1.1) and 

(1.2) of full exchangeability may not be appropriate, especially for combining the information from L  

surveys. 

The theory for our principal method, uncertain pooling, was developed by Malec and Sedransk (1992) 

and Evans and Sedransk (2001) with further work in Evans and Sedransk (1999) and Yan and Sedransk 

(2011). To our knowledge this methodology has not been used in a survey sampling application: the 

comprehensive review paper, Lohr and Raghunathan (2017), makes no reference to any technique similar 

to ours. We also modify (1.1) and (1.2) by using a Dirichlet process mixture (DPM) as, e.g., employed by 

Polettini (2017) for small area inference. 

In this paper we describe the methodology for both uncertain pooling and DPM, and use them to 

analyze data from Ha and Sedransk (2019). Then we modified these data to exhibit properties of the 

methods. Finally, there is a simulation study to establish sampling properties. Clearly, the results from this 

evaluation will apply equally if the three sources were, e.g., a well established probability survey and two 

non-probability surveys or other choices. 

We assume that the sample variances  1, , LV V…  are specified. In our context none of the alternatives 

given in the literature for making inferences for the  1, , ,LV V…  all based on inferences for small areas, is 

fully satisfactory. In Section 4 we discuss this challenging problem of making inferences for the sample 

variances. 
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Both uncertain pooling and DPM have a more general structure than that in the common specification, 

(1.1) and (1.2). This should lead to improved inferences. As seen in Section 2 the uncertain pooling model 

is the natural extension of (1.1) and (1.2); i.e., the model in (1.1) and (1.2) is a special case. Moreover, the 

output from uncertain pooling includes the posterior probabilities associated with the possible clustering 

of the L  surveys. 

Finally, note that we address only one of the many aspects of “combining survey data”, well 

summarized by Lohr and Raghunathan (2017). Their Section 7, “Hierarchical models for combining data 

sources”, gives additional examples where our methodology may be useful. 

The methodology that we use is outlined in Section 2, and the results from our numerical studies are 

summarized in Section 3. A brief summary and discussion are in Section 4. 

 
2. Methodology 
 

As in Section 1 assume that there are L  survey estimates, 1
ˆ ˆ, , ,LY Y…  with  

  
indˆ ~ ,i i iY N V  (2.1) 

where the iV  are assumed to be known. 

 

2.1 Uncertain pooling 
 

The uncertain pooling method is based on Malec and Sedransk (1992) and Evans and Sedransk (2001). 

They showed that a prior for  1 2= , , ,
t

L   …  can be selected to reflect the beliefs that there are 

subsets of   such that the i  in each subset are “similar”, and that there is uncertainty about the 

composition of such subsets of .  Let G  be the total number of partitions of the set  = 1, , ,L…L g  be 

a particular partition  = 1, , ,g G…  d g  be the number of subsets of L  in the thg  partition 

  1 ,d g L   and  kS g  be the set of survey labels in subset   =1, , .k k d g…  For example, for 

= 3,L  there are = 5G  partitions:     = 1 ~ 123 ,g       = 2 ~ 13 , 2 ,g       = 3 ~ 12 , 3 ,g  

      = 4 ~ 23 , 1 ,g         =5 ~ 1 , 2 , 3 .g  Then,     
1 = 2 = 13 ,S g     

2 = 2 = 2 ,S g  1 = 2 = 2d g  

and  2 = 2 =1.d g  

To specify a prior for ,  first condition on .g  Malec and Sedransk (1992) and Evans and Sedransk 

(2001) assume that there is independence between subsets, and within  kS g  the i  are independent with 

                             2~ , , .i k k k kg N g g i S g      (2.2) 

Also, the  k g  are mutually independent with  

                                                            2~ ,k k k kg g N g g     (2.3) 

where the  k g  and the  2
k g  are hyperparameters. The definition in (2.3) is the first step in obtaining 

a reference prior for the   ,k g  i.e., one that is dominated by the likelihood. This will include letting the 
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 2 ,k g   but is considerably more complicated, as described below. The  2
k g  are also 

hyperparameters, to be assigned a prior distribution. 

The formal definition in (2.3) is included as the first step in obtaining a reference prior for the   ,k g  

i.e., one that is dominated by the likelihood, as described below in the evaluation of  2, .f g y  

Conditioning on the  2
k g  and  2

k g  (but suppressing them in our notation), and letting  2
k g   

leads to the following expected results for the posterior moments conditional on the partition .g  As 

discussed below, additional care is needed to obtain the posterior distribution of .g  

Defining  1
ˆ ˆ= , , ,

t

Ly Y Y…  letting     2 2= : =1, , ; =1, ,k g k d g g G … …  and writing ˆˆ =i iY  

                                      2 ˆ ˆ, , = 1 ,i i i i k kE y g g g g i S g         (2.4) 

and  

            

    
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 (2.5) 

where  

                                           
 

 
 

 
 

 
 

2

2

ˆ
ˆ= , = .k

k

j jj S gk
i k

k i jj S g

gg
g g

g V g

 
 

 









 (2.6) 

Note that  2, ,iE y g   has the familiar form of a weighted average of ˆi  and  ˆ ,k g  but, here, 

 ˆ
k g  is restricted to the surveys in  .kS g  

Assuming the basic model in (1.1) and (1.2) corresponds, here, to the “pool-all” partition,  = 1 ,g  

where all of the L  surveys comprise a single cluster. Thus, for  =1g  the moments in (2.4), (2.5) and 

(2.6) are those that would be obtained by an analysis using (1.1) and (1.2). An analysis based on (1.1) and 

(1.2) is a special case of an analysis based on the uncertain pooling specification. 

Inference about   includes uncertainty about the value of ,g  i.e.,  

      2 2 2= , , ,f y f y g f g y dgd      (2.7) 

where the notation is simplified by using integration rather than summation for .g  Using the “most likely” 

partition 
*g  (i.e.,    * : = 1, , )p g y p g y g G …  to make inference would understate the overall 

precision. 

To evaluate (2.7) we need  2, .f g y  However, when evaluating  2 ,f g y  one must be careful 

about specifying the rate at which the  2 :k g   a natural choice leads to an expression for 
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 2 ,f g y  that is not invariant to changes in the scale of ;Y  see Section 4 of Malec and Sedransk 

(1992). Malec and Sedransk (1992) provided a solution by using an empirical Bayes argument. Here we 

use a fully Bayesian alternative, described in Section 5 of Evans and Sedransk (2001). It postulates little 

prior, relative to sample, information about the   ,k g  and is invariant to changes in the scale of .Y  Let 

        1= , ,
t

d g
g g g  …  and       1 2,K f g f g y   be the Kullback-Leibler information 

about  .g  With prior      2 2, =f g f g f   and letting the  2
k g    subject to    1 ,K f g  

  2 constant,f g y   
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(2.8)

 

The term in the exponent,  

   
 

 

 
 

  
2

2
=1

ˆ ˆ= ,
k

d g
i

i k
k i S g k

g
Q d g g

g


 



  
 

  
   (2.9) 

is likely to decrease as  d g  increases, for example for a new partition of  
 

1

d g

kk
S g

∪  obtained by 

creating subsets of the existing   .kS g  Since  2,f g y  increases as   Q d g  decreases, it is 

helpful to have the second term,  exp ( ) 2 ,d g  that penalizes partitions with larger values of  .d g  

For our analysis we take  2 2=k g   and write    2 2= .i ig V     Inference for   is made using 

(2.7) and (2.8) with  

     2 2 2, , ~ , , , , ,y g N E y g V y g       (2.10) 

where the conditional posterior moments of   are given in (2.4) and (2.5). 

We assume that  f g  is constant, i.e., that all partitions are equally likely, a priori, and take the 

Inverse Beta prior for 
2 ,  i.e., 

    2 2 2 21 1 , 0 .f          (2.11) 

Inference for   is made using (2.7). To start, evaluate the right side of (2.8) for  

  2 ,grid po f: = 1, , ; ints org g G R …  (2.12) 

then standardize by dividing the individual terms in the grid by their sum. This provides an approximation 

for  2, .f g y  Then select a random sample of size B  from the RG  normalized values of 

 2, .f g y  For each selection,  2
* *, ,g   sample   from  2

* *, , .f y g   Here, we generated =B  

5,000 values of .  Finally, note that approximations for the marginal posterior distributions, i.e.,  f g y  

and  2 ,f y  can be obtained directly from the grid approximation of  2, .f g y  
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Assuming that survey r  is the single best choice for inference we can consider the posterior 

distribution corresponding to survey r  to be the object of inference. In a common contemporary 

application there will be data from a well established probability survey (the single best choice) and data 

from other sources such as non-probability surveys, administrative records, etc. In other settings it is likely 

that there will be a preference for one of the surveys. 

Then, using the posterior expected value for illustration,  

    2

2

,
= , ,r rg y

E y E E y g


    (2.13) 

where  2, ,rE y g   is defined in (2.4). Thus, inference for r  is a function of ˆr  together with data 

from the other 1L   studies as determined by the form of (2.4), and, critically, by the likelihood 

associated with the set of subsets,   ,kS g  containing study .r  See Evans and Sedransk (2001) for 

additional details and an application to a notable study of the effect of using aspirin by patients following 

a myocardial infarction. 

The model given by Chakraborty, Datta and Mandal (2014) has a superficial resemblance to the one in 

(2.1), (2.2), and (2.3). Taking ix  to be the scalar with value 1, the model in (2.1) of Chakraborty et al. 

(2014) is  

 ˆ = , = 1, ,i i iY e i L  …  (2.14) 

where   1 2= 1i i i i i ie         with 1 2, , ,i i i ie     independent,    1 1= 1 = 1 , ~ 0,i ip p p N A   

and  2 2~ 0, .i N A  Finally,  ~ 0,i ie N V  with iV  known. Thus, unlike the uncertain pooling method, 

there is only a single focal point, .  This permits appropriate treatment of outliers, but does not take 

advantage of possible clustering of the .i  This can also be seen in (2.4) of Chakraborty et al. (2014) 

where  

    1 2
ˆ ˆ, , , , =i i i iE A A p y Y Y      (2.15) 

and i  is a function of  1 2 1 2, , , = 0 , , , ,i iV A A p A A p y   with  1
ˆ ˆ= , , .

t

Ly Y Y…  Chakraborty et al. 

(2014) show that if survey i  is an outlier,  1 2
ˆ, , , , ,i iE A A p y Y    as desired. Now suppose that 

surveys  1, , b…  and  1, ,b L …  form two distinct clusters with a very large separation between them. 

Then inference for 1,  say, will not, in general, use the data in an appropriate manner. In (2.15) there 

should be two values of ,  i.e., corresponding to the two subsets. And appropriate use of information 

about subsets is the essence of the uncertain pooling method. 

 
2.2 Dirichlet process mixture 
 

An alternative to the uncertain pooling method is to use a Dirichlet process mixture (DPM), one of the 

most popular nonparametric Bayesian methods. This methodology is presented in detail in Sections 2.1 

and 2.2 of Muller, Quintana, Jara and Hanson (2015). For our analyses we have used the R function 



Survey Methodology, June 2023 75 

 

 
Statistics Canada, Catalogue No. 12-001-X 

DPmeta from the package DPpackage: see Jara, Hanson, Quintana, Muller and Rosner (2011) for details. 

The model in DPmeta is  

 
iid
~i i i

y f  (2.16) 

and  

 
iid
~i H H  (2.17) 

with  0~ DP , .H M H  

In (2.16) and (2.17) ˆ= , = ,
ii i i iy Y f   is the pdf of a  ,i iN V  random variable with iV  fixed, and 

 2
0 = , .H N    

The (independent) hyperparameters are  

  0 0 0 0, ~ Gamma ,M a b a b   

                       , ~ ,b b b bS N S     

            2
1 2 1 2, ~ Gamma 2, 2 .      (2.18) 

Polettini (2017) has proposed using a DPM of this nature for inference about small area parameters. As 

in Section 2.1 of our paper Polettini (2017) indicates the value of extending the typical random effects 

model (e.g., the well known Fay-Herriot model) that assumes full exchangeability of the set of small area 

parameters. 

The uncertain pooling method requires only that one specify a prior distribution for g  and 2 .  By 

contrast DPmeta requires substantial prior input, i.e., values for 0 0 1, , , ,b ba b S   and 2.  Without strong 

prior information we can’t make proper inferences for these quantities with only = 3L  surveys. So, we 

have omitted the specification  0 0 0 0, ~ Gamma ,M a b a b  and made inference for a selected set of values 

of M  as suggested by Escobar (1994). Also, we replaced 1, ,b bS   and 2  with their maximum 

a posteriori probability estimates. 

 
3. Results 
 

Ha and Sedransk (2019) made inference for the proportion of adults without health insurance in each 

of the 67 Florida counties, and compared these estimates with those from two other sources. Some of the 

differences were striking, motivating us to consider methodology to make appropriate inferences in such 

cases. We use these data, and modifications of these data, to show the benefits of using the methodology 

outlined in Section 2. One source is the Small Area Health Insurance Estimates Program (SAHIE, 

hereafter survey 1). The SAHIE program uses point estimates from the American Community Survey 

(ACS) together with administrative data such as Federal income tax returns and Medicaid/Children’s 
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Health Insurance Program (CHIP) participation rates. There is detailed area level modelling. The principal 

ones are models of ACS estimates of the proportions in income groups and the proportions insured. There 

are additional models such as ones modelling the number of persons enrolled in Medicaid or CHIP, 

Supplementary Nutrition Assistance Program (SNAP) participation, and Internal Revenue Service (IRS) 

tax exemptions. For a full understanding of this program see the twenty-two page technical report, Bauder, 

Luery and Szelepka (2018). We have added a non-technical summary in the Appendix. 

The analyses using both survey 2, denoted by HS, based on Ha and Sedransk (2019), and survey 3 

denoted by CDC (Centers for Disease Control and Prevention) use unit level models based on 2010 data 

from the Behavioral Risk Factor Surveillance System (BRFSS), obtained through telephone interviews. 

While the sample designs differ somewhat over states, the one in Florida was typical, i.e., a 

disproportionate stratified sample design. In Florida, the set of telephone numbers were divided into two 

strata (high and medium density) that were sampled separately. In addition there was a stratification by 

area codes, i.e., three geographic strata and a fourth stratum consisting of area codes with large estimated 

Hispanic populations. For additional, general information see http://www.cdc.gov/brfss/annual_data/ 

annual_2010.htm while for technical details see Pierannunzi, Xu, Wallace, Garvin, Greenlund, Bartoli, 

Ford, Eke and Town (2016) and Ha and Sedransk (2019). Both use, essentially, the same covariates but 

the modeling in HS is more detailed. Moreover, Pierannunzi et al. (2016) give only point estimates, noting 

that standard errors were being developed. A further complication is that the CDC analysis is frequentist 

while the SAHIE and HS analyses are Bayesian. Thus, we have an (empirical) Bayes posterior standard 

deviation for SAHIE, none for CDC and an estimated SE for HS obtained by taking the 95% credible 

interval for a county proportion and dividing by 3.92. While the limitations just noted preclude definitive 

conclusions from these data they illustrate the methodology. Moreover, conditions where standard errors 

are missing or unreliable are, at least, fairly common for non-probability samples, a focus of this paper. 

The first set of analyses is based on the observed data. To show other properties of the methodology a 

second set of analyses is based on modifications of these data. Finally, to show sampling properties there 

is a simulation study. Note that each of our analyses is based only on data from a single county. Additional 

research is needed to permit inference using data from all of the sources and counties. See Section 4 for 

discussion. 

 
3.1 Data-based analyses 
 

Using the uncertain pooling methodology a summary of the results for Dixie county is presented in 

Table 3.1. These are typical of most of the county-based analyses that we have done. Throughout, SE 

denotes the sample standard error. There are three panels, corresponding to choices of the CDC SE, taken 

equal to 0.5, 1.0, 2.0 times the HS SE. For each panel the column headings are the observed proportion, 

posterior mean of the county proportion, estimated SE of the observed proportion, posterior standard 

deviation and lower and upper bounds of the 95% credible interval for the county proportion. At the 

bottom of each panel there are the values of  p g y  with   0.001p g y   where     = 1 ~ 123 ,g  
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      = 2 ~ 13 , 2 ,g       = 3 ~ 12 , 3 ,g       = 4 ~ 2, 3 , 1 ,g         = 5 ~ 1 , 2 , 3 ,g  and summaries 

corresponding to  1 ,g   labelled “pool-all”. 

We first analyze these data using the uncertain pooling methodology, then compare them with those 

from DPmeta. 

A common way to summarize a set of sample proportions is to assume that the corresponding set of 

true proportions come from a common source, i.e.,  = 1 = 1.p g  However, for each of the three cases in 

Table 3.1,  = 1 0.001.p g y   Thus, there is very little support for pooling all of the data from the three 

surveys. For further investigation of the effect of assuming a common source, assume = 1.g  Then, as in 

(1.1) and (1.2), 

  
indˆ ~ ,i i iY N V   

                       iid 2~ , , = 1, , .i N i L   …  (3.1) 

With a locally uniform prior on   and the Inverse Beta prior on 2  in (2.11)  

      2 2 2= ,f y f y f y d      (3.2) 

where the posterior distribution of   given 2  is normal with    
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For panel 1 in Table 3.1,   = 0.313,E v y  SD = 0.017v y  and the 95% credible interval is 

(0.290, 0.340). Inferences based on the posterior distribution of   are not consistent with the notion that 

any one of the three surveys is the nominal “gold standard”. If, for example, survey 1 is taken as the “gold 

standard”, the posterior mean of 1,  0.254, is substantially smaller than the posterior mean of ,  0.313. 

Moreover, 0.254 is not included in the 95% interval for ,  (0.290, 0.340). The conclusions from panels 2 

and 3 are essentially the same. Finally, recall that  = 1 0.001,p g y   indicating very little support for 

pooling all of the data. 

In the following assume, for illustration, that one prefers the HS methodology. Then there may be 

substantial gains in precision (measured by the posterior standard deviation) by using the uncertain 

pooling methodology. The gain in precision is measured by comparing the posterior standard deviation 

from the uncertain pooling methodology with that obtained by using only the data from the specific 

survey, here HS (survey 2). For the latter and a locally uniform prior for 2 ,  the posterior distribution of 

2  is normal with posterior mean equal to the observed proportion and posterior standard deviation equal 

to the estimated SE. If we take CDC SE (HS SE)k  for = 0.5,1, 2,k  then the reductions in the posterior 

standard deviation for HS (survey 2), and corresponding to = 0.5,1, 2,k  are 29, 18 and 7%. (For example, 

from panel 1 of Table 3.1, i.e., = 0.5,k  the percent reduction in the posterior SD for HS is 

100 (0.028 0.020) 0.028% 29%.)   Note that the relatively small SEs for each of the surveys means 

that the “all singletons” partition, i.e.,  = 5 ,g  has a relatively large posterior probability (about 0.38). 
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The corresponding reductions in the posterior standard deviation (uncertain pooling vs. no pooling) for 

CDC (survey 3) are 7, 18 and 14%. 

 
Table 3.1 

Observed proportions, standard errors and posterior summaries from Dixie County, Florida using uncertain 

pooling 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Int 
CDC SE = 0.5   HS SE 1 0.254 0.254 0.014 0.014 (0.225, 0.283) 

2 0.361 0.360 0.028 0.020 (0.317, 0.403) 
3 0.359 0.359 0.014 0.013 (0.333, 0.385) 

pool-all  0.313  0.017 (0.290, 0.340) 

 = 3 =P g y 0.002;  = 4 =P g y 0.621;  = 5 =P g y 0.377. 

CDC SE = HS SE 1 0.254 0.254 0.014 0.014 (0.225, 0.283) 
2 0.361 0.360 0.028 0.023 (0.313, 0.406) 
3 0.359 0.359 0.028 0.023 (0.312, 0.404) 

pool-all  0.290  0.011 (0.268, 0.312) 

 = 2 =P g y 0.002;  = 3 =P g y 0.002;  = 4 =P g y 0.619;  = 5 =P g y 0.376. 

CDC SE = 2   HS SE 1 0.254 0.254 0.014 0.014 (0.226, 0.284) 
2 0.361 0.360 0.028 0.026 (0.307, 0.412) 
3 0.359 0.349 0.056 0.048 (0.256, 0.303) 

pool-all  0.279  0.012 (0.255, 0.305) 

 =1 =P g y 0.001;  =2 =P g y 0.107;  =3 =P g y 0.002;  = 4 =P g y 0.554;  =5 =P g y 0.336. 

Note: Centers for Disease Control and Prevention (CDC); Standard error (SE); Ha and Sedransk (HS); Standard 
deviation (SD). 

 
As noted in Section 2, a complete specification of DPmeta requires specifying the values of many 

hyperparameters, and we have no prior information to make informed choices. So, we have replaced 

1, ,b bS   and 2  with their maximum a posteriori probability (MAP) estimates. We have followed 

Escobar (1994) by considering    1 0 1 2, , , = 1 3,1, 3, 9 .M L L L L  

From (2.10) in Muller et al. (2015) the prior probability of k  clusters is a function of .M  Let 

 1 2 3= , ,M M M Mp p p p  where kMp  is the prior probability of k  clusters with precision .M  Then kMp  can 

be calculated using the probability associated with any partition, i.e., 

 
 

     

1

=1

1 2 1

kk
jj

M L

M M M L

 

   




 (3.3) 

where jL  is the number of surveys in cluster j  with 
=1

= .
k

jj
L L  Then  1 3 = 18 28, 9 28,1 28 ,p  

 1 = 2 6, 3 6,1 6 ,p  3 = 2 20, 9 20, 9 20p  and  9 = 2 110, 27 110, 81 110 .p  Since 1 3p  and 9p  are 

too extreme we have emphasized =1M  and = 3.M  The results corresponding to =1M  and = 3M  are 

very close, so only the latter are presented in Table 3.2, which has the same format as Table 3.1. 

Comparing the results from the uncertain pooling method with those from DPmeta it is apparent that, 

in general, there is close agreement. For the posterior mean they are similar except in panel 3 where there 

is greater shrinkage for surveys 2 and 3. The results for the posterior SD are also close except for a larger 
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value for survey 2 in panel 3. There are only small differences in the intervals except for panel 3 where the 

DPmeta intervals for surveys 2 and 3 are wider. 

 
Table 3.2 

Observed proportions, standard errors and posterior summaries from Dixie County, Florida using DPmeta 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Interval 
CDC SE = 0.5   HS SE 1 0.254 0.254 0.014 0.014 (0.227, 0.282) 

2 0.361 0.359 0.028 0.013 (0.334, 0.384) 
3 0.359 0.360 0.014 0.012 (0.335, 0.384) 

CDC SE = HS SE 1 0.254 0.256 0.014 0.016 (0.227, 0.290) 
2 0.361 0.357 0.028 0.024 (0.291, 0.399) 
3 0.359 0.357 0.028 0.025 (0.290, 0.399) 

CDC SE = 2   HS SE 1 0.254 0.264 0.014 0.018 (0.230, 0.287) 
2 0.361 0.332 0.028 0.044 (0.261, 0.406) 
3 0.359 0.321 0.056 0.048 (0.249, 0.402) 

Note: Centers for Disease Control and Prevention (CDC); Standard error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 
The small value of the SAHIE SE seen in almost all counties limits the scope of our evaluation. Thus, 

we have used modified data sets based on the original data. Here, as before, we take the CDC SE to be 

0.5, 1 and 2 times the HS SE, but also take the SAHIE SE to be 2, 5 and 10 times the HS SE. Table 3.3, 

with the same format as Table 3.1, shows, for uncertain pooling, the results for Orange county with the 

CDC SE = 0.5(HS SE). These results are typical of our analyses for a sizeable number of FL counties. 

Recall, though, that each analysis is based only on the data from the specific county. For panel 1 in 

Table 3.3,   ˆ : = 1, , = 0.199,iE Y i L …   ˆSD : = 1, , = 0.008iY i L …  and the 95% credible interval 

is (0.184, 0.215). Inferences based on the posterior distribution of   are inappropriate if one regards any 

one of the three surveys as the “gold standard”. For example, the posterior mean of 1,  0.278, is outside 

the 95% credible interval for .  As in Table 3.1,  = 1 0.001,p g y   indicating very little support for 

pooling all of the data. 

The percent reductions in the posterior standard deviation of 1,  i.e., for SAHIE (survey 1), are 11, 26 

and 44%, corresponding to the three panels in Table 3.3. As the value of the SAHIE SE is increased, there 

is, as expected, additional pooling of the SAHIE observed proportion with the CDC observed proportion. 

Noting that the observed proportion for SAHIE is 0.294, the posterior means for 1  decrease from 0.278 

(panel 1) to 0.240 (panel 3). One reason for this can be seen by comparing the posterior distributions of ,g  

i.e.,   , : = 1, , 5 ,g p g y g …  given at the bottom of each panel. For example,  = 2p g y  increases 

from 0.006 to 0.339 while  = 5p g y  decreases from 0.479 to 0.253. These results show that the 

uncertain pooling methodology is taking proper account of the increased variability associated with the 

SAHIE estimates, i.e., increasing the likelihood of pooling the data from surveys 1 and 3. 

Comparing the results from the uncertain pooling method in Table 3.3 with those from DPmeta in 

Table 3.4 it is apparent that there are greater differences than those seen in Tables 3.1 and 3.2. For the 

posterior means it is notable that for survey 1 the posterior mean from DPmeta is somewhat smaller than 

that from uncertain pooling. This reflects greater pooling of the data from survey 1 with that from survey 
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3. For surveys 2 and 3 the two sets of posterior means are similar. The most notable difference is for the 

posterior SDs where, for survey 1 (panels 2 and 3) the values are very much smaller from DPmeta than 

from uncertain pooling. For the other seven cases, the two sets of posterior SDs are similar. 

Correspondingly, for survey 1 the intervals from DPmeta are much shorter than those from uncertain 

pooling while those for surveys 2 and 3 are only a little wider. From Table 3.4 and for survey 1 the percent 

reductions in the posterior SD (relative to the ObsSEs) are (42%, 55%, 75%). There are increases, though, 

for survey 2 in panels 2 and 3. 

 
Table 3.3 

Observed proportions, standard deviations and posterior summaries from Orange County, Florida, where 

CDC SE = 0.5   HS SE using uncertain pooling 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Int 
SAHIE SE = 2   HS SE 1 0.294 0.278 0.036 0.032 (0.227, 0.352) 

2 0.257 0.261 0.018 0.017 (0.226, 0.294) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.199  0.008 (0.184, 0.215) 

 = 2 =P g y 0.006;  = 3 =P g y 0.514;  = 5 =P g y 0.479. 

SAHIE SE = 5   HS SE 1 0.294 0.251 0.089 0.066 (0.162, 0.417) 
2 0.257 0.258 0.018 0.018 (0.223, 0.293) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.195  0.008 (0.180, 0.211) 

 = 2 =P g y 0.224;  = 3 =P g y 0.468;  = 5 =P g y 0.308. 

SAHIE SE = 10   HS SE 1 0.294 0.240 0.179 0.101 (0.059, 0.520) 
2 0.257 0.257 0.018 0.018 (0.222, 0.292) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.195  0.008 (0.179, 0.211) 

 = 2 =P g y 0.339;  = 3 =P g y 0.408;  = 5 =P g y 0.253. 

Note: Small Area Health Insurance Estimates (SAHIE); Centers for Disease Control and Prevention (CDC); Standard 
error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 

Table 3.4 

Observed proportions, standard errors and posterior summaries from Orange County, Florida using DPmeta 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Interval 
SAHIE SE = 2   HS SE 1 0.294 0.262 0.036 0.021 (0.202, 0.297) 
 2 0.257 0.263 0.018 0.018 (0.222, 0.296) 
 3 0.179 0.180 0.009 0.009 (0.162, 0.199) 
SAHIE SE = 5   HS SE 1 0.294 0.226 0.089 0.040 (0.168, 0.290) 

2 0.257 0.246 0.018 0.023 (0.186, 0.291) 
3 0.179 0.182 0.009 0.011 (0.163, 0.205) 

SAHIE SE = 10   HS SE 1 0.294 0.217 0.179 0.044 (0.166, 0.288) 
2 0.257 0.243 0.018 0.031 (0.185, 0.290) 
3 0.179 0.183 0.009 0.011 (0.162, 0.205) 

Note: Small Area Health Insurance Estimates (SAHIE); Standard error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 
3.2 Results from simulation study 
 

To evaluate properties such as bias and coverage of the credible interval we have carried out a 

simulation study based on several modifications of the Orange county data. Specifically, we generate 

 ˆ : = 1, 2, 3iY i  from 



Survey Methodology, June 2023 81 

 

 
Statistics Canada, Catalogue No. 12-001-X 

  1 1 1
ˆ ~ ,Y N V   

  2 1 2
ˆ ~ ,Y N V   

          3 2 2
ˆ ~ ,Y N V    (3.4) 

where 1  and 2  are from the third panel of Table 3.3; 1  is the average of the observed proportions 

from surveys 1 and 2 while 2  is the observed proportion from survey 3 (CDC). Also, we took 1V  to be 

much larger than 2.V  These choices were made to represent a common situation where survey 1 is a 

probability sample, with relatively large sample variance while surveys 2 and 3 are non-probability 

samples with much smaller sample variances. Finally,     0, 4 0.0193 = 0.0772, 8 0.0193 = 0.1544 .  

Table 3.5 gives the values of 1 2 1, ,V   and 2V  in the footnote. There are three rows, corresponding to 

= 0, 0.0772, 0.1544.  In each row there are the medians over 500 replications of   : =p g y g  

   1, , 5 , : = 1, 2, 3iE y i…  and   SD : = 1, 2, 3 ,i y i  together with the estimated coverages. 

 

Table 3.5 

Simulation results from 500 replications of (3.4) 
 

Inc Size 
 dataP g  Coverage PostMean PostSD 

: 1g  2 3 4 5 : 1i  2 3 : 1i  2 3 : 1i  2 3 

= 0  0 0.148 0.462 0 0.332 0.973 0.958 0.960 0.262 0.275 0.179 0.050 0.006 0.006 

= 0.0772 0.032 0.292 0.303 0.033 0.249 0.984 0.941 0.939 0.269 0.275 0.257 0.039 0.006 0.006 

= 0.1544 0 0.280 0.401 0 0.300 0.971 0.958 0.952 0.292 0.275 0.333 0.044 0.006 0.006 

1 = 0.276, 2 = 0.179, 2
1 =0.06 ,V  2

2 =0.006 .V  

Note: Standard deviation (SD). 

 

The principal findings are: (a) the medians of the posterior means are close to the values used to 

generate the data, i.e., 1  and 2 ,  (b) the coverages are close to the nominal 95%, and (c) there are 

significant reductions in the posterior standard deviation for survey 1 (SAHIE), i.e., 16.7%, 35.0% and 

26.7% corresponding to = 0, 0.0772  and 0.1544. There are no reductions in the posterior standard 

deviations for surveys 2 and 3. 

For = 0.1544  note that  = 2 = 0.280p g y  while  = 4 = 0.p g y  That is, we pool data from 

surveys 1(SAHIE) and 3(CDC),  = 2 ,g  because of the relatively large SE for survey 1(SAHIE). 

However, we do not pool data from surveys 2(HS) and 3(CDC),  = 4 ,g  because of the relatively small 

SEs for survey 2(HS) and survey 3 (CDC). Of course, we pool data from surveys 1 and 2,  = 3 ,g  

because they have the same mean, 1.  

 
4. Discussion and summary 
 

With reduced response rates and diminished resources there is considerable interest in combining data 

from several sources such as sample surveys and administrative data. Currently there is special interest 
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when the sources include non-probability surveys. Appropriate methodology is required to ensure 

satisfactory inferences since the target populations and data acquisition methods may be quite different. 

There are many situations where it may be beneficial to combine such data, as shown in the review 

paper by Lohr and Raghunathan (2017). Here, we have investigated the case where the analyst has only 

summary statistics from each of the sources, and where one can think of one source, ,r  as the single best 

source for inference. While it is often beneficial to use the data from related sources to improve inferences 

from ,r  it is essential that the data that are combined be concordant with the data from .r  The 

methodology in this paper can also be used in settings where the data are not limited to summary statistics 

and inferential objectives and models are more complex. As seen in this paper, failure to consider biases 

due to pooling “unlike” data may lead to poor inference. Using analytical expressions and examples we 

have shown that both the uncertain pooling and DPM methods provide appropriate inferences. However, 

our analyses based on uncertain pooling are fully Bayes while those from DPmeta are empirical Bayes – 

due to the need to specify values for many hyperparameters. Moreover, the uncertain pooling method 

provides additional information in the form of the posterior probabilities for the partitions, .g  

The methods can be implemented. For DPmeta there is an R package, DPpackage (Jara et al., 2011) 

while an R package is being developed for the uncertain pooling method. When completed it will be 

submitted to The Comprehensive R Archive Network. It contains functions that allow Bayesian analyses 

of the type described in this paper (a) with user-supplied point estimates and associated variances, or (b) 

with binomial data, cases  y  and total counts  .n  Case (b) provides an analysis based on the logit 

transformation of the sample proportion. We have implemented the latter when there are eleven surveys. 

Making inference for the sample variances, 1, , LV V…  is a very challenging problem. Polettini (2017) 

provides an extensive discussion of methods that have been proposed. Of particular interest are solutions 

proposed by You and Chapman (2006), Sugasawa, Tamae and Kubokawa (2017) and Polettini (2017). 

However, these solutions are posed in the context of small area inference, not when the objective is 

combining data from surveys and related sources. 

While the discussion below is in the context of extending the DPM method (Section 2.2), the ideas are 

also relevant for the uncertain pooling method (Section 2.1). Polettini (2017) augments the DPM model in 

Section 2.2 with 

     
ind2 2~ , = 1, ,i i i i

S V i L  …  (4.1) 

and  

  
iid1

1 1~ Gamma ,iV a b  (4.2) 

where 
2
iS  is the sampling variance and i  is a measure of the degrees of freedom. 

As noted by Polettini (2017) the assumption of the 
2  distribution in (4.1) is questionable, surely so 

when there is a complex survey design. With only a single sample one cannot verify the sampling 

distribution of 
2 ,iS  a point also made by Polettini (2017) on page 731. Moreover, in survey sampling the 
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form of 2
iS  is likely to be a complex function of the values of the variable of interest, ,Y  and survey 

weights. Thus, it is unlikely that the distribution of the observed ’sY  can be used to infer a reasonable 

approximation for the distribution of 2 .iS  

The assumption of constant population parameters in (4.2) is problematic for our case, i.e., combining 

data. We expect considerable differences among the surveys, e.g., for a collection of probability and non-

probability samples. You and Chapman (2006) generalize by replacing (4.2) with  

        
ind
~ Inverse Gamma , .i i iV a b  (4.3) 

This requires values for  , ,i ia b  a difficult choice without prior information. Moreover, Gelman (2006) 

shows that selecting both ia  and ib  very small, a natural choice (and one made by You and Chapman 

(2006)), may lead to poor inferences. Sugasawa et al. (2017) provide an alternative to You and Chapman 

(2006) by assuming  

          
ind
~ Inverse Gamma , ,i i iV a b   (4.4) 

with a prior on ,  but this, too, requires specifying values for ia  and .ib  Clearly, making better inference 

for the sample variances is an important topic for future research. 

There has been an increased interest in making inference for small subpopulations, i.e., “small area” 

inference, when there are several data sources; see, e.g., Manzi, Spiegelhalter, Turner, Flowers and 

Thompson (2011) and Nandram, Berg and Barboza (2014). While further research is needed to extend the 

uncertain pooling methodology to this case the approach is clear. Let j  denote a small area, e.g., a US 

county, and i  denote a data source where = 1, ,j J…  and =1, , .i L…  As above g  denotes a generic 

partition with generic subset  kS g  for  = 1, , .k d g…  Define   = : = 1, , ; = 1, , .ij j J i L… …G  Then 

for fixed ,g   kS g  is a subset of G  with     =k mS g S g ∩  for k m  and  
 

=1
= .

d g

kk
S g∪ G  For 

example, let = 2J  and = 3.L  Then each partition is a collection of the disjoint subsets of 

            = 11 , 12 , 21 , 22 , 31 , 32G  whose union is .G  By analogy with the discussion in Section 2, 

there would be a single best source for each small area, identified as   ,j i j  for some i  in small area .j  

Then the following model, analogous to the one in Section 2, is 

                                                                 
indˆ ~ , .ij ij ijY N V  (4.5) 

By analogy with (2.2)  

                             
ind 2~ , , .ij k k kN g g ij S g     (4.6) 

If the same (limit) assumptions are made about the  2
k g  and  2 2= ,k g   the expressions for 

posterior inference for the ij  will be the same as in Section 2. However, the assumption of constant 2  

may not be reasonable. Since there will be a very large number of partitions computation will be 

challenging, especially since it is expected that many  p g y  will be very small. 

The premise of our work is that one should include the possibility that the parameters associated with 

different surveys may not be exchangeable. (With a probability sample and several non-probability 
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samples this may be especially important.) Similarly, it is natural to generalize so that the parameters 

associated with the small areas are not assumed to be exchangeable. However, if exchangeability across 

both surveys and small areas can be assumed, the model in Section 2.1 of Kim, Park and Kim (2015) 

(possibly modified to accommodate Bayesian inference) should be easier to implement. 

Although the very large number of partitions of G  may pose an obstacle to implementation, one may 

be able to apply DPmeta when there are data from a set of small areas and several data sources. One 

problem is the specification in DPmeta of a common distribution for the ,ij  i.e., over small areas and 

surveys, which is unlikely to be appropriate. The possibilities include an ANOVA model (Section 4.4.2) 

or nested model (Section 7.3.1) of Muller et al. (2015), although the ANOVA model has no interaction 

terms and our model is a cross-classified one. 

Future research should include making inference for the sample variances, as noted above. Also, we 

need improved methodology to handle the extension to small area inference when there are data from 

several surveys. In some cases one may be able to simplify the model for the .ij  Using a grid-based 

method for sampling g  and 2  is difficult to implement when G  is extremely large. So, using a standard 

MCMC approach, possibly with an informative prior on ,g  may be a better way to make inference. For 

example, see Dahl, Day and Tsai (2017). 

Other approaches could also be explored. For example, Park, Kim and Stukel (2017) suggest a 

different approach for combining data from two surveys. Here, there are covariates, ,X  observed in each 

survey while 1,Y  the study variable of interest, is observed only in survey 1 and 2Y  is observed only in 

survey 2. Inference for the population mean of 1Y  is desired, given data from both surveys. The densities 

that they use are    1 1 1 2 2 1 2, , , ,f Y X f Y X Y   and, for identifiability, it is assumed that  2 2 1, =f Y X Y  

 2 2 1 .f Y Y  For a Bayesian analysis an extension to more than two surveys would be needed, together with 

specification of appropriate prior distributions for the parameters. It does not seem to be straightforward to 

model the distribution of 2Y  given 1.Y  
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Appendix 
 

Small Area Health Insurance Estimates (SAHIE) Program 
 

The following summary paraphrases relevant parts of US Census Bureau (2021). To avoid distortion of 

the authors’ meaning we have retained the first-person text. 

The SAHIE program produces model-based estimates of health insurance coverage for demographic 

groups within counties and states. We publish county estimates by sex, age and income. The income 
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groups are defined by the income-to-poverty ratio (IPR) – the ratio of family income to the appropriate 

federal poverty level. 

For estimation, SAHIE uses models that combine survey data from the American Community Survey 

(ACS) with administrative records data and Census data. The models are “area-level” models because we 

use survey estimates and administrative data at certain levels of aggregation, rather than individual survey 

and administrative records. Our modeling approach is similar to that of common models developed for 

small area estimation, but with additional complexities. 

The published estimates are based on aggregates of modeled demographic groups. For counties, we 

model at a base level defined by age, sex and income groups. 

We use estimates from the Census Bureau’s Population Estimates Program for the population in 

groups defined for county by age and sex. We treat these populations as known. Within each of these 

groups, the number with health insurance coverage in any of the income categories is given by that 

population multiplied by two unknown proportions to be estimated: the proportion in the income category 

and the proportion insured within that income category. The models have two largely distinct parts – an 

“income part” and an “insurance part” – that correspond to these proportions. We use survey estimates of 

the proportions in the income groups and of the proportions insured within those groups. We assume these 

survey estimates are unbiased and follow known distributions. We also assume functional forms for the 

variances of the survey estimates that involve parameters that are estimated. We treat supplemental 

variables that predict one or both of unknown income and insurance proportions in one of two ways: 

Some of these variables are used as fixed predictors in a regression model. There is a regression 

component in both the income and insurance parts of the model. In each case, a transformation of the 

proportion is predicted by a linear combination of fixed predictors. Some of these predictors are 

categorical variables that define the demographic groups we model. Others are continuous. The 

continuous fixed predictors include variables regarding employment, educational attainment, and 

demographic population. 

We also utilize random continuous predictors, which include data from 5-year ACS, Internal Revenue 

Service, Supplemental Nutrition Assistance Program, and Medicaid/Children’s Health Insurance Program. 

These are not fixed predictors in the model. Instead, we treat them as random, in a way similar to survey 

estimates, but not as unbiased estimators of the numbers. Instead, we assume that their expectations are 

linear functions of the number in an income group or the number insured within an income group. We 

typically assume they are normally distributed with variances that depend on unknown parameters. 

We formulate the model in a Bayesian framework and report the posterior means as the point 

estimates. We use the posterior means and variances together with a normal approximation to calculate 

symmetric 90-percent confidence intervals, and report their half-widths as the margins of error. 

We control the estimates to be consistent with specified national totals. 
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Survey data integration for regression analysis using model 
calibration 

Zhonglei Wang, Hang J. Kim and Jae Kwang Kim1 

Abstract 

We consider regression analysis in the context of data integration. To combine partial information from 
external sources, we employ the idea of model calibration which introduces a “working” reduced model based 
on the observed covariates. The working reduced model is not necessarily correctly specified but can be a 
useful device to incorporate the partial information from the external data. The actual implementation is based 
on a novel application of the information projection and model calibration weighting. The proposed method is 
particularly attractive for combining information from several sources with different missing patterns. The 
proposed method is applied to a real data example combining survey data from Korean National Health and 
Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea. 

 
Key Words: Big data; Empirical likelihood; Information projection; Measurement error models; Missing covariates. 

 
 

1. Introduction 
 

Data integration is an emerging research area in survey sampling. By incorporating the partial 

information from external samples, one can improve the efficiency of the resulting estimator and obtain a 

more reliable analysis. Lohr and Raghunathan (2017), Yang and Kim (2020), and Rao (2021) provide 

reviews of statistical methods of data integration for finite population inference. Many existing methods 

(e.g., Hidiroglou, 2001; Merkouris, 2010; Zubizarreta, 2015) are mainly concerned with estimating 

population means or totals while combining information for analytic inference such as regression analysis 

is not fully explored in the existing literature. 

In this paper, we consider regression analysis in the context of data integration. When we combine data 

sources to perform a combined regression analysis, we may encounter some problems: covariates may not 

be fully observed or be subject to measurement errors. Thus, one may consider the problem as a missing-

covariate regression problem. Robins, Rotnitzky and Zhao (1994) and Wang,Wang, Zhao and Ou (1997) 

discussed semiparametric estimation in regression analysis with missing covariate data under the missing-

at-random covariate assumption. In our setup, the external data source with missing covariates can be a 

census or big data. 

Under this setup, Chatterjee, Chen, Maas and Carroll (2016) developed a data integration method 

based on the constrained maximum likelihood, which uses a fully parametric model for the likelihood 

specification and a constraint developed from a reduced model for data integration. The constrained 

maximum likelihood method is efficient when the model is correctly specified but is not applicable when 

it is difficult or impossible to specify a correct density function. Kundu, Tang, and Chatterjee (2019) 

generalized the method of Chatterjee et al. (2016) to consider multiple regression models based on the 
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theory of generalized method of moments (Hansen, 1982, GMM). Recently, Xu and Shao (2020) develop 

a data integration method using a generalized method of moments technique, but their method implicitly 

assumes that the reduced model is correctly specified. Under a nested case-control design, Shin, Pfeiffer, 

Graubard and Gail (2020a) proposed to use the fully observed sample in the phase 2 to fit a parametric 

model, and missing covariates in the phase 1 sample are imputed; also see Shin, Pfeiffer, Graubard and 

Gail (2020b). Zhang, Deng, Wheeler, Qin and Yu (2021) developed a retrospective empirical likelihood 

framework to account for sampling bias in case-control studies. Sheng, Sun, Huang and Kim (2021) 

developed a penalized empirical likelihood approach to incorporate such information in the logistic 

regression setup. 

To combine partial information from external sources, we employ the idea of model calibration (Wu 

and Sitter, 2001) which introduces a “working” reduced model based on observed covariates. The model 

parameters in the reduced model are estimated from external sources and then combined through a novel 

application of the empirical likelihood method (Owen, 1991; Qin and Lawless, 1994), which can be 

viewed as information projection (Csiszár and Shields, 2004). The working reduced model is not 

necessarily specified correctly, but a good working model can improve the efficiency of the resulting 

analysis. The proposed method is particularly attractive for combining information from several data 

sources with different missing patterns. In this case, we only need to specify different working models for 

different missing patterns. 

Besides, our proposed method is based on the first moment conditions like usual regression analyses, 

so weak assumptions can broaden the applicability of the proposed method to many practical problems. In 

particular, the proposed method is directly applicable to survey sample data which is the main focus of our 

paper. We consider a more general regression setup and our proposed empirical likelihood method does 

not require that the working reduced model to be correctly specified. 

We highlight the contribution of our paper as follows. First, we propose a unified framework for 

incorporating external data sources in the context of regression analysis. The proposed method uses 

weaker assumptions than the parametric model-based method of Chatterjee et al. (2016) and thus provides 

more robust estimation results. Second, the proposed method is widely applicable as it can easily handle 

multiple external data sources as demonstrated in Section 5. It can also be applied to the case where the 

external data source is subject to selection bias. In the real data application in Section 7, we demonstrated 

that our proposed method can utilize the external big data with unknown selection probabilities by 

applying propensity score weighting adjustment. Finally, our proposed method is easy to implement and 

fully justified theoretically. The computation is simple as it is a direct application of the standard empirical 

likelihood method and can be implemented using the existing software. 

The paper is organized as follows. In Section 2, a basic setup is introduced, and the existing methods 

are presented. Section 3 presents the proposed approach, and Section 4 provides its asymptotic properties. 

In Section 5, an application to multiple data integration is presented. Section 6 presents simulation studies, 

followed by the application of the proposed method to real data in Section 7. Some concluding remarks 

are made in Section 8. 
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2. Basic setup 
 

Consider a finite population  = 1, , N…U  of size .N  Associated with the thi  unit, let iy  denote the 

study variable of interest and  1 2= ,i i ix x x  the corresponding auxiliary vector of length .p  We are 

interested in estimating a population parameter 0 ,β  which solves    1 1= ; , =i ii
y

U β U β x 0
U

 where 

 1 ; , yU β x  is a pre-specified estimating function for .β  One example of the estimating function is 

      1 1 1; , = ; ; ,i i i i iy y mU β x x β h x β  which is implicitly based on a regression model   =i iE Y x  

 1 ;im x β  on the super-population level for some  1 ;ih x β  satisfying certain identification conditions 

(e.g., Kim and Rao, 2009). From the finite population a probability sample 1 S U  is selected, and a Z -

estimator β̂  can be obtained by solving  

  
1

1 1 1
ˆ ( ) ; , = ,i i i

i

d y


U β U β x 0
S

 (2.1) 

where id  is the sampling weight for unit 1.iS  

In addition to 1,S  suppose that we observe 1ix  and iy  throughout the finite population and wish to 

incorporate this extra information to improve the estimation efficiency of ˆ.β  Before proposing our 

method, we introduce two related works, including Chen and Chen (2000) and Chatterjee et al. (2016). 

Chen and Chen (2000) first considered this problem in the context of measurement error models. To 

explain their idea in our setup, we first consider a “working” reduced model,  

    1 2 1= ;i i iE Y mx x α  (2.2) 

for some .α  Under the working model (2.2), we can obtain an estimator α̂  from the current sample 1S  by 

solving  

    
1

2 2 1
ˆ ; , = ,i i i

i

d y


U α U α x 0
S

 (2.3) 

where       2 1 2 1 2 1; , = ; ;i i i i iy y mU α x x α h x α  for some  2 1;ih x α  satisfying conditions similar to 

ones imposed to  1 ; .ih x β  In addition, one can get *α  that solves  2 1=1
; , = .

N

i ii
y U α x 0  Chen and Chen 

(2000) proposed using  

        
1

* *ˆ ˆ ˆ ˆˆ ˆ ˆCov , V


  β β β α α α α   

as an efficient estimator of β  where  V̂   and   Cov   denote the design-based variance and covariance 

estimators, respectively. The working model in (2.2) is not necessarily correctly specified, but a good 

working model can improve the efficiency of the final estimator. While the estimator of Chen and Chen 

(2000) is theoretically justified, it can be numerically unstable as the estimation errors of the variance and 

covariance matrix can be large. 

Chatterjee et al. (2016) considered a likelihood-based approach using a conditional distribution of iY  

given iX  with density  ;i if y x β  and imposed a constraint based on external information. Specifically, 

they proposed to maximize 
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    
1

;i ii
i

f y dF

 x β x
S

 (2.4) 

subject to  

      *
2 1; , ; ,y f y dydF   U α x x β x 0  (2.5) 

where  F x  is an unspecified distribution function for ,x  dF x  is the Radon-Nikodym derivative of the 

distribution function  F x  with respect to a certain dominating measure, and *α  is the model parameter 

available from an external source. Following the likelihood based approach of Chatterjee et al. (2016), 

 2 1; ,i yU α x  corresponds to the estimating function involving a “reduced” distribution function 

 1 0;i ig y x α  with model parameter 0 ,α  where  1 0;i ig y x  can be incorrectly specified. That is, *α  is 

the external information for 0.α  Chatterjee et al. (2016) estimated  F x  nonparametrically by empirical 

likelihood. By imposing this constraint into the maximum likelihood estimation, the external information 
*α  can be naturally incorporated. 

The constrained maximum likelihood (CML) method is not directly applicable to our conditional mean 

model in (2.1) as the likelihood function for β  is not defined in our setup. Besides, the design feature for 

the probability sample 1S  is not directly applicable in their method. Nonetheless, one can use an objective 

function such as that in a generalized method of moments to apply the constrained optimization problem, 

which is asymptotically equivalent to the empirical likelihood method (Imbens, 2002). The empirical 

likelihood implementation of CML approach is discussed by Han and Lawless (2019). 

 
3. Proposed approach 
 

We now consider an alternative approach for combining information from several sources. To combine 

information from several sources, we use the Kullback-Leibler (KL) divergence measure to apply the 

information projection (Csiszár and Shields, 2004) on the model space with constraints. Let P̂  be the 

empirical distribution of the sample with 

                                          
1

1

1ˆ , = , = , .i i i
iii

P x y d x y x y
d 


 SS

I  (3.1) 

Given the empirical distribution ˆ ,P  we wish to find the minimizer of  

            ˆ ˆ ˆ ˆ= log , , log , ,D P P dP y dP y dP y dP y x x x x  (3.2) 

with respect to P  in the model space. Notice that the first term is a constant and the minimizer of (3.2) is 

the pseudo maximum likelihood estimator of ˆ.P  

We consider the following constraints in our model at the finite-population level:  

        *
1 2 1

=1 =1

; , , = 0 and ; , , 0,
N N

i i i i i i i i
i i

y p y y p y  U β x x U α x x  (3.3) 
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where  ,i ip yx  is the point mass assigned to point  ,i iyx  in the finite population satisfying 

 
=1

, 1.
N

i ii
p y  x  See Figure 3.1 for a graphical illustration of the information projection. 

 
Figure 3.1 Information projection for the empirical distribution ˆ .P  

 

 

 

 

 

 

 

 

 

 

 

Note that *P  minimizes  ˆD P P  among P  satisfying the constraints in (3.3). 

 
Using the weighted empirical distribution in (3.1), the KL divergence measure in (3.2) reduces to 

    
1

1ˆ ˆconstant log ,i i ii
D P P N d p y


   x

S
 where 

1

ˆ .ii
N d


 S

 Thus, we only have to maximize 

   
1

logi ii
l d p


p

S
 subject to 

=1
1

N

ii
p   and the constraints in (3.3), where ip  abbreviates 

 , .i ip yx  Note that having 0ip   for 1iS  will decrease the value of    
1

log ,i ii
l d p


p

S
 the 

solution ˆ
ip  to this optimization problem should give ˆ 0ip   for 1.i S  Therefore, we can safely set 

0ip   for 1i S  and express the problem as finding the maximizer of  

                                                                 
1

, logi i
i

Q d w


d w
S

 (3.4) 

subject to  

                                                                 
1

1,i
i

w



S

                                                (3.5) 

                                           
1

*
2 1; , ,i i i

i

w y


 U α x 0
S

                                                (3.6) 

   
1

1 ; , .i i i
i

w y


 U β x 0
S

  

We use iw  instead of ip  to represent the final weights assigned to the sample elements. 
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Remark 1. Maximizing the objective function in (3.4) is equivalent to minimizing the following cross 

entropy:  

  
1

log ,i i
i

d w


 
S

 (3.7) 

where  
1

.i i ii
d d d


 

S
 The objective function (3.7) is also the pseudo empirical log-likelihood 

function considered by Chen and Sitter (1999) and Wu and Rao (2006). Instead of (3.4), we may consider 

other objective functions, including the population empirical likelihood proposed by Chen and Kim (2014) 

for example.  
 

Our proposed method is different from Chatterjee et al. (2016) in that we use a more general integral 

constraint (2.5) which does not involve the conditional density function  ; .f y x β  Constraint (3.6) still 

incorporates the extra information in *.α  The above optimization can be solved by applying the standard 

profile empirical likelihood method or using the following two-step estimation method.  
 

1. Find the calibration weights  1ˆ ˆ :iw i w S  maximizing  ,Q d w  subject to (3.5)-(3.6).  

2. Once the solution ŵ  is obtained from the calibration, estimate β  by solving  

  
1

1
ˆ ; , .i i i

i

w y


 U β x 0
S

 (3.8) 

 

If the benchmark *α  is not available from the finite population but can be estimated from an 

independent external sample, we can use the information from both the original internal sample and the 

external sample to obtain the benchmark estimate. In practical situations, we may not have access to the 

raw data of the external sample but often be able to have its summary statistics. Suppose that the external 

sample provides a point estimator 2α̂  and its variance estimator  2 2
ˆ ˆVV α  for the working reduced 

model in (2.2). Then, an estimator of the benchmark *α  can be obtained by  

           
1* 1 1 1 1

1 2 1 1 2 2
ˆ ˆ ˆ ,

     α V V V α V α  (3.9) 

where 1α̂  and 1V  are estimated with the internal sample 1.S  Once *α̂  is obtained by (3.9), it replaces *α  in 

the calibration equation in (3.6). 

Similarly to Wu and Sitter (2001), the proposed method does not require a “true” working model as 

explained below. Let  
ext
ˆ 0U α  be the estimating equation for obtaining *α  computed from the external 

sample 2 .S  Now, the final estimating function for β  using the model calibration  cal
ˆ U β  

 
1

1
ˆ ; ,i i ii
w y

 U β x
S

 can be approximated by  

         * *
cal 1 ext 2

ˆ ˆ ˆ ˆ U β U β K U α U α  (3.10) 

for some K  where  1Û β  and  
2Û α  are computed by (2.1) and (2.3), respectively, from the internal 

sample 1.S  The approximation in (3.10) can be easily derived using the asymptotic equivalence of the 

calibration estimator and the regression estimator. Thus, even if   *
ext

ˆE U α  is not equal to zero, the 

solution to  cal
ˆ 0U β  is consistent as     ext 2

ˆ ˆ 0E  U α U α  by design. 
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Remark 2. Although the working model    1 2 1;x x αi i iE Y m  does not need to be correctly specified, 

we can systematically find  2 1; ,U α xi iy  by casting its construction as a missing covariate problem, 

relying on the regression calibration technique. For example, suppose that  1 2, ,xi i ix x  we set a 

predictor 2 0 1 1
ˆ ,i ix x    and an estimating equation is written by 

       1 1 2 1 1 2 1 1 2
ˆ ˆ ˆ; , , , ; , ;U β β h βi i i i i i i ix x y y m x x x x   (3.11) 

for the control function of the model calibration method where  0 1, .β    We can either estimate β  

from sample 1S  or use any fixed parameter value as long as the solution to  
1

1 1 2
ˆ; , ,U β 0i i i ii

d x x y


 S
 

is unique. A benchmark estimator of β  can be obtained using external samples to apply the proposed 

model calibration method. If we use the control function in (3.11), then we are essentially treating a 

regression of y  on 1x  and 2x̂  as the “working” model for model calibration. This is feasible only when 

we have direct access to an external sample 2S  in addition to the internal sample 1.S   

 
4. Theoretical properties 
 

In this section, we investigate the asymptotic properties of the the proposed estimator β̂  to (3.8). Since 

the population parameters including 0β  and *α  are determined by the finite population of size ,N  we 

explicitly use a subscript N  for those in this section, e.g., 0β N  and * ,αN  but we omit this subscript for 

 , ,xi i id y  for simplicity. We consider two scenarios: when *αN  is available from the finite population 

and when we only have an external sample to estimate *αN  by the generalized least square in (3.9). 

 
4.1 *αN  is available 
 

Let 1ˆ=i id N d  where 
1

ˆ
ii

N d


 S
 is the Horvitz-Thompson estimator of the population size .N  

Replacing id  by id  in (3.4), we consider the Lagrangian problem that maximizes  

                  
1 1 1

*
2 1, , log ; , 1 ,w λ λ U α xi i i N i i i

i i i

l d w w y w 
  

 
     

 
  
S S S

T   

where λ  and   are the Lagrange multipliers. 

By setting  , , ,w λ λ 0l     , , 0w λl      and  , , 0w λ il w    for 1,iS  we get ˆ 1    

and   
1

*
2 1

ˆ 1 ; , .λ U α xi i N i iw d y


  T  Then, the proposed method is equivalent to solving  ,β λ 0g   

where  

                                        
 

 

 
 

1

1

1*
2 1

*
2 1*

2 1

; ,
1 ; ,

, .

; ,
1 ; ,

U β x
λ U α x

β λ

U α x
λ U α x

i
i i

i N i i

i
N i i

i N i i

d
y

y
g

d
y

y





 
 

 
  
 
  









S

S

T

T

 (4.1) 

Denote the solution to (4.1) as  ˆˆ , .η β λ
T

T T  To investigate asymptotic properties of ˆ ,η  we propose 

the following regularity conditions. 



96 Wang, Kim and Kim: Survey data integration for regression analysis using model calibration 

 

 
Statistics Canada, Catalogue No. 12-001-X 

C1. There exists a compact set A  such that    
1

1 2
2 1; ,sup max iS i i pZ y o n

 U α x A S  and 
*
N α A  for ,N N  where   denotes the Euclidean norm and the stochastic order is with 

respect to the sampling design. 

C2. The sampling design satisfies the following convergence results. 
 

a. There exist a compact set   such that 0N β  for N N  and an interior point of ,  

,pβ  such that 0 .limN N p β β   

b. There exists a continuous function  0U β  over   such that 
1

1 ( ; ,sup i ii
d

 β
U β x

S
 

 0) 0iy  U β  in probability, where pβ  is the unique solution to  0 .U β 0  

c.    
1

1 0 11; , 1 ,i N i i pi
d y o


    U β x β

S

T I  where 11I  is non-stochastic and invertible. 

d.      
1

*
1 0 2 1 12; , ; , 1 ,i N i i N i i pi

d y y o


  U β x U α x
S

T
I  where 12I  is non-stochastic.  

e.    
1

2*
2 1 22; , 1 ,i N i i pi

d y o



  U α x

S
I  where 2 A AAT  for any matrix A  and 22I  is 

non-stochastic and positively definitive. 
 

C3. The sampling design satisfies 

 
 

 
 

1

1 01 2

*
2 1

; ,
,

; ,

N i i

i u
i N i i

y
n d

y

 
 

 
 


U β x

0 Σ
U α x

 N
S

  

in distribution, where  , u0 ΣN  is a normal distribution with mean zero and covariance 

matrix  

 
11 12

21 22

.u

 
  
 

Σ Σ
Σ

Σ Σ
  

 

C1 is a technical condition to obtain the asymptotic order of ˆ ,λ  and a similar condition is also assumed by 

Wu and Rao (2006); see their condition C1 for details. C2 assumes several convergence results for the two 

estimating functions. Specifically, C2a shows the parameter space of the finite population parameter 0 ,Nβ  

and the convergence of 0Nβ  can be satisfied under regularity conditions. Condition C2b is necessary to 

show ˆ 0p β β  in probability, then 0
ˆ 0N β β  in probability, coupled with C2a. Conditions C2c-C2e 

guarantee the central limit theorem for ˆ .η  Note that 22I  is symmetric by C2e, but 11I  in C2c may be 

asymmetric for a certain estimating function  1 ; , .yU β x  Condition C3 is satisfied under regularity 

conditions for general sampling designs; see Fuller (2009, Section 1.3) for details. 
 

Theorem 1. Suppose that conditions C1-C3 hold. Then,    1 2
0

ˆ ,n  η η 0 ΣN  in distribution, where 

 1 1
u

 Σ Σ
T

I I  and 

 
11 12

22

.
 

  
 0

I I
I

I
  

The proof of Theorem 1 is presented in Appendix A. By Theorem 1, we can obtain that 

   1 2
0

ˆ ,Nn  β β 0 ΣN  in distribution, where  
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        
T T T T

T T1 1 1 1 1 1 1 1 1 1 1 1
11 11 11 11 12 22 21 11 11 12 22 12 11 11 12 22 22 22 12 11
              Σ Σ Σ Σ ΣI I I I I I I I I I I I I I I I   

and 11Σ  and 22Σ  correspond to the asymptotic variances of  
1

1 2
1 0 ; ,i N i ii

n d y
 U β x
S

 and 

 
1

1/2 *
2 1; , ,i N i ii

n d y
 U α x
S

 respectively. Furthermore, we have the following result regarding the 

optimality of  *
2 1; , .N i iyU α x  

Corollary 1. Suppose that the conditions in Theorem 1 hold. For a fixed estimating function 

 1
ˆ; , ,yU β x β  is optimal if     1 *

12 22 2 1 1 0 1; , ; , ,N Ny E y y U α x U β x xI I  holds almost surely for the 

working reduced model, where  1 2,x x x  and the expectation is taken with respect to the super-

population model. 
 

The proof of Corollary 1 is relegated to Appendix B. Corollary 1 presents a sufficient condition on the 

reduced model to guarantee an optimal estimator β̂  if the working model is correctly specified. That is, 

even if we do not require that the reduced model is correctly specified for consistency, the efficiency gain 

is guaranteed only under the correct model specification. By Corollary 1, an optimal estimator of *
Nα  can 

be obtained by solving   1 0 1; , , .NE y y U β x x 0  

Under regularity conditions, it can be shown that    1 1 1
11 11 12 22 21 11
   Σ Σ Σ Σ Σ

T
I I  for simple random 

sampling with or without replacement. Since  1 1
11 11 11
 Σ

T

I I  is the asymptotic variance of  1 2
0

ˆ ,m Nn β β  

where ˆmβ  solves  
1

1 ; , 0,i i ii
d y


 U β x

S
 the proposed approach achieves efficient estimation under 

simple random sampling; see Section S1 of the Supplementary Material for details. 

 
4.2 An external estimator 2α̂  is available 
 

When *α  is not available but an external sample is available to get *α̂  in (3.9), we consider  

  
 

 

 
 

1

1

1*
2 1

*
2 1*

2 1

; ,
ˆ1 ; ,

.

ˆ ; ,
ˆ1 ; ,

i
i i

i i i

i
i i

i i i

d
y

y
g

d
y

y





 
 

 
  
 
  





U β x
λ U α x

η

U α x
λ U α x






S

S

T

T

 (4.2) 

Denote η  to be the solution of   .g η 0  Then, the following additional assumptions are required to get 

the asymptotic properties for .η   

C4.      
1

2 1; , 1i i i pi
d y o


    U α x α α

S

T I  uniformly for ,α A  where  αI  is non-

stochastic. Besides, there exists an invertible matrix 0I  such that  *
0 .limN N αI I  

C5. The sampling design and the external sample satisfy the following convergence results. 

a. Both 1α̂  and 2α̂  are consistent for *.α  

b. 1V  and 2V  are design consistent variance estimators of 1α̂  and 2
ˆ ,α  respectively.   

c. 
1

1 ,V 1
2 ,V  and  

11 1
1 2

 V V  exist in probability. 

d.    
11 1 1

1 2 2 1 ,po
    V V V W  where W  is non-stochastic.   
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e. There exists a scaling function  n  such that     *
2 2
ˆ 0,n  α α ΣN  in distribution, 

where 2Σ  satisfies    2

2 2 1 .pn o  V Σ  
 

C4 is used to obtain the asymptotic order and the variance of * *ˆ ,Nα α  and a similar condition was used 

by Yuan and Jennrich (1998). C5a and C5b assume the consistency of 2α̂  and 2V  obtained by an external 

sample. For the consistency of 1
ˆ ,α  a sufficient condition is similar with C2b. The design consistency of 

the variance estimator 1V  can be obtained under general sampling designs; see Fuller (2009, Chapter 1) 

for details. C5c guarantees the existence of *α̂  for the proposed method. C5e shows the central limit 

theorem with respect to the summary statistic 2
ˆ ,α  and it is used to derive a similar result as C3 with *α  

replaced by *ˆ .α  Specifically, the convergence rate of  *
2
ˆ α α  is   1

,n


 which is determined by the 

external sample. 

The following theorem establishes an asymptotic distribution similar to that in C3.  

Theorem 2. Suppose that conditions C1 and C3-C5 hold. Then, 

 
 

 
 

1

1 01 2

*
2 1

; ,
,

ˆ ; ,

i i

i u
i i i

y
n d

y

 
 

 
 


U β x

0 Σ
U α x

 N
S

  

in distribution, where  

 11 12

21 22

.u

 
  
 

Σ Σ
Σ

Σ Σ

 


 
  

Case 1. Specifically, if there exists a non-stochastic matrix cΣ  such that  
2 1 ,c pn o V Σ  then 

11 11,Σ Σ  1
12 12 0 0 ,Σ Σ W T T TI I T

21 12Σ Σ   and  T T T1 1
22 0 0 22 0( ) ;c o

  Σ W Σ Σ W I I I I  

Case 2. If 0,W  then ij Σ 0  for    , 1,1i j   and 11 11.Σ Σ  
 

The proof of Theorem 2 is presented in Appendix C. For Case 1, if 2α̂  estimated from an external 

sample is much more efficient than α̂  in the sense of    * 1 2
2
ˆ ,N po n α α  then W  is an identity matrix 

and ij ijΣ Σ  for , 1, 2.i j   Thus, we can ignore the variability of the summary statistic 2α̂  from the 

external sample and get the same asymptotic distribution as in C3. Although the asymptotic distributions 

are the same, C3 with known 
*
Nα  is not a special case of Theorem 2 since 

*
2
ˆ

Nα α  has zero variance, 

which violates C5c-C5e. On the other hand, if  * 1 2
2
ˆ

N nα α   in probability, then 2α̂  is as efficient as 

1
ˆ .α  Thus, W  is not an identity matrix nor a zero matrix, and the proposed method is more efficient than 

one replacing *α  by 
*

2
ˆ ˆα α  due to the extra information provided by the external sample. It is trivial that 

we cannot use 1α̂  to replace *α  in (3.6); otherwise, we get ˆ ,i iw d   and (3.8) is equivalent to the 

traditional estimation equation  
1

1 ; ,i i ii
d y


 U β x 0

S
 without calibration. If 2α̂  is much less efficient 

than 1α̂  in terms of convergence rate, then we should not use such an external sample for the proposed 

method because  * * * 1 2
1

ˆ ˆ
po n   α α α α  and    

1

1 2 *
2 1
ˆ ; , 1 ;i i i pi

n d y o


 U α x
S

 see Appendix C for 

details. By C5, we can obtain the same consistency results in Lemmas A1-A2 for (4.2) under the same 

conditions. Thus, by Theorem 2, we obtain the following asymptotic distribution for .η  
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Corollary 2. Suppose that conditions C1-C5 hold. Then, we have    1 2
0 0,n  η η Σ N  in 

distribution, where  1 1 ,u
 Σ Σ  T

I I  the form of I  is in Theorem 1, and the form of Σ
  is in 

Theorem 2. 
 

Remark 3. It is worthy pointing out that when deriving the asymptotic properties in this section, we do 

not consider the weighting adjustments such as nonresponse adjustment, trimming, and raking. However, 

those weighting adjustments are commonly used in survey sampling. Thus, it is a promising research topic 

to generalize the proposed method incorporating those weighting adjustments. 

 
5. Multiple data integration 
 

We now consider regression analysis combining partial information from external samples. To explain 

the idea, Table 5.1 shows an example data structure with three data sources  , , ,A B C  where Sample A  

contains all the observations while samples B  and C  contain partial observations. 

 
Table 5.1 

Data structure for survey integration 
 

Sample Sampling Weight z  1x  2x  y  

A  ad  X X X X 

B  bd  X X  X 

C  cd  X  X X 

 
Under the setup of Table 5.1, suppose that we are interested in estimating the parameters in the 

regression model    1 2 1 0 1 1 2 2, ,E Y x x m x x      where  
1m   is known but  0 1 2, ,  β  is 

unknown. The estimating equation for β  using sample A  can be written as  

       , 1 2 1 2
ˆ , ; , ; =a a i i i i i i

i A

d y m x x x x


 U β β h β 0  (5.1) 

for some  1 2, ;i ix xh β  such that  ˆ
aU β  is linearly independent almost everywhere. 

Now, we wish to incorporate the partial information from sample .B  To do this, suppose that we have 

a “working” model for  1, :E Y x z  

    1 2 1, , ;E Y x z m x z α  (5.2) 

for some .α  Note that, since  1, ,i i iz x y  are observed, we can use sample B  to estimate α  by solving 

 , 1; , ,b i b i i ii B
d x z y


 U α 0  for some bU  satisfying   1 1; , , ,bE x z Y x z U α 0  under the working 

model (5.2). 

Similarly, to incorporate the partial information from sample C , suppose that we have a “working” 

model for  2 , :E Y x z  

    2 3 2, , ;E Y x z m x z γ  (5.3) 
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for some .γ  We can also construct an unbiased estimating equation  , 2; , ,c i c i i ii C
d x z y


 U γ 0  for 

some cU  satisfying   2 2; , , ,cE x z Y x z U γ 0  under the working model (5.3). Once α̂  and γ̂  are 

obtained, we can use this extra information to improve the efficiency of β̂  in (5.1). To incorporate the 

extra information, we can formulate it as maximizing    ,, loga a i ii A
Q d w


d w  subject to ii A

w


  

N  and  

    1 2
ˆ ˆ; , , , ; , , ,i b i i i c i i i

i A

w x z y x z y


    U α U γ 0  (5.4) 

where ad  and w  are sets containing the sampling weights and calibration weights with respect to sample 

.A  Constraint (5.4) incorporates the extra information. Once the solution ˆ iw  is obtained, we can use 

    1 2 1 2
ˆ , ; , ;i i i i i ii A
w y m x x x x


  β h β 0  to estimate .β  The asymptotic results can be obtained 

similarly in Section 4. 
 

Remark 4. In this paper, we implicitly assume that the populations for the internal sample and the 

external samples are the same, but it is possible that those populations differ in some scenarios. For 

example, the external estimator α̂  may be obtained based on a non-probability sample, whose sampling 

frame differs from the one for the probability sample due to the coverage bias in many opt-in surveys. 

There are several data integration methods incorporating information from heterogeneous populations. 

For example, Taylor, Choi and Han (2022) proposed to use ratios of coefficients to incorporate the 

external information under regularity conditions even when the populations for the internal and external 

samples differ. See also Zhai and Han (2022) and Sheng, Sun, Huang and Kim (2022) for penalized 

approaches when incorporating external information from heterogeneous populations. The 

aforementioned existing methods do not take the complex sampling properties into consideration, so it is 

promising to investigate data integration for heterogeneous populations under survey sampling in a future 

project. 

 
6. Simulation study 
 

To evaluate the finite sample performance of the proposed estimator, we conducted simulation studies 

assuming several scenarios. We generated a finite population of size 100,000,N   each record consisting 

of auxiliary variables  1 2,i i ix xx
T

 of length 2p   and a response variable .iy  We assume that  ,i iyx  

is available for the internal sample 1S  while only  1,i ix y  is available for the external sample 2 .S  

We evaluate the performance of the proposed estimator under a linear regression setup. In this case, we 

are interested in making statistical inference for  0 1 2, ,  β
T

 that solves  0 1 1=1

N

i ii
y x     

  2 2 1 21, , .i i ix x x  0
T

 

First, we consider two scenarios to generate covariates for the finite population: (i)  1 ~ 3,1ix N  and 

 2
2 ~ 11, 6.5 ,ix N  where 1ix  and 2ix  are independent; (ii)  1 ~ 3,1ix N  and 

2
2 1i i ix x  ε  with  ~ 0,1 .i Nε  

The simulation parameters are chosen such that the marginal mean and variance of 2ix  are similar in the 

independent and the dependent settings. Second, the response variable is generated as i i iY     with 

1 21 2i i ix x     under two scenarios: (i) homogeneous variance with  ~ 0, 9i N  and (ii) hetero-

geneous variance with  2~ 0,i i iN x  with 0.2 .i i   Third, we consider two sampling designs to 
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generate a probability sample 1S  of (expected) size 1 1,000 :n   (i) simple random sampling without 

replacement (SRS), and (ii) Poisson sampling with inclusion probabilities satisfying 1i   

  
1 2

min : 1, , 10i iy y i N  …  and 1 1=1
.

N

ii
n   Last, we consider two sampling designs to generate 

an external sample 2S  of (expected) size 2 10,000 :n   (i) SRS and (ii) Poisson sampling with inclusion 

probabilities satisfying   
1

2 1 21 exp 0.2 0.1 0.6i i ix x


     and 2 2=1
.

N

ii
n   It is worthy pointing out 

that the sampling design for the internal sample is informative (Pfeffermann, 1993) under Poisson 

sampling, so ignoring the design feature may result in erroneous inference. 

For the proposed estimator, we consider a working reduced model, 
2

1
2 0i ii

y 


  S

 

  1 1 11, ,i ix x  0
T

 whose solution is denoted as 2
ˆ .α  Based on the external sample 2 ,S  we assume that a 

point estimator 2α̂  and its variance estimator  2 2
ˆ ˆVV α  are available as discussed in Section 3. 

Linearization is adopted to obtain a variance estimator 2 ;V  see the proof of Theorem 1 in Appendix A for 

details. 

In the simulation study, the proposed estimator is compared with the constrained maximum likelihood 

(CML) estimator (Chatterjee et al., 2016). We assume a normal distribution for the likelihood function, 

i.e.,   2
full~ 1, , .i i iy N x x βT  We also suppose that an analyst assumes   2

1 1 red~ 1, ,i i iy N x x α  for 

the working reduced model. See Section S2 of the Supplementary Material for the computation details. 

We consider the CML estimator under the setting where the extra information of  1,i iy x  is available for 

an external sample, not for the entire population. 

We conduct 1,000M   Monte Carlo simulations, and Figures 6.1 and 6.2 show the Monte Carlo bias 

of the proposed and CML estimators for the homogeneous and heterogeneous variance setups, 

respectively. From Figure 6.1, when the variance of the error term is homogeneous and the internal sample 

is generated by SRS, the proposed estimator performs approximately the same as CML estimator in terms 

of Monte Carlo bias and variance. However, when the auxiliaries are correlated and the internal sample is 

generated by Poisson sampling, the CML estimator is questionable, since its model is wrongly specified 

under the informative Poisson sampling design. For example, the Monte Carlo bias of the CML estimator 

is not negligible when estimating 0  and 1.  Because the proposed estimator incorporates the design 

features, its performance is satisfactory for all setups. As shown in Figure 6.2, even when the internal 

sample is generated by SRS, the CML estimator is slightly less efficient than the proposed estimator. The 

reason is that the CML estimator fails to take the heterogeneous variance into consideration, but the 

proposed estimator does not make any distribution assumption. When the internal sample is generated by 

an informative Poisson sampling design, the CML performs poorly, since it is not unbiased, and since its 

variance is larger than the proposed estimator. 

Table 6.1 shows the coverage rate of a 95% confidence interval for the proposed estimator under 

different settings. Chatterjee et al. (2016) only investigated the theoretical properties of their estimator 

when the population-level information is available. Thus, no interval estimator can be provided if only an 

external sample is available. By Table 6.1, we conclude that the coverage rates of the confidence intervals 

are all close to its nominal truth 0.95 under different settings. One possible reason for this phenomenon is 

that the proposed estimator is model free, so the proposed model is more robust and can be used under 

complex sampling designs. 
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Figure 6.1 Monte Carlo bias of the proposed and CML estimators based on 1,000 Monte Carlo simulations 
under the homogeneous variance setup.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first to the third rows stand for the Monte Carlo bias for estimating 0 ,  1  and 2 ,  respectively. The three plots, including (a), (c) and (e), 
in the left column show the results when the auxiliary variables are independently generated, and those, including (b), (d) and (f), in the right 
column are for the case when the auxiliaries are dependent. “CML” and “Prop” stands for the CML estimator and the proposed estimator, 
respectively. The first design in the parenthesis is used to generate the internal sample 1,S  and the second one to generate the external sample 

2.S  “SRS” and “Poi” represents Sampling random sampling and Poisson sampling. 

 
 
Figure 6.2 Monte Carlo bias of the proposed and CML estimators based on 1,000 Monte Carlo simulations 

under the heterogeneous variance setup.  

 

 

 

 

 

 

 

 

 

 

 
              

The first to the third rows stand for the Monte Carlo bias for estimating 0 ,  1  and 2 ,  respectively. The three plots, including (a), (c) and (e), in the left 
column show the results when the auxiliary variables are independently generated, and those, including (b), (d) and (f), in the right column are for the case 
when the auxiliaries are dependent. “CML” and “Prop” stands for the CML estimator and the proposed estimator, respectively. The first design in the 
parenthesis is used to generate the internal sample 1,S  and the second one to generate the external sample 2.S  “SRS” and “Poi” represents Sampling 
random sampling and Poisson sampling. 
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Table 6.1 
Coverage rate of a 95% confidence interval by the proposed method based on 1,000 Monte Carlo simulations 
under different setups 
 

 1S  Des 2S  Des 
Independent Dependent 

0  1  2  0  1  2  

Homo 

SRS 
SRS  0.948 0.952 0.939 0.945 0.948 0.934 

Poi 0.945 0.951 0.938 0.946 0.946 0.934 

Poi 
SRS  0.957 0.966 0.949 0.935 0.943 0.940 

Poi 0.962 0.964 0.951 0.936 0.943 0.938 

Hete 

SRS 
SRS  0.944 0.942 0.933 0.933 0.925 0.935 

Poi 0.949 0.942 0.935 0.935 0.934 0.931 

Poi 
SRS  0.959 0.955 0.935 0.948 0.950 0.941 

Poi 0.961 0.956 0.944 0.952 0.949 0.946 

Note: “Homo” and “Hete” stands for the homogeneous and heterogeneous variance for the error term, respectively. “ 1S  Des” 
and “ 2S  Des” show the sampling design used to generate the internal sample 1S  and the external sample 2.S  “SRS” and 
“Poi” stands for Sampling random sampling and Poisson sampling, respectively. “Independent” and “Dependent” 
correspond to the cases when the auxiliary variables are independent and dependent, respectively. 

 
An additional simulation with a logistic regression setup is relegated to Section S3 of the 

Supplementary Material, and similar conclusions can be reached. 

 
7. Application study 
 
7.1 Data description and problem formulation 
 

As an application example, we apply the proposed method to analyze a subset of the data from the 

Korea National Health and Nutrition Examination Survey (KNHANES). The annual survey includes 

approximately 5,000 individuals each year and collects information regarding health-related behaviors by 

interviews, basic health conditions by physical and blood tests, and dietary intake by nutrition survey. The 

sampling design of KNHANES is a stratified sampling using age, sex, and region as stratification 

variables. The final sampling weights are computed via nonresponse adjustment and post-stratification, 

then provided to data users with survey variables. 

To improve the efficiency of data analysis with KNHANES of size 1 4,929,n   we used an external 

public database provided by the National Health Insurance Sharing Service (NHISS) in Korea. The big 

data provided by NHISS contain about 2 1,000,000n   individuals with health-related information, some 

of whose variables are a subset of variables in KNHANES.  

These data structures, with the small 1,n  the large 2 ,n  and the big data having a subset of variables in 

the internal sample, are suited well to the setting we addressed in Section 2. However, there is another 

complication in applying the proposed method to the real application. In the NHISS data, its selection 

probabilities are unknown, so the design consistent estimator 2α̂  in (3.9) is unavailable. Section 7.2 
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addresses this issue by using a propensity weighting approach and Section 7.3 presents the analysis results 

of the application study. 

 
7.2 Propensity weighting for external data with unknown selection 

probability 
 

We now consider an extension of the proposed method to the case where the external sample 2S  is a 

big data with unknown selection probabilities. In this case, the working model for    1 1i i iE Y mx α xT  

may not hold for the sample 2.S  Nonetheless, we may still solve  

   
2

1 1i i i
i

y m


  α x x 0
S

T  (7.1) 

to obtain 0̂  and 1
ˆ .  If the sampling mechanism for 2S  is ignorable or non-informative, then the solution 

of (7.1) is unbiased; otherwise, the resulting estimator is biased. 

To remove the selection biases in the big data estimate, Kim and Wang (2019) suggested using 

propensity score weights in (7.1) to obtain an unbiased estimator of .α  To construct the propensity score 

weights, we employ a nonignorable nonresponse model,    11
1 , , ; ,i i i ii

P y y  x x   where 1i   if 

2i S  and zero otherwise. Note that we can express      
1

1 0 1 1, 1 , ,i i i iy N N r y

 x x  where 

     1 1 1, , 0 , 1i i i i i i i ir y f y f y   x x x  is the density ratio function with 1 =1

N

ii
N   and 

0 1.N N N   Using the motivation of Wang and Kim (2021), we may assume a log-linear density ratio 

model,   1 0 1 1 2log , ; .i i i ir x y x y      The maximum entropy estimator of   is obtained by solving 

       1 0 1 1 2 1 1=1
ˆ ˆ1 exp 1, , 1, , ,

N

i i i i ii
N x y x y x y       where    

1
1 0 1

ˆˆ ˆ, 1 ( , )i i ii
x y N d x y


  S

 

 1=1
, ,

N

i i ii
x y

1
0 1
ˆ ,ii

N d N


  S
 and 1S  is the internal sample. Once ̂  is obtained, we can construct 

 1
ˆ ,i ix y  and solve  

 
 

      
2

0 1 1 1

1

1
1, 0, 0

ˆ ,
i i i

i i i

y m x x
x y

 


  
S

 (7.2) 

to obtain  2 0 1
ˆ ˆ ˆ, . α  

In addition, we can use the internal sample 1S  to fit the same working model to obtain 1
ˆ .α  After that, 

we obtain *α̂  using (3.9) and apply the proposed calibration weighting method to combine information 

from the big data. In practice, 2V  in (3.9) is difficult to compute, but it is negligibly small if the sample 

size for 2S  is huge. In this case, we may simply use 
*

2
ˆ ˆα α  in the calibration problem. 

 
7.3 Application study results: Korea National Health and Nutrition 

Examination Survey 
 

In this application study, we use 1 4,929n   records of KNHANES data that have no missing values in 

four variables: Total cholesterol, Hemoglobin, Triglyceride, and high-density lipoprotein (HDL) 
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cholesterol. For demonstration purpose, we assume that an analyst is interested in conducing the following 

linear regression analysis,  

   0 1 2 3 1Total Cholesterol Hemoglobin Triglyceride HDL for ;i i i i iE i       x S   

check Section S4 of the Supplementary Material for details about the linearity assumption. In our data, the 

biggest absolute value of the pairwise correlation among covariates is 0.40  observed between 

Triglyceride and HDL cholesterol, which is similar to a scenario in Section 6 where the covariates were 

highly correlated. The big external data consist of 2 1,000,000n   records of NHISS data with fully 

observed items in Total cholesterol, Hemoglobin, and Triglyceride. The assumed working reduced model 

is  

  1 0 1 2 1 2Total Cholesterol Hemoglobin Triglyceride for .i i i iE i      x S S   

In this application study, we implement our proposed methods with the external sample, where 2α̂  is 

used instead of *α  that is unavailable as we do not have information regarding the entire population. With 

the external sample whose selection probabilities are unknown, we prepare two versions of proposed 

methods: (i) considering 2S  as SRS, i.e., without propensity weighting, and (ii) with the propensity 

weighting adjustment introduced in Section 7.2. For the propensity weighting, we fit the log-linear density 

ratio model to the external data,   1 0 1 2 3log , ; Hemoglobin Triglyceride Totali i i ir y       x   

Cholesterol ,i  calculate  1
ˆ ,i iy x  given ˆ ,  then solve  

 
 

      
2

0 1 1 1

1

1
1, 0, 0

ˆ ,
i i i

i i i

y m x x
x y

 


  
S

  

to obtain 2
ˆ .α  The above logistic regression model is commonly assumed in the literature; see Elliott and 

Valliant (2017), Chen, Li and Wu (2020), Wang and Kim (2021) and the references within for details. 

Since the CML estimator fails to incorporate the design features, it is not considered in the application 

section. The performances of proposed methods are compared with the reference method that uses the 

internal sample 1S  only to get weighted least square estimates considering the sampling weights. 

Figure 7.1 shows the point estimates and the 95% confidence intervals of  0 1 2 3
ˆ ˆ ˆ ˆ ˆ, , ,   β  for each 

method. The proposed methods show smaller variances for 0
ˆ , 1̂  and 2̂  than using the internal sample 

only. This result coincides with our findings in the simulation studies of the previous section. For 2 ,  the 

estimator of the proposed method without propensity weighting shows a systematic difference from the 

other two estimators. When the propensity weighting adjustment is coupled with the proposed method, its 

confidence interval of 2  is contained by that of using the internal sample only. This result implies that 

the systematic bias due to the disregard of the sampling probabilities is addressed by the propensity 

weighting adjustment. No efficiency gain in estimating 3  was expected as the external data contain 

information of 1ix  (Hemoglobin) and 2ix  (Triglyceride), not 3ix  (HDL). 
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Figure 7.1 Comparison of the regression analysis for   0 1Total Cholesterol x Hemoglobini i iE      

2 3Triglyceride HDLi i   using the internal data from Korea National Health and Nutrition 
Examination Survey supported by the big external data from the National Health Insurance 
Sharing Service database.  

 

 

 

 

 

 

 

 

 

 

 

 
For each panel, circles are point estimates and lines are their 95% confidence intervals for using the internal sample 1S  only with the weighted 
least square (top solid line), the proposed method without adjustment (middle dashed line), and the proposed method with propensity score 
weighting adjustment (bottom dotted line). 

 
8. Conclusion 
 

Incorporating external data sources into the regression analysis of the internal sample is an important 

practical problem. We have addressed this problem using a novel application of the information projection 

(Csiszár and Shields, 2004) and the model calibration weighting (Wu and Sitter, 2001). The proposed 

method is directly applicable to survey sampling and can be easily extended to multiple data integration. 

The proposed method is easy to implement and does not require direct access to external data. As long as 

the estimated regression coefficients and their standard errors for the working reduced model are 

available, we can incorporate the extra information into our analysis. 

There are several possible directions on future research extensions. First, a Bayesian approach can be 

developed under the same setup. One may use the Bayesian empirical likelihood method of Zhao, Ghosh, 

Rao and Wu (2020) in this setup. The proposed method can potentially be used to combine the 

randomized clinical trial data with big real-world data (Yang, Zheng and Wang, 2020); such extensions 

will be presented elsewhere. It will be also interesting to connect the proposed approach to two-phase 

(double) sampling design whose efficient design and estimation has been recently studied actively 

(Rivera-Rodriguez, Spiegelman and Haneuse, 2019; Rivera-Rodriguez, Haneuse, Wang and Spiegelman, 

2020; Wang, Williams, Chen and Chen, 2020). The data structure of the two-phase sampling with the 

large- ,n  small- p  first stage sample and the small- ,n  large- p  second stage sample is well suited to the 

set-up assumed by the suggested model calibration approach. 
   

                        80             90            100           110                                   1.0         1.5         2.0         2.5         3.0 
                                              beta0                                                                                    beta1 

             0.10    0.11     0.12    0.13     0.14     0.15     0.16                  0.85   0.90    0.95   1.00    1.05   1.10    1.15 
                                                 beta2                                                                                     beta3 
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The supplementary material can be found in the document https://arxiv.org/abs/2107.06448, and it 

contains special case under simple random sampling (S1), implementation of Chatterjee et al. (2016) (S2), 

an additional simulation study (S3), and validation for the linearity assumption for the KNHANES dataset 

(S4). 

 
Appendix 
 

A. Proof of Theorem 1 
 

Lemma A1. Suppose that conditions C1, C2e and C3 hold. Then,  1 2ˆ .pO nλ  
 

Proof of Lemma A1. Denote ˆ ,λ θ  where ˆ  λ  and 1ˆ θ λ  is a vector of unit length. Then, we 

have  

 

 
 

 
 

 
    

 

    
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1

T

1 1

1
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2 1T *

2 1

T *
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2 1 2 1T *
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
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
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 








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







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

0 U α x
λ U α x

θ U α x
θ U α x

θ U α x U α x θ
θ U α x

θ U α x

θ U α x U α x θ
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

S

S

S S

S

 
1

T *
2 1; , ,i N i i

i

d y


  θ U α x
S

 

(A.1)

 

where the first equality holds since  ˆ ,g η 0  and the last inequality holds by the triangular inequality. 

By C2e and the Rayleigh-Ritz Theorem (Horn and Johnson, 2012, Section 4.2), there exists a constant 

0 0   such that  

https://arxiv.org/abs/2107.06448
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       
1

T
T * *

2 1 2 1 0; , ; , 1 .i N i i N i i p
i

d y y o


  θ U α x U α x θ
S

 (A.2) 

By C3 and the Slutsky’s theorem, we have  

    
1

T * 1 2
2 1; , .i N i i p

i

d y O n



 θ U α x
S

 (A.3) 

Thus, by C1 and (A.1)-(A.3), we have proved Lemma A1. 
 

Lemma A2. Suppose that conditions C1, C2a-C2e and C3 hold. Then,  
0

ˆ 1 .N po β β  
 
Proof of Lemma A2. By Lemma A1 and C1, we conclude that  

             
   

   

1 1

1

T * *
2 1 2 1

*
2 1

ˆ ˆ; , ; ,max max

ˆ ; , 1 .max

N i i N i i
i i

N i i p
i

y y

y o

 





 

λ U α x λ U α x

λ U α x

S S

S

 
(A.4)

 

First, we show that  

 
 

   
1 1

1 1T *
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y 

 


 U β x U β x 0
λ U α x




S S

 (A.5) 

in probability uniformly for .β  By (A.4), we have  
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       
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1T *
2 1

T * T *
2 1 2 1 1
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2 1 1
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λ U α x
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By C2a-C2b, there exists a constant 1 0uC   such that  0 1.sup uC



β

U β  Since  
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1 ; ,i i ii
d y
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converge uniformly to  0U β  in probability, we conclude that  
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  U β x

S

 (A.7) 

uniformly over .  By (A.4) and (A.6)-(A.7), we have validated (A.5). 

By C2b and (A.5), we conclude that     
1

1
T *

2 1 1
ˆ1 ; , ; ,i N i i i ii

d y y



 λ U α x U β x

S
 converges 

uniformly to  0U β  in probability. Denote    2

0 0Q U β β  and   
1

T *
2

ˆ1 ;s i Ni
Q d


  
β λ U α
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  
21

1 1, ; , .i i i iy y
 


x U β x  Then, pβ  uniquely maximizes  0Q β  by (C2b), and β̂  maximizes  .sQ β  In 

addition,  sQ β  converge uniformly to  0Q β  in probability over the compact set .  Thus, by C2a and 

Theorem 2.1 of Engle and McFadden (1994, Chapter 36), we have finished the proof for Lemma A2.  
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Proof of Theorem 1. By Lemmas A1-A2, we have shown that  
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0 0 , ,Nη β 0  and 0  is a vector of zero with the same length of ˆ.λ  

By (A.8) and the Taylor expansion, we have  
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By (C3), we have  
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in distribution. By (C2e)-(C2c), we conclude that  
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in probability, where  

 11 12
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.
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By (A.9)-(A.11), we conclude that  

    1 2
0

ˆ ,n  η η 0 ΣN  (A.12) 

in distribution, where  
T1 1 .u

 Σ ΣI I  

 
B. Proof of Corollary 1 
 

Since  1 ; , yU β x  is given, it is enough to consider  

 
T T1 1 1 1

11 12 22 21 12 22 12 12 22 22 22 12 ,     Σ Σ Σ ΣI I I I I I I I   
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the asymptotic variance of    1 *
1 0 12 22 2 ,N N

U β U α I I  where    
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where   1 1, : ,N i y i xA S A B  is equivalent to that A B  is non-negatively definitive for two 

matrices A  and B  with the same dimension, and the last inequality holds since  *
2 NU α  is non-stochastic 

conditional on .NA  Thus,     1 *
1 0 12 22 2Var N N
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C. Proof of Theorem 2 
 

Before proving Theorem 2, we need the following result.  
 

Lemma A3. Suppose that conditions C1, C3-C5 hold. Then, we have 

  * * 1 2 .N pO n α α   

 

Proof of Lemma A3. Since 2α̂  is obtained by an independent external survey, we conclude that the 

variance of *α̂  can be estimated by  
11 1

1 2 .
 V V  Thus, the order of the variance of *α̂  is determined by 

the less efficient estimator between 1α̂  and 2
ˆ .α  If we showed  

  * 1 2
1
ˆ ˆ ,N pO n α α  (C.1) 

we could have  1
1 pO nV  by (C5b). Since *α̂  is at least as efficient as 1

ˆ ,α  we have completed the 

proof of Lemma A3. 

Thus, it remains to show (C.1). By C4 and C5, we have  
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where α  lies on the segment joining 1α̂  and 
*ˆ .Nα  By C3-C5 and (C.2), we conclude that  
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Thus, by C3 and (C.3), we have shown (C.1).  
 



Survey Methodology, June 2023 111 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Proof of Theorem 2. Consider  
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where α  lies on the segment joining *α̂  and * ,Nα  the second equality holds by C4 and Lemma A3, the 

third equality holds by (C.3), the last equality holds by C5d,    n n   if   1 2n n   and 

  1 2n n   otherwise, and  n  is the convergence order of  *
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Nα α  in (C5e). 
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Since the external sample is independent with the internal sample and cΣ  is the asymptotic variance of 

 1 2 *
2
ˆ

Nn α α , by (C3), (C5e) and (C.5), we conclude that  
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where 11 11,Σ Σ  1
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  Σ W Σ Σ W I I I I  Thus, we 

have proved the first case of Theorem 2. 

If 0,W  then   1 2n n   and the rate of  n  is slower than 1 2n  in (C.4). Thus, the remainder 

term of (C.4) is no longer  1 2
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 Instead, for this case, we investigate the 

asymptotic order of  
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  V V V  first. By C3, C5b and (C.3), we have  
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in probability. Thus, (C.6) leads to  
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in probability. By   1 2 ,n n   (C.7) and (C.8), we have shown  
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and we have proved the third case of Theorem 2. 
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One-sided testing of population domain means in surveys 

Xiaoming Xu and Mary C. Meyer1 

Abstract 

Recent work in survey domain estimation allows for estimation of population domain means under a priori 
assumptions expressed in terms of linear inequality constraints. For example, it might be known that the 
population means are non-decreasing along ordered domains. Imposing the constraints has been shown to 
provide estimators with smaller variance and tighter confidence intervals. In this paper we consider a formal 
test of the null hypothesis that all the constraints are binding, versus the alternative that at least one constraint is 
non-binding. The test of constant versus increasing domain means is a special case. The power of the test is 
substantially better than the test with the same null hypothesis and an unconstrained alternative. The new test is 
used with data from the National Survey of College Graduates, to show that salaries are positively related to the 
subject’s father’s educational level, across fields of study and over several years of cohorts. 

 
Key Words: Survey domain; Order constraints; Monotone; Block monotone. 

 
 

1. Introduction 
 

Methods for estimation of population domain means under a priori assumptions in the form of linear 

inequality constraints have been recently established. Suppose interest is in estimating ,D
U y R  a vector 

of population domain means, where D  is the number of domains. Wu, Meyer and Opsomer (2016) 

derived an isotonic survey estimator of ,Uy  where it is assumed that 
1

.
DU Uy y …  They showed that the 

constrained estimator is equivalent to a “pooled” estimator, where weighted averages of adjacent sample 

domain means are used to form an isotonic vector of domain mean estimates. Advantages to the ordered 

mean estimates are that they “make sense” in terms of satisfying the assumptions, and the confidence 

intervals for the estimates are typically reduced in length. Oliva-Aviles, Meyer and Opsomer (2019) 

proposed an information criterion to check the validity of the monotone assumption; that is, determining 

whether the domain means are ordered or unordered. 

Oliva-Aviles, Meyer and Opsomer (2020) proposed a framework for estimation and inference with 

more general shape and order constraints in survey contexts. Examples include block orderings, and 

orderings of domain means arranged in grids. For example, average cholesterol level may be assumed to 

be increasing in age category and body mass index (BMI) level, but decreasing in exercise category. In 

another context, suppose average salary is to be estimated by job rank, job type, and location, with average 

salary assumed to be increasing with rank, and block orderings imposed on job type and location. More 

recently, Xu, Meyer and Opsomer (2021) formulated a mixture covariance matrix for constrained 

estimation that was shown to improve coverage of confidence intervals while retaining the smaller 

lengths. 
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The desired linear inequality constraints may be formulated using an M D  constraint matrix ,A  

where the assumption is .U Ay 0  For the isotonic domain means, 1,M D   and the nonzero elements 

of the constraint matrix are   , 1m m  A  and   , 1 1.m m A  For block orderings, where domains are 

grouped by ordered blocks, each domain in block one, for example, is assumed to have a population mean 

not larger than each domain in block two, and in block two, each population domain mean does not 

exceed any of those in block three, etc. Here the number of constraints is 
1

=1 = 1
,

B B

b bb b b
M D D 




   where 

B  is the number of blocks and bD  is the number of domains in the thb  block, 1, , .b B …  For example, 

suppose interest is in mean salaries at an institution, where the domains are four “fields”, and it is assumed 

that fields 3 and 4 have higher salaries than fields 1 and 2. In this case 2,B  1 2 2,D D   and the 

constraint matrix is  

 

1 0 1 0

1 0 0 1
.

0 1 1 0

0 1 0 1

 
 
 
 
 

 

A   

For a third example, consider domains arranged in a grid; for a context suppose the population units are 

lakes in a state, and iy  is the level of a certain pollutant in lake .i  We are interested in average levels by 

county and by distance from an industrial plant. If there are 60 counties and 5 categories of distance, there 

are 300 domains. If we know that the level of pollutant is non-increasing in the distance variable, then 

there are 60 4 240   constraints, formulated as antitonic within each county. 

We propose a test where the null hypothesis is that ,U Ay 0  versus the alternative ,U Ay 0  and UAy  

has at least one positive element. The simplest example is the null hypothesis of constant domain means, 

versus the alternative of increasing domain means. (Note that these hypotheses are different from the 

alternatives in Oliva-Aviles, Meyer and Opsomer (2019), who were deciding between monotone and non-

monotone domain means.) For the industrial plant example above, we can test the null hypothesis that, 

within each county, the domain means are constant in distance. Using the constraints for a one-sided 

alternative results in improved power over the equivalent two-sided test. 

This test has been widely studied outside of the survey context; see Bartholomew (1959); Bartholomew 

(1961); Chacko (1963); McDermott and Mudholkar (1993); Robertson, Wright and Dykstra (1988); 

Meyer (2003); Silvapulle and Sen (2005); Sen and Meyer (2017) and others. The null distribution of the 

likelihood-ratio test statistic for the one-sided test has been derived based on the normal-errors model. In 

brief, when the error terms are independently and identically distributed with known model variance, the 

null distribution of the likelihood ratio statistic is shown to be a mixture of chi-square distributions, while 

for the unknown model variance, the test statistic has the null distribution of a mixture of beta 

distributions. If the error terms are not independently and identically distributed, the results, based on 

principles of generalized least squares, still hold provided the covariance structure for the error terms is 

available. Similar results for the one-sided likelihood ratio test were obtained by Perlman (1969) where 
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the completely unknown covariance matrix was considered. Meyer and Wang (2012) formally proved that 

the one-sided test will provide higher power than the test using the unconstrained alternative. 

In this paper we extend the one-sided test to the survey context. In the Section 2, the test is derived, 

and in Section 3 some large sample theory is given. Simulations in Section 4 show that the test performs 

well compared to the test with the unconstrained alternative, with better power and a test size closer to the 

target. In Section 5 the methods are applied to the National Survey of College Graduates (NSCG), to test 

whether salaries are higher for people whose father’s education level is higher, controlling for field of 

study, highest degree attained, and year of degree. The test is available in the R package csurvey. 

 
2. Formulation of the test statistic 
 

To establish the notation, let  1, 2, ,U N …  be the finite population. A sample s U  of size n  is to 

be drawn based on a probability sampling design ,p  where  p s  is the probability of drawing the sample 

.s  The first order inclusion probability    Pri i s
i s p s


    and the second order inclusion 

probability    
,

Pr , ,ij i j s
i j s p s


    determined by the sampling design, are both assumed to be 

positive. The assumed positive i  and ij  ensure that the design-based estimator of the population 

parameter and the associated design-based variance estimator can be obtained, respectively. In terms of 

the domains of interest, let  : 1, ,dU d D …  be a partition of the population U  and dN  be the 

population size of domain ,d  where D  is the number of domains. We denote by ds  the intersection of s  

and ,dU  and let dn  be the sample size for .ds  Sample size dn  arises from a random sampling procedure 

and thus is not fixed in general. 

Let y  be the variable of interest and denote by iy  the value for the thi  unit in the population. The 

population domain means are  
1
, , ,

DU U Uy yy …
T

 and 
dUy  is given by:  

 1, , .d

d

ii U

U

d

y
y d D

N


 


…   

Two common design-based estimators of the population means are the Horvitz-Thompson (HT) 

estimator (Horvitz and Thompson, 1952) or the Hájek estimator (Hájek, 1971); because the Hájek 

estimator 
dsy  does not require information about the population domain size dN  and has other advantages 

in practice, we will focus on the Hájek estimator. The results for the Horvitz-Thompson estimator, 

however, can be derived analogously. The Hájek estimator for domain means is  
1
, , ,

Ds s sy yy  …  where 

                   
ˆ
d

d

i ii s

s

d

y
y

N







   

and ˆ 1 .
d

d ii s
N 


  

We are concerned with testing:  
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 0 1: versus : \U UH V H V y y C  (2.1) 

where  :V  y Ay 0  is the null space of A  and the alternative set is the convex cone  : y Ay 0C  

excluding the set .V  A set C  is a convex cone if for any 1  and 2  in ,C 1 1 2 2    is in C  for any 

non-negative 1  and 2 .  

We start with a brief review of the properties of the unconstrained estimator .sy  By the Taylor 

expansion, we can linearize the sy  as follows:  

      center 1ˆ
s U pO n   y y y   

where  

 
   

1

1

center

1

1 1
ˆ , , .D

D

i U i U

i s i si D i

y y y y

N N  

   
  
 
 

 y …

T

  

The properties of s Uy y  can be approximated by centerŷ  and we have that  centerˆE 0y  and the variance 

of centerŷ  is ,Σ  where the thdd  element of Σ  is:  

                         
   1

, , 1, 2, ,
d d

d d

i U j U

dd ij
i U j Ud i jd

y y y y
d d D

N N  




  

 
   Σ …   

where  cov ,ij i j ij i jI I        and iI  is the indicator variable of whether unit i  is selected by 

sampling design. By the design normal assumption (A5) in the appendix, we have 1 2 centerˆ Σ y
D

 

 , ,N 0 I  hence:  

      1 2 1 2 centerˆ 1 , .s U po N    Σ y y Σ y 0 I
D

  

We denote by Σ̂  a consistent estimator of ,Σ  in the sense that    ˆ 1 .pn o Σ Σ  For testing (2.1), we 

propose the following weighted least squares test statistic:  

         

   
0 1

0

1 1
0 0 1 1

1
0 0

ˆ ˆmin min
.

ˆmin

V s s s s

V s s

T
 

 




    


 

θ θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

   

 

C

T T

T
  

Assuming the second order inclusion probability ij  to be known, the thdd  element of the design 

based consistent estimator Σ̂  has the following expression:  

                       
   1ˆ , , 1, 2, , .

ˆ ˆ
d d

d d

i s j s
ij

dd

i s j s ij i jd d

y y y y
d d D

N N   





  

    Σ
 

…  (2.2) 

See Särndal, Swensson and Wretman (1992) Chapter 5 on page 185 for more details. Particularly, under a 

fixed size design, the Sen-Yates-Grundy variance estimator, derived as an alternative form of (2.2), can 
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also be used. In addition, under many complex survey designs, the second order inclusion probability ij  

might be zero or unknown so that the design based covariance estimator Σ̂  cannot be obtained. In such 

cases, the use of consistent replication-based variance estimators (such as Jackknife estimator, bootstrap 

estimator) can be considered, since the calculation of replication variance estimator does not involve the 

second order inclusion probabilities. As long as the replication-based variance estimators are good 

approximation for ,Σ  the asymptotic properties of ˆ,T  which will be developed shortly, would hold. 

We will reject 0H  if T̂  is large. This is similar in structure to the classical test (as was presented in, 

for example, Silvapulle and Sen (2005) Chapter 3). If sy  were normal with   ˆcov ,s y Σ  then T̂  would 

be distributed as a mixture of beta random variables, under the null hypothesis. In the survey context, we 

approximate the distribution of ˆ.T  

 
3. Asymptotic distribution of the test statistic 
 

The assumptions needed to derive an approximate distribution of T̂  are listed in Appendix, and are 

similar to those in Xu et al. (2021). 

To derive the asymptotic null distribution of ˆ,T  we first show the following result.  
 

Lemma 1. The test statistic T̂  can be written as:  

               

       

   

       

   
 

0 1

0

0 1

0

1 1
0 0 1 1

1
0 0

1 1
0 0 1 1

1
0 0

ˆ ˆmin min
ˆ

ˆmin

min min
= 1 .

min

V s s s s

V s s

V s s s s

p

V s s

T

o

 
 




 
 




    


 

    


 

θ θ

θ

θ θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

   

 

   

 

C

C

T T

T

T T

T

  

 

Proof. Let 1 2ˆ ˆ ,A AΣ 1 2ˆ ˆ ,s s
Z Σ y 1 2

0 0
ˆ ˆ ,θ Σ θ 1 2

1 1
ˆ ˆ ,θ Σ θ  0 0

ˆ ˆ ˆˆ : 0 V θ Aθ  and  1 1
ˆ ˆ ˆ ˆ: 0 .θ AθC =  

Then by a transformation, we have:  

 

        

   

       

   

   

   

0 1

0

0 1

0

1

0

1 1
0 0 1 1

1
0 0

ˆ ˆˆ ˆ0 0 1 1

ˆ ˆ 0 0

ˆˆ 1 1

ˆ ˆ 0 0

ˆ ˆmin min

ˆmin

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆmin min

ˆ ˆˆ ˆmin

ˆ ˆˆ ˆmin
1

ˆ ˆˆ ˆmin

V s s s s

V s s

s s s sV

s sV

s s

s sV

T
 

 




 







    


 

    


 

 
 

 

θ θ

θ

θ θ

θ

θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

Z θ Z θ Z θ Z θ

Z θ Z θ

Z θ Z θ

Z θ Z θ

   

 

C

C

C

T T

T

T T

T

T

T
.

  

Let V̂   be the linear space of vectors in DR  that are orthogonal to vectors in ˆ.V  Note that 

   
0
ˆ ˆ 0 0

ˆ ˆˆ ˆmin s sV
 

θ
Z θ Z θ

T

 is the squared length of the projection of ˆ sZ  onto V̂   and the projection of 
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ˆ
sZ  onto V̂  has the explicit expression   *

0
ˆ ˆ ˆ ˆ ˆ ˆ ,s



 θ I A AA A ZT T  where  ˆ ˆ


AAT  is the generalized 

inverse of ˆ ˆ .AAT  Hence, by the consistency of ˆ ,Σ  we have the following:  

             

       

    

 

 

   

     

0

0

* *
0 0 0 0ˆ ˆ

1
0 0

1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆmin

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ

1 ˆ

1

1
min 1 .

s s s s
V

s s

s s

s s

s s p

s s p
V

n n

n

n

n

n o

o
n



 











    







 

   

θ

θ

Z θ Z θ Z θ Z θ

A AA AZ A AA AZ

Z A AA AZ

y A AΣA Ay

y A A ΣA Ay

y θ Σ y θ

 

 

 

T T

T
T T T T

T T T

T T T

T T T

T

 

(3.1) 

By (3.1) and the result that          
11

1 11 1
1 1 1 1

ˆmin 1mins s s s pn n
o 

      θθ y θ Σ y θ y θ Σ y θ   CC

T T
 

by Lemma 4 in the Appendix, we get  

                   

   

   

   

   
 

1

0

1

0

11
1 1

11
0 0

11
1 1

11
0 0

ˆmin
ˆ 1

ˆmin

min
1 1

min

s sn

V s sn

s sn

p

V s sn

T

o













 
 

 

 
  

 

θ

θ

θ

θ

y θ Σ y θ

y θ Σ y θ

y θ Σ y θ

y θ Σ y θ

 

 

 

 

C

C

T

T

T

T

  

the proof is complete.  

The denominator in above expression must be bounded away from zero in probability, which is indeed 

the case because it can be shown that the      
0

1

0 0min V s sn


  θ y θ Σ y θ 
T

 has, asymptotically, 

 2 M  distribution under the null and design normal assumption. 

Next, let 1 2 1 2 1 2 1 2
0 0 1 1, , ,s s U U

      Z Σ y Z Σ y θ Σ θ θ Σ θ    and define    : 0 , : 0 ,V    θ Aθ θ Aθ      C  

where 1 2.A AΣ  Then, we have the following main result of the paper.  
 

Theorem 1. Define  

            0 1

0

2 2

0 1

2

0

min min

min

V

V

T
 



 




θ θ

θ

Z θ Z θ

Z θ

  

 

 



C
  

where  ~ , .NZ 0 I  Then under the null, T̂  converges in distribution to .T  That is,  

 ˆ .T T
D

  
    



Survey Methodology, June 2023 123 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

Proof. According to the transformation above, we can express T̂  as:  
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 
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θ θ
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θ θ
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Z θ
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Z Z Z θ

Z θ Z θ

Z θ

  

 

  

 

  

 

  



  



 



C

C

C  1po

  

where center ,s U Z Z Z  and recall that under 0 ,H ,U VZ   so that, in the above expression, minimizing 

over 0θ
  is equivalent to minimizing over 0 ,U Z θ  and similarly for minimizing over 1.θ  

Then, we have ˆ .T T
D

 This follows from the Lipschitz continuity of the projection of Z  onto a 

convex cone; that is, if θ̂  is the projection of Z  onto the cone ,C  then θ̂  is a continuous function of ;Z  

see Proposition 1 and its proof in Meyer and Woodroofe (2000). 

The random variable T  defined in Theorem 1 has been shown to be distributed as a mixture of beta 

random variables under 0.H  See Robertson et al. (1988) in Chapter 2 and Meyer (2003) for more details. 

Also, the mixing distribution can be found (to within a desired precision) via simulation. Specifically, if 

0M M  is the rank of the constraint matrix ,A  

  
0

0

0

Pr Pr Be , ,
2 2

M

m
m

M m m
T c c p



  
    

  
   

where the mixing probabilities 
00 , , Mp p…  are approximated through simulations, and  Be ,   

represents a Beta random variable with parameters   and ,  respectively. By convention,  Be 0, 0   

and  Be , 0 1.   

If m  is the dimension of the space spanned by the rows of A  that represent binding constraints, then 

each mp  represents the probability that m  constraints are binding, 00, , .m M …  Each row of Â  

represents a constraint, and we say that the thj  constraint is binding if the thj  element of ˆ ˆAθ  is zero. The 

quantity ,D m  where m  is the number of binding constraints, can be thought of as the observed degrees 

of freedom of the fit. For more information about this mixing distribution, see Silvapulle and Sen (2005), 

Chapter 3. The mixing probabilities are approximated as follows:   

(1) Generate Z  from a standard multivariate normal distribution  , .N 0 I  

(2) Project the generated Z  onto the convex cone  ˆ ˆ: 0 θ AθC  to obtain the J  set, where 
1 2ˆ ˆ .A AΣ  Specifically, let θ̂  be the projection of Z  onto the ˆ,C  then  ˆ ˆ: 0 ,jJ j A θ  

where ˆ jA  is the 
thj  row of ˆ .A  That is, J  indexes the set of “binding constraints”. The R 
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package coneproj (Liao and Meyer (2014)) finds θ̂  given the generated Z  and ˆ ,A  and also 

returns the set of binding constraints .J   

(3) Repeat the previous steps R  times (say 1,000).R   

(4) Estimate mp  by the proportion of times that the set J  has m  elements, 00,1, , .m M …  When 

the matrix A  has more constraints than dimensions, then, the cone projection routine in 

coneproj can always find a minimal unique J  set. (See Meyer (2013) for details.)  

 
3.1 The properties of asymptotic power of the test  
 

In this section, we prove consistency and monotonicity of the power function of this test. First, we 

show that if the alternative hypothesis is true, then the probability of rejecting the null hypothesis 

increases to one as N  and n  increase without bound.  

 

Theorem 2. Let   be the test size and c  be the corresponding critical value of the test. Then, the power 

of the test converges to 1 under the alternative. That is: 

  ˆ \ 1, .UP T c V as N   y C   

 

Proof. Since 
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under the the alternative. For the numerator, we have  
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where we use the fact that  1 2
s U pO n  y y  and  1ˆ

pO n Σ  element-wise. For the denominator, we 

have:  
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Hence, we have:  
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because sy  and Σ̂  are consistent for Uy  and Σ  respectively. Therefore, under the alternative, T̂  goes to 

1 asymptotically.  

 
4. Simulation studies 
 

The simulations involve one or two dimensional grids, with several constraints and population domain 

means. We present the results in table form from three scenarios: for each, we record the proportions of 

times the null is rejected in various cases, with different sample sizes, significance levels and the variances 

for generating the study variables. In each case, we generate a population of size ,N  then we draw 10,000 

samples from the population according to a sampling design. For each sample, we compute the test 

statistic value and the estimated covariance matrix. We compare the test statistic with the critical values 

under different significance levels, where the critical values are obtained from the asymptotic null 

distribution of the test statistics. Further, we compare the power of this one-sided test with that of 

ANOVA F test using the unconstrained alternative. That is,  

 0 2: versus : .U UH H Ay 0 Ay 0   

Here, we use svyglm function in survey package to fit the ANOVA model and compute the P-values 

of the ANOVA F test by applying the anova function in survey package. 

 
4.1 Monotonicity in one variable 
 

As in Xu et al. (2021) and Oliva-Aviles et al. (2020), the limiting domain means for generating the 

study variables are given by the functions as follows:  

 
     

  
   
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 
  
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for 1, 2, , ,d D …  where 12D   is the number of domains. The study variables 1, , Ny y…  are generated 

by adding independent and identically distributed  20, iN   1, 2i   errors to the d  values from above 

three functions, respectively, with 1 1   and 2 1.5.   We compare the test size and power for the test of 

constant versus increasing domain means, with the standard ANOVA test of constant versus non-constant 

domain means. Notice that under 
      0 0 0

1 , , ,D μ …
T

 the null hypothesis is true, while under 
 0 μ  

    1 1
1 , , D …

T

 and 
      2 2 2

1 , , ,D μ …
T

 the population domain means have increasing order and thus 

the alternative is true, with 
 2μ  having larger effect size. 

We draw the samples from a stratified random sampling design without replacement, with 4H   

strata that cut across the D  domains. The strata are determined using an auxiliary variable ,z  which is 

correlated with study variable .y  The values of z  are created by adding i.i.d. standard normal errors to 

 .d D  By ranking the values of ,z  we can create 4 blocks of N H  elements. Then, the stratum 

membership of the population element is determined by the corresponding ranked .z  Finally, the 

population sizes are set to be 9,600,N  19,200,N  57,600N   and 76,800N   with population 

domain size dN N D  for 1, , .d D …  The total sample sizes 200,n  400,n  1,200n   and n   1,600 

are assigned to the 4 strata with sample size (25, 50, 50, 75), (50, 100, 100, 150), (150, 300, 300, 450), 

(200, 400, 400, 600) in each stratum, respectively. 

The results in Table 4.1 show that the test size for the proposed one-sided test is closer to the target, 

while the two-sided test size is somewhat inflated even for the larger sample sizes. For the simulations 

where the alternative hypothesis is true, the one-sided test has substantially higher power. 

 
Table 4.1 

Monotonicity in one variable: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

 
  n 

 0.1  0.05  0.01 
(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-
sided test 

  1 n = 200 0.0996 0.4689 0.6686 0.0533 0.3218 0.5055 0.0134 0.1194 0.2230 
n = 400 0.0840 0.6352 0.8529 0.0403 0.4780 0.7268 0.0085 0.2028 0.4054 

n = 1,200 0.1039 0.9657 0.9986 0.0537 0.9027 0.9941 0.0121 0.6444 0.9133 
n = 1,600 0.0981 0.9867 0.9999 0.0489 0.9550 0.9988 0.0110 0.7533 0.9654 

  1.5 n = 200 0.0994 0.3128 0.4370 0.0528 0.2008 0.2938 0.0133 0.0625 0.1056 
n = 400 0.0839 0.4101 0.5946 0.0402 0.2740 0.4338 0.0084 0.0873 0.1770 

n = 1,200 0.1037 0.7838 0.9461 0.0532 0.6327 0.8679 0.0120 0.3142 0.5773 
n = 1,600 0.0980 0.8544 0.9751 0.0488 0.7253 0.9334 0.0109 0.3900 0.6928 

ANOVA 
F test 

  1 n = 200 0.1412 0.2677 0.4017 0.0746 0.1627 0.2685 0.0147 0.0457 0.0973 
n = 400 0.1280 0.3618 0.6034 0.0658 0.2385 0.4627 0.0147 0.0835 0.2259 

n = 1,200 0.1123 0.8139 0.9854 0.0590 0.7121 0.9694 0.0117 0.4736 0.8943 
n = 1,600 0.1111 0.9253 0.9986 0.0576 0.8633 0.9964 0.0126 0.6868 0.9814 

  1.5 n = 200 0.1412 0.1909 0.2502 0.0746 0.1087 0.1495 0.0147 0.0261 0.0408 
n = 400 0.1280 0.2195 0.3278 0.0658 0.1296 0.2094 0.0147 0.0313 0.0661 

n = 1,200 0.1123 0.4670 0.7538 0.0590 0.3320 0.6361 0.0117 0.1397 0.3902 
n = 1,600 0.1111 0.5947 0.8795 0.0576 0.4602 0.8014 0.0126 0.2367 0.5932 

 
 
 
 



Survey Methodology, June 2023 127 

 

 
Statistics Canada, Catalogue No. 12-001-X 

4.2 Block monotonic in one variable 
 

In “block monotonic” ordering case, we assume the population means are ordered among blocks, but 

there is no ordering imposed within the blocks. Specifically, we organize the limiting domain means in 

four blocks of three domains as following:  

   
   0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05μ   

 
   1 0.06 0 0.06 0.12 0.06 0.18 0.18 0.24 0.30 0.30 0.36 0.30 μ   

 
   2 0.08 0 0.08 0.16 0.08 0.24 0.24 0.32 0.40 0.40 0.48 0.40 μ   

where the blocks are separated by the vertical lines. Hence, under the alternative, we expect the population 

mean for each of the domains in block b  would be at least as large as those in block 1,b   for 2, 3, 4.b   

The effect size of 
 2
Uy  generated from 

 2μ  would be larger than that of 
 1
Uy  from 

 1 .μ  We use the same 

stratified simple random sampling design as in the previous example. 

The results in Table 4.2 show again that one-sided test has substantially higher power for simulations 

where the alternative is true, and for simulations under the null hypothesis, the test size is approximately 

correct for the one-sided test and the two-sided ANOVA test has inflated test size.   

 
Table 4.2 

Block monotonicity in one variable: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

   n 
1  0.1 2  0.05 3  0.01 

(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-
sided test 

  1 n = 200 0.1013 0.5114 0.6795 0.0568 0.3590 0.5216 0.0119 0.1397 0.2391 
n = 400 0.1036 0.7368 0.8856 0.0534 0.5838 0.7878 0.0109 0.2840 0.4722 

n = 1,200 0.0964 0.9718 0.9978 0.0487 0.9224 0.9880 0.0089 0.6671 0.8801 
n = 1,600 0.0976 0.9877 0.9998 0.0492 0.9635 0.9958 0.0098 0.7668 0.9339 

  1.5 n = 200 0.1014 0.3421 0.4535 0.0567 0.2191 0.3124 0.0117 0.0731 0.1144 
n = 400 0.1031 0.4992 0.6616 0.0534 0.3544 0.5028 0.0109 0.1335 0.2235 

n = 1,200 0.0965 0.8187 0.9422 0.0485 0.6794 0.8672 0.0091 0.3474 0.5661 
n = 1,600 0.0974 0.8830 0.9743 0.0497 0.7652 0.9232 0.0099 0.4367 0.6746 

ANOVA 
F test 

  1 n = 200 0.1412 0.2941 0.4368 0.0746 0.1847 0.2951 0.0147 0.0551 0.1155 
n = 400 0.1280 0.4220 0.6556 0.0658 0.2912 0.5231 0.0147 0.1123 0.2712 

n = 1,200 0.1123 0.8940 0.9921 0.0590 0.8177 0.9840 0.0117 0.6099 0.9363 
n = 1,600 0.1111 0.9678 0.9995 0.0576 0.9293 0.9986 0.0126 0.8094 0.9911 

  1.5 n = 200 0.1412 0.2052 0.2611 0.0746 0.1173 0.1583 0.0147 0.0281 0.0431 
n = 400 0.1280 0.2445 0.3543 0.0658 0.1457 0.2333 0.0147 0.0389 0.0787 

n = 1,200 0.1123 0.5399 0.8012 0.0590 0.4099 0.6932 0.0117 0.1926 0.4549 
n = 1,600 0.1111 0.6799 0.9091 0.0576 0.5539 0.8468 0.0126 0.3153 0.6589 

 
4.3 Monotonicity in two variables 
 

Here we take into consideration a grid of domains, which represent two variables. The null hypothesis 

is that the population domain means are constant in one of the variables, and the alternative is that the 
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population means are increasing in that variable, while the domain means unconstrained in the other 

variable. In other words, we test for monotonicity in one variable while “controlling for” the effects of the 

other. In particular, we set the limiting domain means as follows:  

 
 0

0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.02
,

0.03 0.03 0.03 0.03 0.03

0.04 0.04 0.04 0.04 0.04

 
 
 
 
 
 

μ   

while  

 
   1 2

0 0.04 0.16 0.24 0.28 0 0.05 0.20 0.30 0.35

0.04 0.08 0.20 0.32 0.40 0.05 0.10 0.25 0.40 0.50
, and .

0.04 0.12 0.12 0.20 0.28 0.05 0.15 0.15 0.25 0.35

0.04 0.04 0.12 0.24 0.28 0.05 0.05 0.15 0.30 0.35

   
   
    
   
   
   

μ μ   

The sampling mechanism and the way we generate the study variable y  are the same as that in one 

dimensional case. However, because there are more domains in this case, we set the sample size to be 

400,n  800,n  1,200n   and 2,000,n   respectively, corresponding to the population size 8,000,N   

16,000,N  24,000N   and 40,000,N   where the sample sizes are divided among the strata as 

 50,100,100,150 ,  100, 200, 200, 300 ,  150, 300, 300, 450  and  250, 500, 500, 750 ,  respectively. The 

simulation results in Table 4.3 demonstrate similar properties as those in the previous scenarios: the tests 

have higher power as sample size gets larger and the effect size of the population domain means is larger. 

 
Table 4.3 

Monotonicity in two variables: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

 
  n 

1  0.1 2  0.05 3  0.01 

(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-sided 
test 

  1 n = 400 0.1770 0.7738 0.8755 0.1000 0.6415 0.7757 0.0255 0.3460 0.4907 
n = 800 0.1203 0.8732 0.9576 0.0590 0.7677 0.8975 0.0129 0.4706 0.6598 

n = 1,200 0.1097 0.9571 0.9921 0.0562 0.8972 0.9762 0.0102 0.6556 0.8523 
n = 2,000 0.1093 0.9929 0.9994 0.0558 0.9794 0.9975 0.0103 0.8661 0.9700 

  1.5 n = 400 0.1778 0.5837 0.6840 0.1006 0.4301 0.5382 0.0255 0.1844 0.2586 
n = 800 0.1210 0.6512 0.7783 0.0594 0.4967 0.6399 0.0133 0.2257 0.3421 

n = 1,200 0.1098 0.7701 0.8908 0.0565 0.6247 0.7881 0.0100 0.3235 0.4909 
n = 2,000 0.1089 0.9019 0.9725 0.0560 0.8040 0.9292 0.0103 0.5150 0.7236 

ANOVA 
F test 

  1 n = 400 0.1584 0.4337 0.5642 0.0828 0.3005 0.4255 0.0184 0.1075 0.1886 
n = 800 0.1338 0.5817 0.7748 0.0703 0.4407 0.6600 0.0154 0.2165 0.4058 

n = 1,200 0.1273 0.7028 0.8922 0.0662 0.5773 0.8149 0.0140 0.3224 0.6055 
n = 2,000 0.1289 0.9174 0.9912 0.0697 0.8577 0.9789 0.0149 0.6664 0.9198 

  1.5 n = 400 0.1584 0.2899 0.3578 0.0828 0.1759 0.2285 0.0184 0.0510 0.0732 
n = 800 0.1338 0.3283 0.4443 0.0703 0.2138 0.3133 0.0154 0.0717 0.1274 

n = 1,200 0.1273 0.3803 0.5358 0.0662 0.2606 0.4009 0.0140 0.1014 0.1883 
n = 2,000 0.1289 0.5759 0.7811 0.0697 0.4434 0.6683 0.0149 0.2148 0.4215 
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5. Application to NSCG 2019 data 
 

To demonstrate the utility of the proposed one-sided test procedure in real survey data, we consider the 

2019 National Survey of College Graduates, which is conducted by the U.S. Census Bureau. NSCG is a 

repeated cross-sectional biennial complex survey that provides data on the characteristics of the nation’s 

college graduates, with a focus on those in the science and engineering workforce. In all survey cycles, 

NSCG used a stratified sampling design to select its sample from the eligible sampling frame, which is the 

American Community Survey (ACS). Specifically, sample cases were selected from the returning sample 

members in 2013 NSCG (originally selected from the 2011 ACS), 2015 NSCG (originally selected from 

the 2013 ACS), 2017 NSCG (originally selected from the 2015 ACS) and the 2017 ACS. Within the 

sampling strata, probability proportional to size (PPS) or systematic random sampling techniques was 

used to select the NSCG sample. Due to its various complexities, NSCG implemented replication based 

approach to variance estimation. The variance-covariance matrix is computed by using the 2019 NSCG 

replicate weights, which are based on Successive Difference and Jackknife replication methods. The 

number of replicate weights is 320, which is a decent number to provide a stable variance estimate. Both 

the replicate weights and replicate adjustment factors were calculated by NSCG and are available upon 

request. The public use files and relevant documentation are available to the public on the NCSES website 

(https://www.nsf.gov/statistics/srvygrads/). 

The annual salary is the study variable (denoted by SALARY in the dataset), restricted to observations 

with an annual salary between $30,000 and $900,000. As the annual salary variable distribution is skewed, 

a log transformation is implemented. Four variables are considered:   

• Field (denoted by NDGMEMG in the dataset): This nominal variable defines the field of study 

for the highest degree. There are six levels: (1) Computer and mathematical sciences; (2) 

Biological, agricultural and environmental life sciences; (3) Physical and related sciences; (4) 

Social and related sciences; (5) Engineering; (6) Other.  

• Father’s education level (denoted by EDDAD in the dataset): This ordinal variable denotes the 

highest level of education completed by the respondents’ father (or male guardian). The six 

levels are: (1) Less than high school completed; (2) High school diploma or equivalent; (3) 

Some college, vocational, or trade school (including 2-year degrees); (4) Bachelors degree (e.g., 

BS, BA, AB); (5) Masters degree (e.g., MS, MA, MBA); (6) Professional degree (e.g., JD, 

LLB, MD, DDS, etc.) and Doctorate (e.g., PhD, DSc, EdD, etc.).  

• Academic year of award for the highest degree (denoted by HDACYR). 

• Highest degree type (denoted by DGRDG): The four levels are: (1) Bachelor’s; (2) Master’s; 

(3) Doctorate; (4) Professional.  

 

Suppose interest is in the question: for wage-earners whose highest degree is a bachelor’s, does the 

father’s education level influence the salary, when controlling for field of study and time since degree? To 

answer this, we perform separate tests for cohorts in years that the degree was attained, as in Table 5.1. 
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Within each cohort, there are 36 domains, with six levels each of field and father’s education level. The 

sample sizes for the five cohorts in Table 5.1 are 2,021; 4,032; 5,259; 2,969 and 1,813, respectively. So, 

the domain sample sizes are generally not small within each cohort. We test the null hypothesis that the 

salary is constant over father’s education level, within each field, against the alternative that the salary is 

increasing in father’s education level. We compare the p -values for this test with constrained alternative 

to the ANOVA test with unconstrained alternative. The svyglm function in survey package is used for 

the unconstrained alternative, and the F test by applying the anova function in survey package gives 

the p -value. The results of the tests for five recent cohorts are in Table 5.1. 

 
Table 5.1 

p-values for the null hypothesis that salary is constant in father’s education level, controlling for field of 

study 
 

year 2006-2007 2008-2010 2011-2013 2014-2015 2016-2017 
one-sided test 0.01951 0.00248 0.00029 0.00622 0.00052 

ANOVA F test 0.15198 0.10045 0.01357 0.22231 0.06551 

 
For each cohort, the p -value for the one-sided test is below 0.05, indicating that salaries increase 

significantly with father’s education level, consistently across years. In contrast, the p -value for the two-

sided test is consistently larger, and does not indicate a significant trend for some of the cohorts, and for 

other years the test results could be considered “borderline”. Using the a priori knowledge that if father 

education level affects salary, it must be a positive effect, helps increase the power to see the trend. 

 
6. Discussion 
 

In this paper, we developed a testing procedure for testing the linear inequality restrictions of the 

population domain means within the survey context. Under the design normal assumption of the survey 

domain means, the proposed test statistic T̂  has the asymptotic mixture beta densities, where the mixing 

probabilities (or the weights) can be easily computed via simulations. The covariance estimator Σ̂  and the 

unconstrained estimator sy  are obtained from the survey package in R and the constrained least square 

projection obtained by using the coneA function in coneproj package. We showed that the power of 

the test tends to one as the sample size increases, when the alternative hypothesis is true. Simulations 

show that the test behaves well, with both increased power and improved test size. 

The proposed test procedure can be applied to all kinds of complex sampling designs, including 

stratified sampling, multistage sampling and so on. In practice, though the total sample size n  is large, 

,dn  the number of randomly selected sample in domain ,d  may be small, or even zero. In such a case, the 

degrees of freedom (DF) on the estimate of the covariance matrix is small. The degrees of freedom 

associated with variance estimators was suggested to be (the number of sampled Primary Sampling Units 

(PSU) with sampled observations in domain )d  minus (the number of strata with sampled observations in 
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domain ),d  see Graubard and Korn (1996) for more details. Thus, neither the design based variance 

estimator nor the replication based variance estimator can provide accurate covariance estimate, which 

may undermine the effectiveness of the proposed test. To address the issue of dn  being small or zero, one 

might need to apply appropriate imputation methods to create proxy responses for domain d  (Haziza and 

Vallée (2020) considered the use of imputed data in variance estimation). The proposed procedure is 

expected to work properly as long as the estimated covariance matrix Σ̂  accounts for the complex design 

and the sample size for each domain is not too small. Taking the stratified design as an example, even if 

the sample size is zero for domain d  within certain strata, the test procedure is still applicable provided a 

decent number of samples for domain d  were selected from other strata and the covariance estimate Σ̂  

properly took into account the specific stratified sampling design being considered. In addition, the 

simulations gave a partial guide for minimum sample sizes needed for the proposed test under stratified 

simple random sampling design. For more complex sampling design, the effective sample size, defined as 

the original sample size divided by their design effect, can be considered. Also, it is important to check the 

weights for units with very low selection probabilities, because extremely small ’si  or ’sij  will result 

in rather unstable covariance estimate and thus make the proposed test invalid. 

Another related issue is that the covariance matrix estimate Σ̂  may not be positive definite or even 

positive semidefinite in finite samples. This problem is not uncommon in survey practice, see Théberge 

(2022), Haslett (2019), Haslett (2016) for more information. This practical issue will have an impact on 

the inverses of covariance matrix estimates and thus affect the stability of the proposed test procedure. 

Hence, we suggest survey practitioners check if covariance estimate is positive definite before applying 

the proposed test in real application. 

The implementation of the test in the csurvey package borrows from the survey package. For 

example, suppose we have a grid of domains in two variables x1 and x2 and study variable y. The survey 

design is specified with the svydesign command in the survey package, and the design object ds is 

used in the implementation of the test. The p -value for the test of constant versus increasing domain 

means along the x1 variable, without constraining the domain means in the x2 variable, is obtained as 

follows.  
 

ansc=csvy(y~incr(x1)*x2, data=data_set_name, design=ds, nD=M, test=TRUE) 
ansc$pval  
 

The csurvey package also provides the cone information criteron (CIC) for the fitted model, with 

and without constraints. The CIC was proposed by Oliva-Aviles, Meyer and Opsomer (2019), for 

checking monotonicity assumptions in the estimation of order-restricted survey domain means, but is valid 

for any type of constraints. The command ansc$CIC, using the above csurvey object, returns the CIC 

for the data fitted with the constraints. The command ansc$CIC.un returns the CIC for the data fitted 

with no constraints. If the CIC is smaller for the constrained fit, this is evidence that the constraints hold. 

On the other hand, if the unconstrained CIC is larger, this indicates that the assumptions may be incorrect. 

For more information and examples, see the csurvey manual. 
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Appendix 
 

A. Assumptions 
 

(A1) The number of domains D  is a known fixed integer and lim inf 0,dN

N N   

lim sup 1dN

N N   for 1, 2, , .d D …  

(A2) The boundedness property of the finite population fourth moment holds. That is, we have:  

 1 4lim sup .i
N i U

N y

 

    

(A3) The sample size n  is non-random and for a sequence of finite populations NU  with 

corresponding sequence of samples of size n  (for simplicity in notation, we omit the 

subscript N  from ),Nn  we have ,n N   as ,N   where 0 1.   There exists a 

constant vector Dμ R  called the “limiting domain means” so that ,
dU dy   for 

1, , .d D …  In addition, there exists a  0,1   such that, ,min d

d

n
d N

  as ,N   for 

1, , .d D …  

(A4) For all ,N 1 0min i U i     and , 2 0,min i j U ij     and  

 
, ,

lim sup max ij
i j U i jN

n
 

     

where  cov ,ij i j ij i jI I        and iI  is the sample membership indicator for subject .i   

(A5) For any vector Dx R  with finite fourth population moment, we have:  

      
1 2

ˆ ˆvar 0,s s U D DN


 x x x I
D

  

where ˆ sx  is the HT estimator of  
1

1 1
1 , , ,

D
U i D ii U i U

N x N x 

 
  x …

T

D DI  is the identity 

matrix of dimension ,D  the design covariance matrix  ˆvar sx  is positive definite.  

 

The assumption (A1) states that the number of domains remains constant as the population size N  

changes and ensures that there is no asymptotically vanishing domains. Assumption (A2) is a condition 

needed for showing the variance consistency of the Horvitz-Thompson estimator and this condition 

generally can be satisfied for most survey data. 

In (A3), the assumption of n N   asymptotically ensures that the sample and the population size 

are of the same order. In addition, by assuming ,min d

d

n
d N

  as ,N   we guarantee that there is no 

vanishing sampling fraction for each domain d  asymptotically, which is a mild condition in the 
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design-based context. Further, the non-random sample size assumption can be relaxed to accommodate a 

random sample size by imposing particular conditions on the expected sample size  E .p n  

Assumption (A4) illustrates that the design is both a probability sampling design and a measurable 

design. The assumption on the ij  states that the covariance between sample membership indicators is 

sufficiently small, which goes to zero at rate of 1.n   These conditions hold in many classical sampling 

designs, including simple random sampling with and without replacement, and many other unequal 

probability sampling designs. 

The asymptotic normal assumption in (A5) is usually assumed explicitly and it is satisfied for many 

specific sampling designs, including simple random sampling with or without replacement. Also, it holds 

for Poisson sampling and unequal probability sampling with replacement. The design asymptotic normal 

assumption, taken together with the variance consistency of the Horvitz-Thompson estimator, can be used 

to derive the asymptotic distribution of the constrained domain mean estimator. More importantly, it is 

this normal assumption that makes it possible for us to take advantage of the available techniques in the 

one-sided test literatures and obtain the null distribution of the test statistics approximately. Otherwise, we 

have to resort to the bootstrap method to get the empirical distribution of the test statistics when the 

properties of the design estimator are completely unknown. 

It is useful to note that all the results developed in this paper remains design-based. Only the design 

variability is accounted for by the asymptotic variance in the main results. While the design normal 

assumption can be viewed as “model-like” assumption, it does not imply a random structure for the 

population and the inference does not involve any type of model variability. The distributional properties 

derived in the main text follow from the design and sample size assumptions (A3)-(A5). 

 
B. Supplemental materials for Section 3 
 

In this section, we will show the following result  

          
1 1

1 1
1 1 1 1

1 1ˆmin min = 1s s s s po
n n

 

 
    

θ θ
y θ Σ y θ y θ Σ y θ   

C C

T T
  

to complete the proof for Lemma 1. Based on the result from (2.1) in Xu et al. (2021), for the term 

       
1 1

1
ˆˆ1 1 1 1

ˆ ˆˆ ˆ ˆ ,min mins s s s


     θ θy θ Σ y θ Z θ Z θ C C

TT
 the projection of ˆ sZ  onto the cone Ĉ  can 

be expressed as:  

     *
1
ˆ ˆ ˆ ˆ ˆ ˆ

J J J J s J
J

s


 θ I A A A A Z IT T  (B.1) 

where the sum is over  1, ,J M …  such that the rows of ˆ JA  form a linearly independent set and for 

each sample ,s  there is only one subset J  for which   1.J s I  Using the above explicit form of 
*
1
ˆ ,θ  we 

prove the following results. 
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Lemma 2. Let μ  be the limiting domain means. Let J  be the set that is associated with *
1θ̂  in (B.1) and 

0Jμ  be the corresponding set for the solution *
μθ  that minimizes    1 1 μ μZ θ Z θ

T
 subject to 

 1 : 0 ,  μ μθ θ A θC  where 1 2 ,μ μZ Σ μ ,μC μΣ  are limiting versions of ˆ ,sZ ˆ,C Σ̂  and 1 2 .μ μA AΣ  

Define  1 : 0jJ j μ A μ  and let 0 1 ,J J J μ μ μ  Then, we have:  

        0Pr 1 Pr 1 .J J o and J J o μ μ    
 

Proof. Firstly, consider the event .J Jμ  Define  

                                

      

     

 

 

* * *
1 1 1
ˆ ˆ ˆˆ ˆSSE

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

ˆ

s s

s J J J J s s J J J J s

s J J J J s

s J J J J s

 





  

   
          





θ Z θ Z θ

Z I A A A A Z Z I A A A A Z

Z A A A A Z

y A A ΣA A y 

T

T

T T T T

T T T

T T T

  

similarly, we define:  

             0 0 0 0

* * *SSE = .
J J J J



  
μ μ μ μ

μ μ μ μ μ μθ Z θ Z θ μ A A Σ A A μ
T T T T   

Note that the projection of μZ  onto the linear space spanned by rows of μA  in position 0Jμ  is the same as 

the projection onto the linear space spanned by rows of μA  in position ,Jμ  so we have:  

                 0 0 0 0

*SSE .J J J JJ J J J



 
μ μ μ μμ μ μ μ

μ μ μθ μ A A Σ A A μ μ A A Σ A A μT T T T T T   

Further, denote:  

             1, 1, 1,
ˆ ˆ ˆˆ ˆ ˆSSE J s J s J s J J J J s



   
μ μ μ μ μ μ μ

θ Z θ Z θ y A A ΣA A y 
T

T T T   

        , , ,SSE J J J J J J J



   μ μ μ μ μ μθ Z θ Z θ μ A A Σ A A μ
T T T T

  

where   1,
ˆ ˆ ˆ ˆ ˆ ˆ

J J J J J s



 
μ μ μ μ μ

θ I A A A A ZT T  and   , , , , , .J J J J J



 μ μ μ μ μ μθ I A A A A ZT T  Then, we must have  

          * *
, 1 1,

ˆ ˆSSE SSE and SSE SSEJ J 
μμ μθ θ θ θ   

and due to the consistency of sy  and ˆ ,Σ  respectively, we also have:  

                * *
1 , 1,

1 1ˆ ˆSSE SSE 1 and SSE SSE 1 .J p J po o
n n

   
μμ μθ θ θ θ   

Finally, by Markov’s inequality, we get:  
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                
          

   

             
    

* * *
1, 1 , ,

* *
1, 1 ,

*
,

* *1 1
1, 1 ,

*1
,

ˆ ˆPr Pr SSE SSE SSE SSE SSE SSE

ˆ ˆSSE SSE SSE SSE

SSE SSE

ˆ ˆSSE SSE SSE SSE

SSE SSE

0

J J J

J J

J

J Jn n

Jn

J J

E

E E

     

  




  






μ

μ

μ

μ μ μ μ μ

μ μ

μ μ

μ μ

μ μ

θ θ θ θ θ θ

θ θ θ θ

θ θ

θ θ θ θ

θ θ



  

since         *1
1,
ˆSSE SSE 1Jn

E o 
μ μθ θ  and         *1

1 ,
ˆSSE SSE 1 .Jn

E o μθ θ  Using the similar 

argument, we can also show that:  

    0Pr 1J J oμ    

this completes the proof.  

By the same argument as in Lemma 2, we also have the following result.  

 

Lemma 3. Let JΣ  (unknown) be the corresponding set of the solution *
1θ
  that minimizes 

   1 1s s Z θ Z θ T

 subject to 1 .θ C  Then, we have:  

        0Pr 1 Pr 1 ,J J o and J J o Σ μ μ Σ    

where Jμ  and 0Jμ  are defined in Lemma 2.   

 

Lemma 4. We have:  

          
1 1

1 1
1 1 1 1

1 1ˆmin min 1s s s s po
n n

 

 
     

θ θ
y θ Σ y θ y θ Σ y θ   

C C

T T
  

with respect to the sampling mechanism.   

 

Proof. Let J  be the observed set for a given sample .s  We can write the difference as follows:  

                

       

   

   

      

1 1

0 0

1 1
1 1 1 1

or

1 1ˆmin min

1 1ˆ ˆ ˆ ˆˆ ˆ=

ˆ

ˆ

s s s s

s J J J J s s J J J J s

s J J J J s s J J J J s

s J J J J s J J J J J J J

n n

n n

n n

n I I

 

 

 

 



 

    



 

 



Σ Σ Σ Σ

Σ Σ Σ Σ

μ μ μ μ

θ θ
y θ Σ y θ y θ Σ y θ

Z A A A A Z Z A A A A Z

y A A ΣA A y y A A ΣA A y

y A A ΣA A y

y

   

    

   

 



C C

 

T T

T T T T T T

T T T T T T

T T T

    00 ( or )s J J J J s J J J JJ J J
n I I



 

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A A ΣA A y
 
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by Lemma 2 and Lemma 3, we have that 
 

 
0or

1pJ J J J
I o

μ μ 
 and 

 
 

0or
1 .pJ J J J

I o
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where we use the fact that for any set J  with 0 ,J J J μ μ  we have that  
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An extension of the weight share method when using a 
continuous sampling frame 

Guillaume Chauvet, Olivier Bouriaud and Philippe Brion1 

Abstract 

The definition of statistical units is a recurring issue in the domain of sample surveys. Indeed, not all the 
populations surveyed have a readily available sampling frame. For some populations, the sampled units are 
distinct from the observation units and producing estimates on the population of interest raises complex 
questions, which can be addressed by using the weight share method (Deville and Lavallée, 2006). However, 
the two populations considered in this approach are discrete. In some fields of study, the sampled population is 
continuous: this is for example the case of forest inventories for which, frequently, the trees surveyed are those 
located on plots of which the centers are points randomly drawn in a given area. The production of statistical 
estimates from the sample of trees surveyed poses methodological difficulties, as do the associated variance 
calculations. The purpose of this paper is to generalize the weight share method to the continuous (sampled 
population) ‒ discrete (surveyed population) case, from the extension proposed by Cordy (1993) of the Horvitz-
Thompson estimator for drawing points carried out in a continuous universe. 

 
Key Words: Continuous sampling design; Environmental statistics; Forest inventory; Synthetic variable; Variance 

estimation. 

 
 

1. Introduction 
 

The definition of statistical units is a recurring issue in the domain of sample surveys. Indeed, not all 

the populations surveyed have a readily available sampling frame. For these populations, the sampled 

units (for which a sampling frame is available from which to select units according to a given sampling 

design), are distinct from the observation units, which constitute the population of interest on which we 

are willing to infer.  

This issue has been raised for a long time for studying populations that are difficult to reach, e.g., 

homeless people (see for example Ardilly and Le Blanc, 2001; De Vitiis, Falorsi and Inglese, 2014; 

Laporte, Vandentorren, Détrez, Douay, Le Strat, Le Méner, Chauvin and The Samenta Research Group, 

2018), or nomad/non-localized populations (see for example Lohlé-Tart, Clairin, François and Gendreau, 

1988; Clairin and Brion, 1996; Himelein, Eckman and Murray, 2014). It has also become recently more 

and more accurate for business statistics, with the use of a unit “enterprise” not necessarily equivalent to 

the unit available in the business registers (Lorenc, Smith and Bavdaž, 2018). In this case, producing 

estimates on the population of interest raises complex questions, linked to the fact that the weights of the 

observation units need to be based on the design weights of the units selected in the sampling frame.  

To deal with this issue, Deville and Lavallée (2006) proposed the so-called weight share method. It is 

based on a principle of duality between the sampled population and the observed population, where a 

variable of interest defined on the observed population may be written as a synthetic variable defined on 
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the sampling frame (see also Lavallée, 2009). Because it creates a link between the observation units and 

the sampling units, this method enables the properties of the sampling design to be used to define unbiased 

estimators of totals for the observed populations, and to derive variance formulas. In particular, the 

sampling weights of the sampling units are used to assign estimation weights to the observation units. This 

paper deals with the extension of this method to the case when the sampled population is a continuous 

frame. For the sampled population and the observed population, we will use the notations AU  and BU  in 

case of discrete populations, and AU  and BU  in case of continuous populations.  

We are particularly interested in applications encountered in forest inventories, in which it is common 

practice to use a sample of points selected in a continuum and then fixed-shape supports defined from 

these points to perform the survey on a discrete population of trees. The approach which consists of 

transporting a variable from the discrete population to the continuous population is not new, and has been 

considered by Stevens and Urquhart (2000), Gregoire and Valentine (2007) and Mandallaz (2007), for 

example. While these previous works were quite similar in their overall approach of the indirect sampling, 

the link between the units from the population sampled and the units of the target population are only 

implicit.  

The work by Stevens and Urquhart (2000) is very similar to ours. They studied the situation when a 

finite population of interest is linked to a continuous territory, and they considered a way to transfer a 

variable of interest onto the continuous sampling frame. This is similar to the synthetic variable that we 

present in equation (3.15). They derived a so-called “aggregation-unbiasedness” requirement, in order to 

obtain unbiased total estimators. They also proposed a Horvitz-Thompson variance estimator, making use 

of the theory by Cordy (1993). Despite the importance of this paper, it did not have a significant impact in 

the literature. It is in particular telling that the article is not quoted in textbooks like Gregoire and 

Valentine (2007) and Mandallaz (2007). Therefore, we feel the need for a simple presentation of the 

approach, where we clearly state what are the estimation weights, the resulting estimators of totals for the 

finite population, and the associated Horvitz-Thompson variance estimators. The weight share method is a 

very useful and simple tool for this, as illustrated in the applications considered in Section 3.  

In natural populations such as forest trees, the units are distributed spatially over a territory. Estimating 

totals of any given attribute of this population requires undergoing spatial sampling. To this end, Gregoire 

and Valentine (2007, Chapter 10) introduce the so-called Monte Carlo integration approach, and call the 

synthetic variable the “attribute density”. Several examples are given for devices used in the practice of 

forest inventory (e.g., point relascope sampling, line intersect sampling). However, the link with Cordy’s 

set-up is not pointed out, and variance estimation is restricted to the case when the points are selected by 

independent uniform sampling. Mandallaz (2007, Section 4.2) also develops a related approach, where the 

link between the observed, finite population and the sampled, continuous population is performed by 

means of the so-called “local density”. The approach is first presented for plot sampling, and then 

extended to more complex situations like cluster (trakt) sampling, which is popular for forest inventories 

(Lawrence, McRoberts, Tomppo, Gschwantner and Gabler, 2010). However, the method is quite ad-hoc, 
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since the local density needs to be computed differently in each situation. On the other hand, the weight 

share method enables one to produce general formulas for both point estimators and variance estimators. 

In particular, we consider in Section 3.4 the situation of spatial cluster sampling for forest inventories, for 

which the weight share method provides a general solution for estimation and variance estimation under 

an arbitrary continuous sampling design.  

In what follows, we first recall in Section 2 the basic principles of the weight share method in the case 

of two discrete populations AU  and .BU  In Section 3, we extend the method to cover the case when a 

continuous population AU  is sampled, and we want to infer on a discrete population .BU  The results of 

two simulation studies are presented in Section 4. We conclude in Section 5.  

 
2. Sampling in a discrete population 
 

In this section, we first define in Section 2.1 our notations when sampling in a discrete population .AU  

We then recall in Section 2.2 how the weight share method may be used to produce estimates in another 

discrete population BU  linked to .AU  A simple example is presented in Section 2.3 for illustration. 

 
2.1 Notations 
 

We are interested in a discrete population ,AU  for which the units in the population are enumerable 

and a sampling frame may therefore be available. For example, this may be a population of households or 

individuals in social surveys, or a register in business surveys. The size of the population AU  is denoted 

as .AN  Suppose that we are interested in a variable of interest Ay  taking the value A
iy  for unit ,Ai U  

and that we wish to estimate the population total  

                                                               .
A

A A
y i

i U

y


   (2.1) 

A random sample AS  is selected in AU  by means of a sampling design   ,Ap   and we let As  denote a 

possible realization of .AS  The Horvitz-Thompson (HT) estimator is  

                                                               ˆ ,
A

A A A
y i i

i S

d y


   (2.2) 

where 1A A
i id   is the design weight of unit ,i  and A

i  the probability for unit i  of inclusion in the 

sample. This estimator is design-unbiased for ,A
y  provided that all the ’sA

i  are 0.  

The variance of ˆ
A
y  is  

      
,

ˆ ,
A

AA
jA A A Ai

p y ij i jA A
i j U i j

yy
V    

 

   (2.3) 

where 
A
ij  is the probability that the units i  and j  are jointly selected in .AS  If all the ’sA

ij  are positive, 

this variance is unbiasedly estimated by  
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  
,

ˆ ˆ .
A

A A A AA
j ij i jA A i

y A A A
i j S i j ij

yy
V

  


  

 
   

 
  (2.4) 

 
2.2 Weight share method 
 

Suppose that we are interested in another population ,BU  with a variable of interest By  taking the 

value B
ky  for unit .Bk U  We wish to estimate the population total  

 .
B

B B
y k

k U

y


   (2.5) 

We suppose that no sampling frame is available for ,BU  but that this population is linked to the 

population .AU  The link between the units in AU  and BU  is represented by the indicator variables  

  
1 if units and are linked,

,
0 otherwise.

A B
AB i U k U

L i k
  

 


 (2.6) 

The set of ancestors for some unit Bk U  is   Anc ;  , 1 .A AB
k i U L i k    The set of descendants for 

some unit Ai U  is   Des ;  , 1 .B AB
i k U L i k    For any unit ,Bk U  

  ,
A

AB AB
k

i U

N L i k



   (2.7) 

is the total number of ancestors. It is required that any unit Bk U  be linked to at least one unit in ;AU  

that is, we suppose that 0AB
kN   for any unit .Bk U  

A sample BS  is obtained in BU  by surveying all the descendants of the units i  selected in .AS  More 

formally, we have  

 Des .
A

B
i

i S

S


 ∪  (2.8) 

To obtain an estimator of ,B
y  the weight share method (Deville and Lavallée, 2006) makes use of a 

principle of duality between populations AU  and ,BU  based on the link function given in (2.6). The total 
B
y  may be written as  

 
 ,

with ,
A B

AB B
B A A k
y i i AB

i U k U k

L i k y
y y

N


  

    (2.9) 

see Deville and Lavallée (2006, Result 2). Equation (2.9) represents the fact that the variable B
ky  may be 

distributed over the units in AU  to obtain a synthetic variable .A
iy  This is done by sharing each value B

ky  

equally among the ancestors in Anc .k  

From equation (2.9), the total 
B
y  can be unbiasedly estimated by performing HT-estimation on the 

sample ,AS  with the synthetic variable .A
iy  This HT-estimator may be rewritten as  
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    ˆ ,
A B

B A A B B
y i i k k

i S k S

d y w y
 

    (2.10) 

with 

  
1

, ,
A

B AB A
k iAB

i Sk

w L i k d
N 

    

see Deville and Lavallée (2006, Result 3). Each unit Bk S  is given the sum of the weights of the 

sampled units Ai S  which are linked to ,k  divided by the number of links .AB
kN  The weights A

id  of the 

units Ai S  are therefore shared among the units ,Bk S  hence the name of the method. It is important to 

note that the weights B
kw  can only be computed if the number of ancestors AB

kN  is known for any unit 

.Bk S  Therefore, this information needs to be collected during the survey. In some situations, it may be 

difficult or even impossible to state whether or not a unit in AU  is related to another unit in .BU  This is 

referred to as link nonresponse by Xu and Lavallée (2009), who propose treatment methods to handle this 

problem.  

From equation (2.10), the weight share method enables one to attribute to each unit Bk S  a weight 

,B
kw  which is usable for any variable of interest B

ky  and such that the estimator ˆB
y  is unbiased. This is a 

very strong property. In contrast, the HT-estimator for the sample BS  cannot be computed. The inclusion 

probability of unit k  in the sample BS  is  

    

Anc

Pr .
A A

A
k

B A A

s U
s

k S p s


  

    (2.11) 

Computing these inclusion probabilities would require a full specification of both the sampling design 

 Ap   and of the links between both populations, which is usually impossible.  

Since ˆB
y  may be written as a HT-estimator on the sample ,AS  the variance of ˆB

y  is given by equation 

(2.3), with A
iy  the synthetic variable given in (2.9), and a variance estimator is given by (2.4). Note that 

the variable A
iy  can be exactly computed for any unit ,Ai S  since it is assumed that all the units in BU  

linked to the units in AS  are surveyed, see equation (2.8). 

 
2.3 A simple example 
 

For illustration, we present a toy example in Figure 2.1. The population AU  contains 4AN   units, 

and the population BU  contains 5BN   units. The links between units are represented by the arrows. For 

example, unit 3i   in AU  has four descendants, namely units 2, 3, 4k   and 5. Therefore, we have 

 3,1 0ABL   and        3, 2 3, 3 3, 4 3, 5 1.AB AB AB ABL L L L     Unit 4k   has a single ancestor 3,i   

whereas unit 5k   has two ancestors 3i   and 4.i   Suppose that the sampling design leads to the 

selection of the subset  2, 3 .As   Then all the descendants of the units in As  are selected, resulting in the 

observation of the subset  

  2, 3, 4, 5 .Bs   (2.12) 
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Figure 2.1 A simple example of links between two discrete populations AU  and .BU  
 

 
 
 
 
 
 

Now, suppose that the sampled values are  

 2 3 4 51, 3, 3, 5.B B B By y y y     (2.13) 

We first compute the synthetic variable A
iy  for the units ,Ai s  making use of equation (2.9). We obtain  

                        

32
2

3 52 4
3

1.83,
3 2

7.33.
3 2 1 2

BB
A

B BB B
A

yy
y

y yy y
y

 

   





  

Now, we compute the weights B
kw  for the units Bk s  by means of the weight share method, making use 

of equation (2.10). Suppose that the sample AS  is selected in AU  by simple random sampling without 

replacement, leading to 0.5A
i   and 2A

id   for any .Ai U  We obtain  

                        

2 3
2

2 3
3

3
4

3
5

1.33,
3

2,
2

2,
1

1.
2

A A
B

A A
B

A
B

A
B

d d
w

d d
w

d
w

d
w





 

 

 



  

The estimate for the total 
B
y  is therefore  

  ˆ 18.33.
B

B B B B
y k k

k s

s w y


     

The results are summarized in Figure 2.2. 
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Figure 2.2 Computation of the synthetic variable A
iy  and of the weights B

kd  obtained by the weight share 
method on a simple example. 

 
 
 
 
 
 
 

 

 
3. Sampling in a continuous population 
 

In this section, we first define in Section 3.1 our notations when sampling in a continuous universe 

,AU  following Cordy (1993). We explain in Section 3.2 how the weight share method may be extended 

to produce estimates in some discrete population BU  linked to .AU  We consider applications to sampling 

designs used in forest inventories, for which some analog approaches have been proposed in the literature. 

The case of direct plot sampling is first considered in Section 3.3. The application to cluster sampling is 

considered in Section 3.4. 

 
3.1 Notations 
 

We first review the set-up for sampling and estimation in a continuous universe AU  introduced by 

Cordy (1993). This framework was strongly motivated by environmental applications, and led to an 

extension of the HT-estimator existing for a discrete population, see Section 2.1.  

Suppose that we are interested in a continuous population or universe, i.e., as defined by Gregoire and 

Valentine (2007, page 93) “that does not naturally divide into smaller discrete units”. This may be a 

landscape or a lake, for example. We suppose that the universe AU  is included in qR  with 1.q   We are 

interested in some Lebesgue integrable function : ,A Ay  RU  and we wish to estimate the total 

(integral)  

  
A

A A
y y x dx  U  (3.1) 

of this function over .AU  

A random sample  1 , , A

A A A

n
S S S …  of An  locations is selected from ,AU  and we let As   

 1 , , A

A A

n
s s…  denote a possible realization of .AS  We assume the existence of the joint probability density 

function (PDF)  

  1 , , A

A A

n
f s s…  (3.2) 
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of the sample locations, along with the existence of the marginal PDF and of the joint PDF  

    and ,A A A
i i ij i jf s f s s  (3.3) 

of A
is  and A

js  for .i j  For example, if the sample AS  is obtained by An  independent selections of some 

point, performed uniformly in ,AU  we have  

  
 1 A A

iA
i i A

s
f s

M




U
 (3.4) 

and    1 =1
, , ,

A

A

nA A A
i in i

f s s f s…  with A

AM dx U  the global measure of the universe, and with  1   an 

indicator function.  

Suppose that the PDF is absolutely continuous with respect to the Lebesgue measure. As noted by 

Cordy (1993) and Stevens (1997), there are sampling designs used in practice such that this assumption 

does not hold true, such as systematic sampling, for example. For any point ,AxU  the inclusion density 

function is defined by  

    
1

.

An
A

i
i

x f x


   (3.5) 

This may be seen as a local measure of the number of sampled points by unit of measure. We have in 

particular   ,A A

A x dx n U  which is a usual property for sampling designs of fixed size .An  Similarly, 

the joint inclusion density function is defined by  

        
=1=1

, ,

A An n
A

ij
ji
j i

x x f x x



    (3.6) 

for , .Ax xU  

The HT-estimator of A
y  is  

                       ˆ ,
A

A A A
y

s S

d s y s


   (3.7) 

with    1A Ad x x  the design weight of some point .x  This estimator is unbiased for ,y  provided 

that   0A x   almost everywhere, see Cordy (1993, Theorem 1). 

If the function  Ay   is bounded and   1 ,A

A x dx  U  then the variance of ˆA
y  is given by the 

Horvitz-Thompson formula  

 
 

  
 

      
 

 

 

 

2

ˆ

, ,
A A

A
A
y A Ax

A A
A A A

A Ax x

y x
V dx

x

y x y x
x x x x dxdx

x x




  
 



 




    





 

U

U U

 

(3.8)
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or equivalently by the Sen-Yates-Grundy formula  

         
 

 

 

 

2
1

ˆ , ,
2

A A

A A
A A A A
y A Ax x

y x y x
V x x x x dxdx

x x
   

  

 
      

 
 U U

 (3.9) 

see Cordy (1993, Section 2). The corresponding variance estimators are respectively  

                   

 
 

 

     

 
 

 

 

 

2

HT
ˆ ˆ

,

,

A

A A

A
A
y A

s S

A A A A A

A A A
s S s S

s s

y s
V

s

s s s s y s y s

s s s s




  

  



 


 
  

 

     
  

   



 
 

(3.10)

 

and  

                    
     

 
 

 

 

 

2

YG

,1ˆ ˆ .
2 ,A A

A A A A A
A
y A A A

s S s S
s s

s s s s y s y s
V

s s s s

  


   


      
    

     
   (3.11) 

If in addition both   0A x   and  , 0A x x    almost everywhere on ,AU  then these two variance 

estimators are unbiased, see Cordy (1993, Theorem 2). Note that the condition on  ,A x x   may not be 

true, for example when using systematic sampling designs. 

 
3.2 Weight share method: the continuous-discrete case 
 

Suppose that we are still interested in the population BU  and in the estimation of the total B
y  given in 

equation (2.5). The units in BU  are not directly sampled, but a continuous universe AU  linked to BU  is 

sampled instead. The links between the units inside the populations AU  and BU  are represented by the 

indicator function  

  
1 if and are linked,

,
0 otherwise.

A B
AB x k U

L x k
  

 


U
 (3.12) 

We keep the same terminology as in Section 2.2, and we note Anck  for the ancestor subset of some 

,Bk U  and  Des x  for the descendant subset of some .AxU  For any ,Bk U  

  ,
A

AB AB
k

x
M L x k dx


  U

 (3.13) 

is the measure of the ancestor subset of unit .k  As in the discrete case, we suppose that 0AB
kM    for any 

.Bk U  

A sample BS  is obtained in BU  by surveying all the descendants of the points selected in .AS  

Formally, we have therefore  

  Des .
A

B

s S

S s


 ∪  (3.14) 
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To obtain an estimator of ,B
y  we establish a duality principle between populations AU  and .BU  This 

is summarized in Proposition 1. The duality principle is similar to that obtained with a discrete population: 

each value B
ky  is equally shared among the points in the ancestor subset of .k  The synthetic function 

 Ay x  may therefore be interpreted as a local measure of density of the variable By  per unit area. This 

approach has already been considered in the domain of forest inventory by Mandallaz (2007, Section 4.2) 

and Gregoire and Valentine (2007, Chapter 10), for example, as discussed in the introduction.  

Proposition 1. The total B
y  may be written as  

                                                           
A

B A
y

x
y x dx


  U

 (3.15) 

with 

           
 ,

.
B

AB B
A k

AB
k U k

L x k y
y x

M 

    

 

Proof. We have  

                            

 

 
 

1
,

,
.

A
B B

A A
B

B B B AB
y k k AB x

k U k U k

AB B
Ak

ABx x
k U k

y y L x k dx
M

L x k y
dx y x dx

M




  

 
 

  

 

  

 

U

U U

  

 

Proposition 1 makes it possible to rewrite B
y  as an integral over the universe ,AU  and therefore to make 

use of the extended HT-estimator given in (3.7). In turn, this estimator may be written as a weighted sum 

over the sample .BS  This is summarized in Proposition 2. 

 

Proposition 2. The total B
y  may be unbiasedly estimated by  

                                                             ˆ
B A

B B B A A
y k k

k S s S

w y d s y s
 

    (3.16) 

with 

                  1
, .

A

B AB A
k AB

s Sk

w L s k d s
M 

    

 

Proof. We can rewrite  

 

   

   

,
ˆ

,

A B

A B

AB B A
B k
y AB

s S k S k

AB B A
k

AB
s S k U k

L s k y d s

M

L s k y d s

M


  

  





 

 
  



Survey Methodology, June 2023 149 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where the last equality follows from the fact that if ,As S  all the units k  in its descendant subset 

 Des x  are selected in .BS  It follows that  

  
 

   
,

ˆ ,
A B A

AB B
B A A Ak
y AB

s S k U s Sk

L s k y
d s d s y s

M


  

      

which is simply the HT-estimator of the integral   .
A

A

x
y x dx

 U
 

 

The weight share method thus brings a solution to the estimation of ,B
y  by using a weighted estimator 

computed on the sample BS  where the weights B
kw  are given in equation (3.16). Each unit Bk S  is given 

the sum of the weights of the sampled points As S  which are linked to ,k  divided by ,AB
kM   the measure 

of the ancestor subset of unit .k  The principle is therefore the same as with the usual weight share method 

applied to discrete populations. It is important to note that, for any unit ,Bk S  we need to know the 

measure AB
kM   of its ancestor subset.  

Since ˆB
y  may be written as a HT-estimator on the sample ,AS  the variance is obtained from equation 

(3.8) or equation (3.9), by using the synthetic variable  Ay x  given in equation (3.15). A variance 

estimator can be obtained by applying equation (3.10) or equation (3.11). Therefore, variance estimation is 

straightforward for the weight share estimator. 

 
3.3 Application to plot sampling for forest inventories 
 

We first consider an application of the weight share method to the case where a forest inventory is 

performed by direct plot sampling. We are interested in a population BU  of trees located on a territory 

.AU  A sample of points AS  is first selected in AU  by using a continuous sampling design. For each 

point ,As S  the circle  
rC s  centered on s  with some predetermined radius r  is drawn. All the trees 

Bk U  such that their center kx  is inside these circles are selected in the sample BS  and surveyed.  

The link function is therefore  

     
   1 if , 1 if ,

,
0 otherwise, 0 otherwise.

AB k r r kx C x x C x
L x k

  
  
 

 (3.17) 

For any tree ,Bk U  the quantity AB
kM   is  

                       , 1 ,
A A

AB AB
k r k

x x
M L x k dx x C x dx

 
   U U

 (3.18) 

which is the area of the intersection between AU  and the circle centered on .kx  For any point ,AxU  

the synthetic variable is  

  
 

 

,
.

k r

AB B B
A k k

AB AB
B x C xk kk U

L x k y y
y x

M M 

    (3.19) 
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The solution obtained in this case is equivalent to the aggregation function in Stevens and Urquhart (2000, 

Section 4.2), to the attribute density in Gregoire and Valentine (2007, Section 10.2) or to the local density 

in Mandallaz (2007, equation 4.5). 

For illustration, we present a toy example in Figure 3.1. We are interested in a rectangular territory 
AU  with a global measure 27 8 56 .AM m    Inside this area, we have a population BU  of 5BN   

trees. A sample of 2An   points is selected by independent drawings with the marginal PDF given in 

(3.4), which leads to the observation of, say,  1 2, .A A As s s  

 
Figure 3.1 A simple example of links between a continuous population U A  and a discrete population .BU  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
For each point ,As s  the circle  

rC s  centered on s  with radius 1r   is drawn, and all the trees k  

such that their center kx  is inside these circles are surveyed. In the example presented in Figure 3.1, we 

obtain  1, 4, 5 .Bs   The values of the variable of interest for the units in Bs  are, say:  

 1 4 51, 4, 3.B B By y y     

We compute the quantities AB
kM   for the trees ,Bk s  applying equation (3.18). For the trees 4k   and 5 

the circle  r kC x  is included in ,AU  resulting in 3.14.AB
kM    For the tree 1,k   we have 1 3.00.ABM   

We compute the synthetic variable  Ay x  for the points in ,As  making use of equation (3.19). We obtain  

 

 

 

1
1

54
2

0.33,
3.00

2.23.
3.14 3.14

B
A

BB
A

y
y s

yy
y s



 





  

Finally, we compute the weights B
kw  for the trees Bk s  by means of the weight share method, making 

use of equation (3.16). We obtain  
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 

 

 

1
1

1

2
4

4

2
5

5

28
9.33,

3.00

28
8.91,

3.14

28
8.91.

3.14

A
B

AB

A
B

AB

A
B

AB

d s
w

M

d s
w

M

d s
w

M







 

 

 







  

The estimate for the total B
y  is therefore  

  ˆ 71.72.
B

B B B B
y k k

k s

s w y


     

The results are summarized in Figure 3.2. 

 
Figure 3.2 Computation of the synthetic variable  Ay x  and of the weights B

kw  obtained by the weight share 
method on a simple example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.4 Application to spatial cluster sampling for forest inventories 
 

When the accessibility to the field is difficult, it is common practice in forest inventories to use clusters 

of plots (Köhl and Magnussen, 2015). These clusters have a fixed geometric form determined before the 

survey. For instance, plots may be positioned at the corners of a square of 50m size (see Mandallaz, 2007, 

Section 4.3). 

Suppose that we are again interested in a population BU  of trees located on a forest .F  Let AU  

denote a set such that ,AUF  and let 1, , Le e…  denote a set of L  vectors in 2 .R  For any point 

,AxU  the cluster  c x  is defined as the set of points  ; 1, , .l lx x e l L   …  Following the notation 

by Mandallaz (2007), we take 1e  as the null vector, and 1x x  is seen as the origin of the cluster. Let us 

denote by Al A
le U U  for 1, , ,l L …  and 

1

LC Al

l 
∪ UV  their union. It is also supposed that the set 

AU  is large enough to ensure that AlUF  for any 1, ,l L …  (see Mandallaz, 2007, Section 4.3). For 

illustration, an example in the case 4L   is presented in Figure 3.3.  
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Figure 3.3 An example of cluster sampling in continuous populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lecture note. In the upper panel, an example of cluster of size 4L   originated in the point x  is presented. In the left panel, two 
continuous populations such that AF U  are given. In the right panel, the sets , 1, , 4Al l  …U  associated to AU  are presented, 
where the hatched set stands for 2.AU  
 

Cluster sampling is performed by first selecting a sample AS  of An  points in ,AU  according to a 

continuous sampling design. For each point ,Ax S  we obtain the associated cluster    1, , Lc x x x …  

originated in 1 ,x x  and the associated circles  r lC x  are drawn with some predetermined radius .r  All 

the trees Bk U  such that their center kx  is inside one of the circles  , 1, ,r lC x l L …  for some Ax S  

are surveyed. An example is presented in Figure 3.4.  

For any point ,AxU  the synthetic variable  Ay x  is obtained in two steps, using CV  as a pivotal 

population. We first define a link function between CV  and BU  as  

  
 1 if ,

,
0 otherwise,

CB k rx C z
L z k

 
 


 (3.20) 

with kx  the center of the tree k  and z  a point in the union set .CV  This is similar to the link function 

defined in (3.17), and following the same lines of reasoning we obtain the intermediary synthetic variable  

  
 

for any ,
k r

B
C Ck

CB
x C z k

y
y z z

M 

  V  (3.21) 

where   1
C

CB
k r k

z
M z C x dz


  V

 is the area of the intersection between CV  and the circle centered on 

.kx  Then, we define a link function between AU  and CV  as  

  
   11 if , , ,

,
0 otherwise.

AC Lz c x x x
L x z

  
 


…
 (3.22) 
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Figure 3.4 An example of cluster sampling where 3An   points are initially selected from .U A  

 

 

 

 

 

 

 

 

 

 

 

In other words, x  and z  are linked if z  is one of the vertices of the cluster originated in .x  The quantity  

  ,
A

AC AC
z

x
M L x z dx


  U

 (3.23) 

is the number of clusters having z  as a vertex. We give, in Figure 3.5, the values obtained for the vertices 

of the clusters in the example initiated in Figure 3.4. We finally obtain the synthetic variable  

  
 

 

   

1
for any .

k r

BC
A Ak

AC AC CB
z c x z c x x C zz z k

yy z
y x x

M M M    

     U  (3.24) 

 

 

Figure 3.5 Values of the quantities AC
xM

 for the vertices in a cluster sample. 
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As proved in Proposition 2, B
y  may be unbiasedly estimated by ˆ ,B

y  and an unbiased variance 

estimator is directly obtained by applying equation (3.10) or equation (3.11). Therefore, the weight share 

method provides a general solution for both estimation and variance estimation for cluster sampling, under 

an arbitrary sampling design performed in .AU  On the other hand, the solution described in Mandallaz 

(2007, equation 4.17) is suitable only when AS  is obtained by independent uniform selections from .AU  

 
4. Simulation study 
 

In this simulation study, we consider estimation and variance estimation for spatial cluster sampling. We 

wish to compare the weight share method with the solution described in Mandallaz (2007, equation 4.17), 

in the situation when the sample AS  is obtained by independent uniform selections from .AU  This is the 

purpose of the first simulation study described in Section 4.1. We also wish to evaluate the weight share 

method in the situation when the sample AS  of cluster origins is not selected by independent uniform 

sampling, and when Mandallaz’s technique may therefore not be applied. This is the purpose of the 

second simulation study described in 4.2.  

The continuous population AU  that we consider is a square of length 1,000 meters. Inside ,AU  the 

forest is located on a square territory F  of length 600 meters, but the location of the forest and its area are 

seen as unknown prior to the survey. A population of 30,942BN   black pines is generated in the forest 

.F  The main characteristics of the population of pines in terms of volume 1( ,B
ky  cube meters) and breast-

height diameter 2( ,B
ky  centimeters) are summarized in Table 4.1.  

 

Table 4.1 

Mean, standard deviation, minimum and maximum for the breast-height diameter and volume for the 

population of black pines 
 

 Mean Standard deviation Minimum Maximum 
Breast-height diameter (centimeters) 17.28 6.38 3.57 41.78 
Volume (cube meters) 0.17 0.16 0.00 0.99 

 
We are interested in estimating the following parameters: the total number of trees 0 0B

B B
y kk U

y


  

with 0 1,B
ky   the total volume of wood 1 1 ,B

B B
y kk U

y


  the mean volume of trees 1 1 ,B B B
y y N   the 

mean breast-height diameter 2 2 ,B B B
y y N   the average volume of wood per square meter of forest 

1 1 ,B B
yY M F  where M F  stands for the area of the forest .F  

 
4.1 Comparison between the weight share method and Mandallaz’s 

estimator for cluster sampling 
 

We first compare the performance of the proposed estimators to those proposed by Mandallaz (2007, 

Section 4.3), in case of cluster sampling (see Section 3.4) where the sample AS  of cluster origins is 

selected by independent uniform sampling from the territory .AU  We select a sample AS  of size 

100, 200An   or 400. A sample of trees is then selected and surveyed by using the cluster sampling 
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technique described in Section 3.4, where we use square clusters of size 4L   and length 60 meters, and 

plots with a radius r  of 25 meters.  

For a given sample, the estimators under the weight share method are obtained as follows. The 

estimators of the totals 0
B
y  and 1

B
y  are obtained from equation (3.16) as  

  
0 0

ˆ ,
A

A
B A
y A

x S

M
y x

n




   (4.1) 

  
1 1

ˆ ,
A

A
B A
y A

x S

M
y x

n




    

where 0
Ay  and 1

Ay  are obtained by plugging into equation (3.24) the variables 0
B
ky  and 1 ,B

ky  respectively, 

and where AM  is the area of .AU  The estimators of the population means 1
B
y  and 2

B
y  are  

 
1 2

1 2

0 0

ˆ ˆ
ˆ ˆand ,

ˆ ˆ

B B
y yB B

y yB B
y y

 
 

 
    

respectively, obtained by using the plug-in principle, and where 2
ˆB

y  is obtained as described in equation 

(4.1). The estimator of 1
BY  is  

 
1

1

ˆˆ ,
ˆ

B
yBY

M




F
  

where  

    
 

 
3 3

1ˆ with
A

A
A A

A AC
z c xx S z

zM
M y x y x

n M 


  F F

 (4.2) 

is an unbiased estimator of .M F  The estimators proposed by Mandallaz are obtained as follows. The 

estimator of 1
BY  is  

    
    

  

1

1, mand

1
ˆ

1

B
k

A
r k

A

y

x S z c x k C z MB

x S z c x

z
Y

z
  

 






  
 

FF

F
  

with kM 
F  the area of the intersection between F  and the circle centered on ,kx  see equation (4.17) in 

Mandallaz (2007). The estimators of the totals 0
B
y  and 1

B
y  are  

 
 

 
 

0
0,mand

1
ˆ 1 ,

A
r
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B k
y A

z c x k C zx S k

yM
z

L n M


  

    F
F   

 
 

 
 

1
1,mand

1
ˆ 1 ,

A
r

BA
B k
y A

z c x k C zx S k

yM
z

L n M


  

    F
F   

see equation (4.16) in Mandallaz (2007). The estimators of the population means 1
B
y  and 2

B
y  are  
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1,mand 2,mand

1,mand 2,mand

0,mand 0,mand

ˆ ˆ
ˆ ˆand ,

ˆ ˆ

B B
y yB B

y yB B
y y

 
 

 
    

respectively, obtained by using the plug-in principle.  

The sampling and estimation steps are repeated 10,000D   times. For an estimator ̂  of a parameter 

,  we compute the Monte Carlo Percent Relative Bias  

                                                  
1

=1
ˆ

ˆRB 100 ,

D

dd
D  




 
 


 (4.3) 

and the Monte Carlo Mean Square Error  

                                                 
2

1

1ˆ ˆMSE .
D

d
dD

  


   (4.4) 

The results are given in Table 4.2. For any of the five parameters, both estimation methods lead to 

virtually unbiased estimators, and the mean square errors are very close. The estimator of Mandallaz 

performs slightly better for 1 ,BY  while the weight share method performs slightly better for the other 

parameters.  

 
Table 4.2 

Percent relative bias and mean square error for five parameters estimated by means of the weight share 

method or by estimators proposed by Mandallaz 
 

   0
B
y  

1
B
y  

1
B
y  

2
B
y  

1
BY  

100An   Weight share RB (%) -0.01 -0.01 0.00 0.00 -0.15 

 MSE 2.04 
710  6.24 

510  1.22 
610

 1.81 
310

 8.76 
710

 

Mandallaz RB (%) -0.02 -0.02 0.00 0.00 -0.17 

 MSE 2.06 
710  6.29 

510  1.25 
610

 1.85 
310

 8.65 
710

 

200An   Weight share RB (%) -0.01 -0.01 0.00 0.00 -0.15 

 MSE 9.91 
610  3.03 

510  6.07 
710

 9.09 
410

 4.15 
710

 

Mandallaz RB (%) -0.01 -0.01 0.00 0.00 -0.15 

 MSE 9.99 
610  3.05 

510  6.20 
710

 9.27 
410

 4.08 
710

 

400An   Weight share RB (%) -0.02 -0.02 0.00 0.00 -0.03 

 MSE 5.03 
610  1.54 

510  2.99 
710

 4.44 
410

 2.15 
710

 

Mandallaz RB (%) -0.02 -0.03 0.00 0.00 -0.04 

 MSE 5.07 
610  1.55 

510  3.05 
710

 4.52 
410

 2.12 
710

 

Note: Relative bias (RB); Mean square error (MSE). 

 
For the estimators obtained under the weight share method, we also considered variance estimation. 

We did not perform variance estimation for Mandallaz’s estimators, since in Mandallaz (2007, 

Section 4.3), variance estimators are only proposed for spatial means like 1 ,BY  and not for population 

totals or population means. Under independent uniform sampling from ,AU  applying equation (3.10) 

leads to the unbiased variance estimator  



Survey Methodology, June 2023 157 

 

 
Statistics Canada, Catalogue No. 12-001-X 

             
 

   

22

HT 0 0 0

1 1ˆ ˆ ,
1 A A

A
B A A
y A A A

x S s S

M
V y x y s

n n n


 

  
   

   
   (4.5) 

for 0
ˆ ,B

y  and a similar expression for 1
ˆ .B

y  An approximately unbiased variance estimator for 1
ˆ B

y  is 

obtained by replacing in (4.5) the variable  
0
Ay x  by the linearized variable  

                                                    1 1 1 0

0

1
ˆ  ,

ˆ
A A B A

yB
y

u x y x y x


   (4.6) 

and can similarly be obtained for 2
ˆ .B

y  An approximately unbiased variance estimator for 1
ˆ BY  is obtained 

by replacing in (4.5) the variable  
0
Ay x  by the linearized variable  

                                                    2 1 1 3

3

1 ˆ .
ˆ

A A B A

B
y

u x y x Y y x


   (4.7) 

The sampling and estimation steps are repeated 1,000E   times. To measure the bias of a variance 

estimator  
HT

ˆˆ ,V   we use the Monte Carlo Percent Relative Bias  

                                      
   

 

1
HT1

HT

ˆ ˆˆ MSE
ˆˆRB 100 ,

ˆMSE

E

ee
E V

V
 









 


 (4.8) 

where  ˆMSE   is obtained independently from the first run of 10,000D   simulations, see equation 

(4.4). The results are presented in Table 4.3. All the variance estimators are approximately unbiased.  

 

Table 4.3 

Percent relative bias of a variance estimator for five parameters estimated by means of the weight share 

method 
 

An   0
ˆ ˆB

yV    1
ˆ ˆB

yV    1
ˆ ˆB

yV    2
ˆ ˆB

yV    1

ˆˆ BV Y  

100 -1.21 -1.17 -0.48 -0.04 -0.17 
200 1.75 1.83 -0.59 -0.76 3.35 
400 0.49 0.62 0.40 1.09 -0.29 

 
4.2 Evaluation of the weight share method for cluster sampling with non-

uniform sampling of the clusters 
 

We consider a second case of cluster sampling when the sample AS  is not selected by independent 

uniform sampling from ,AU  so that the estimators proposed by Mandallaz (2007) can not be used. The 

population AU  is first partitioned into a sub-population 1
AU  of length 300 meters and height 1,000 

meters (west part), and a sub-population 2
AU  of length 700 meters and height 1,000 meters (east part). 

The area of 1
AU  and 2

AU  are denoted as 1
AM  and 2 ,AM  respectively. A sample of size 1 75, 150n   or 300 

points is first selected globally from ,AU  and a second sample of size 2 25, 50n   or 100 is then selected 

from 2 .AU  For example, this case may arise if it is of specific interest to perform estimation on the sub-

population 2 ,AU  and if an extension sample may be funded to ensure that the global sample selected from 
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2
AU  is sufficiently large. The union of these two samples is denoted as .AS  We also let 1

An  denote the 

(random) size of 1 1 ,A A AS S U  and 2
An  denote the (random) size of 2 2 .A A AS S U  

Conditionally on 1
An  and 2 ,An  unbiased estimators for the totals 0

B
y  and 1

B
y  are  

       

1 2

1 2
0,cond 0 0

1 2

ˆ ,
A A

A A
B A A
y A A

x S x S

M M
y x y x

n n


 

     

       

1 2

1 2
1,cond 1 1

1 2

ˆ ,
A A

A A
B A A
y A A

x S x S

M M
y x y x

n n


 

     

where 0
Ay  and 1

Ay  are obtained by plugging into equation (3.24) the variables 0
B
ky  and 1 ,B

ky  respectively. 

The estimators of the population means 1
B
y  and 2

B
y  are  

  
1,cond 2,cond

1,cond 2,cond

0,cond 0,cond

ˆ ˆ
ˆ ˆand ,

ˆ ˆ

B B
y yB B

y yB B
y y

 
 

 
    

respectively, obtained by using the plug-in principle. The estimator of 1
BY  is  

          
1,cond

1,cond

cond

ˆˆ ,
ˆ

B
yBY

M




F
  

where  

        

1 2

1 2
cond 3 3

1 2

ˆ
A A

A A
A A

A A
x S x S

M M
M y x y x

n n 

  F   

is an unbiased estimator of ,M F  where  
3
Ay x  is defined in equation (4.2).  

The sampling and estimation steps are repeated 10,000D   times. For an estimator ̂  of a parameter 

,  we compute the Monte Carlo Percent Relative Bias given in (4.3) and the Monte Carlo Mean Square 

Error given in (4.4). The results are given in Table 4.4. For any of the five parameters, the estimators are 

virtually unbiased. The mean square error decreases as the sample size increases, as could be expected.  

 
Table 4.4 

Percent relative bias and Mean square error for five parameters estimated by means of the weight share 

method 
 

  
0

B
y  

1
B
y  

1
B
y  

2
B
y  

1
BY  

100An   RB (%)  0.03 0.03 0.00 0.00 -0.02 

MSE  1.85 
710  5.67 

510  1.19 
610

 1.78 
310

 8.5 
710

 

200An   RB (%)  -0.02 -0.02 0.01 0.00 -0.06 

MSE  9.40 
610  2.87 

510  5.83 
710

 8.70 
410

 4.34 
710

 

400An   RB (%)  0.09 0.09 0.00 0.00 0.05 

MSE  4.67 
610  1.43 

510  2.90 
710

 4.35 
410

 2.18 
710

 

Note: Relative bias (RB); Mean square error (MSE). 
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We now consider variance estimation. Conditionally on 1
An  and 2 ,An  an unbiased variance estimator 

for 0,cond
ˆB

y  is  
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 

 
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  
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 

 

 

(4.9)

 

and can be expressed similarly for 1,cond
ˆ .B

y  An approximately unbiased variance estimator for 1,cond
ˆ B

y  is 

obtained by replacing in (4.9) the variable  
0
Ay x  by the linearized variable given in equation (4.6), and 

can be obtained similarly for 2
ˆ .B

y  An approximately unbiased variance estimator for 1,cond
ˆ BY  is obtained by 

replacing in (4.9) the variable  
0
Ay x  by the linearized variable given in equation (4.7).  

The sampling and estimation steps are repeated 1,000E   times. To measure the bias of a variance 

estimator  
2
ˆˆ ,V   we use the Monte Carlo Percent Relative Bias defined in (4.3). The results are presented 

in Table 4.5. All the variance estimators are approximately unbiased.  

 
Table 4.5 

Percent relative bias of a variance estimator for five parameters estimated by means of the weight share 

method 
 

An   2 0
ˆ ˆB

yV    2 1
ˆ ˆB

yV    2 1
ˆ ˆ B

yV    2 2
ˆ ˆ B

yV    2 1

ˆˆ BV Y  

100 3.18 3.16 -3.02 -2.96 -0.28 

200 0.97 0.92 -1.59 -1.01 -1.88 

400 1.12 1.03 0.05 -0.36 -1.46 

 
5. Discussion 
 

There are several reasons in practice why a population has no tractable sampling frame. When the 

population of interest may be linked to a discrete population for which a sampling frame is available, the 

usual weight share method (Deville and Lavallée, 2006) makes it possible to obtain probability samples 

from the population of interest, as well as unbiased estimators and variance estimators for this population. 

We showed that this approach may be generalized in a natural way when the population of interest is 

linked to a continuous population, by using a synthetic function on this continuous population which may 

be interpreted as a local measure of density. In case of spatial cluster sampling with independent uniform 

selection of the cluster origins, our simulation results show that the weight share method and Mandallaz’s 

estimator perform similarly. Mandallaz’s estimator can not be applied when the cluster origins are not 

selected by independent uniform sampling. In this case, our simulation results confirm that the weight 

share method leads to unbiased estimators.  

In our view, making use of the weight share method has several advantages. Firstly, it enables to easily 

handle the so-called edge corrections, i.e., the fact that some units have an ancestor subset which intersects 
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with the area of interest. Using the area of the ancestor subset AB
kM   in the estimation weights (see 

equation (3.16)) leads to exactly unbiased estimators, while alternative edge corrections may be somewhat 

cumbersome, see Gregoire and Valentine (2007, Section 10.7) or Roesch, Green and Scott (1993), for 

example. Also, our approach enables us to go back to the population which was indeed sampled. This is 

necessary to make use of the Horvitz-Thompson estimator, and to compute an unbiased variance 

estimator. This is possible in full generality, i.e., under an arbitrary continuous sampling design, by using 

the theory developed by Cordy (1993).  

This method is obviously not limited to forest inventory. One example is the survey on crop practices 

conducted by the French statistical office of the Ministry of Agriculture, until 2006. The sample for this 

survey consisted of parcels, selected from the points of the survey Ter-Uti (Chapelle-Barry, 2008). The 

Ter-Uti survey is dedicated to the production of statistics on the land use, and the points where the land 

use was associated to crop practices are the basis from which to select the parcels. Calculating weights for 

the parcels was done by considering that each parcel had a probability of being drawn proportional to its 

surface. In this way, the method produced the same weights than the weight share method, except for edge 

effects. However, using the weight share method would lead to have a general methodological framework 

enabling the derivation of a variance estimator. Other topics, linked to environmental issues, could also 

take advantage from the application of this method. This extension of the weight share method should also 

be considered for estimators that are not directly Horvitz-Thompson estimators, such as those relative to 

two-phase sampling, which are often used for environmental issues. 
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Modelling time change in survey response rates: A Bayesian 
approach with an application to the Dutch Health Survey 
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Abstract 

Precise and unbiased estimates of response propensities (RPs) play a decisive role in the monitoring, analysis, 
and adaptation of data collection. In a fixed survey climate, those parameters are stable and their estimates 
ultimately converge when sufficient historic data is collected. In survey practice, however, response rates 
gradually vary in time. Understanding time-dependent variation in predicting response rates is key when 
adapting survey design. This paper illuminates time-dependent variation in response rates through multi-level 
time-series models. Reliable predictions can be generated by learning from historic time series and updating 
with new data in a Bayesian framework. As an illustrative case study, we focus on Web response rates in the 
Dutch Health Survey from 2014 to 2019. 
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1. Introduction 
 

Over the last two decades, responsive and adaptive design (Chun, Heeringa and Schouten, 2018) have 

attracted considerable interest in assembling survey design features ahead of or during data collection, 

with an ultimate goal of survey cost-quality optimization by a search for efficient resource allocation. The 

emergence of Web surveys, the availability of process data, and the increase in survey costs have driven 

research regarding the monitoring (Kreuter, 2013) and adaptation (Schouten, Peytchev and Wagner, 2017) 

of data collection. However, a thorough understanding of how design features and time change affect 

important parameters in response and cost models is imperative to apply adaptation. For example, a 

critical factor is the likelihood of a participant to engage in a survey, i.e., their response propensity, which 

can be sensitive to factors both dependent on and independent from the nature of the survey itself. 

Additionally, the cost of the survey is a complex calculation that covers everything from planning the 

survey, to performing it and the data workup afterwards, and it can directly impact the type of survey 

performed, which can in turn influence response propensities (RPs). For this reason, the development of 

such parameter measurements is necessary before the data collection operation begins.  

The last decade has seen a renewed importance in the predictability of RP for responsive and adaptive 

design. In survey methodology, using propensity scores (Rosenbaum and Rubin, 1983) is the common 

way to tailor differential features to sampled cases for desired cost- or quality-related goals. In a changing 

data collection climate, the performance and structure of a survey design hinge heavily on propensity 

models that may lead to inefficient decisions. For instance, by relying only on process or response data in 

the early stages of a responsive survey, the estimates of RP may produce biased estimates of the final RP 

by the end of the data collection (Wagner and Hubbard, 2014). Also, the uncertainty of RP estimates 

mailto:s.wu@uu.nl


164 Wu et al.: Modelling time change in survey response rates: A Bayesian approach with an application to... 

 

 
Statistics Canada, Catalogue No. 12-001-X 

should be incorporated into propensity models in order to avoid suboptimal designs (Burger, Perryck and 

Schouten, 2017). 

Accurate estimates of RP are thus the crux of survey operations. For this reason, survey researchers 

apply historic data to estimate the coefficients of a propensity model, and then use those estimated 

coefficients for the upcoming rounds of a survey. Bayesian analysis (Gelman, Carlin, Stern, Dunson, 

Vehtari and Rubin, 2013) is a natural approach to utilize both historic and new data for improving 

predictions. Prior beliefs generated from historic data are evolved into posteriors, which serve as the priors 

for the subsequent analysis as the upcoming data accumulates. Schouten, Mushkudiani, Shlomo, Durrant, 

Lundquist and Wagner (2018) were the first to apply a general Bayesian method to analyze RP and cost in 

the Dutch Health Survey. They discuss that misspecification of the priors may weaken prediction 

performance. As a result, prior elicitation becomes an influential step. The incorporation of expert beliefs 

is a prerequisite for such prior elicitation. This has a long history in biometric and medical literature, but 

the application is in its infancy in the context of surveys. Recent examples have been West, Wagner, 

Coffey and Elliott (2021), who reviewed empirical evidence for survey propensity prediction, Coffey, 

West, Wagner and Elliott (2020), who consulted data collection managers about the estimated 

coefficients, and Wu, Schouten, Meijers and Moerbeek (2022), who used data collection staff as experts 

for relevant historic leverage under criteria for a new or redesigned survey. 

So far, the approaches assume RPs are stable in a relatively short period. In a fixed survey climate, 

these parameters remain stable and their estimates ultimately converge with the accumulation of historic 

data. In survey practice however, those parameters change gradually over time, which means that 

predictions may not converge. For example, seasonal variation and downward trends in response rates can 

be observed. Thus, the benefit of prior elicitation could potentially be undone when ignoring time change. 

Recent articles by Mushkudiani and Schouten (2019), and Fang, Burger, Meijers and van Berkel (2020) 

describe what time-dependent factors significantly affect the parameter estimation accuracy, but the 

impact on prediction accuracy is still unknown, which is the topic of this paper.  

This paper provides new insights into flexible time series models in a structural fashion for RPs in 

adaptive survey designs. We attempt to interpret time change in survey RPs that correlate significantly 

with nonresponse biases when nonresponse is subject to time change. Our approach applies to repeated 

cross-sectional surveys with multiple data collection phases. 

Our main objective is to make reliable predictions for RP across relevant population strata (Note that 

population strata in which response propensities can differ herein can be subpopulations of interest either. 

They are called strata throughout, even though they do not necessarily coincide with sampling strata.) and 

to examine the prediction performance so that we can measure how time alters the RP. This general 

question can be reduced to four concrete aspects: 
 

1) What time-series components contribute most to variation in RPs? 

2) What level of RP prediction accuracy can be achieved for the next upcoming time period? 

3) How does prediction accuracy vary over population strata? 

4) How does prediction accuracy depend on the length of the historic survey time series? 
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The abundant knowledge of historic survey time series allows us to learn the effects of time-related 

factors on RP. We consider two levels, time and strata, which make up multiple components involved in a 

time-series model. The components describe variation over time or strata or over both, and they can be 

analyzed individually as well as collectively. Several survey methodology studies employ such a 

multilevel time-series model approach in official statistics; e.g., Boonstra and van den Brakel (2019 and 

2022) estimate monthly and quarterly regional unemployment rates using a Bayesian hierarchical model to 

borrow strength over time, space, and from auxiliary series. Such usage originates from the small area 

estimation literature (Rao and Molina, 2015).  

In this paper, we use the Dutch Health Survey (GEZO) to evaluate our approach regarding the four 

research questions above. This survey has had a stable design since 2011 and we focus on the time series 

from 2014 to 2019. 

To optimize predictions, we compare a collection of model compositions by different information 

criteria to obtain a balance between goodness of fit and model complexity. To evaluate the “optimal” 

model, we will assess its predictive performance and accuracy by its ability to correctly capture the 

magnitude and variation of RPs. Important to note, we focus on the achievement of reliable inference over 

time, rather than on minimizing nonresponse error, which is one of the objectives adaptive survey designs 

pursue.  

This paper first introduces several time-related factors of great relevance to variation with a 

hypothetical illustrative example in Section 2, then goes on to the differential model compositions in the 

general form of the Bayesian multilevel time-series model in Section 3. Section 4 optimizes the model 

performance based on an empirical analysis of GEZO. We discuss our findings and end up with the brief 

overview of future work in Section 5.  

 
2. Time series components of survey response rates 
 

It is well-known that response propensity (RP) changes gradually in time. Failing to incorporate this 

temporal dependence in design decisions can lead to ineffective survey designs. In this section, we use an 

illustrative example for introducing some time-related factors linked with considerable variation in RP.  

We focus on population subgroups, or strata, as indexed by  1, , ,g G   since we aim ultimately to 

let the proposed models inform adaptive design decisions. The strata are formed with the help of auxiliary 

variables that are linked to the sample and are, thus, available for all sample units. A time-series RP ,g t  

in stratum g  and time t  is a sequence of random variables. Assuming the availability of historic survey 

data up to time ,t  we are interested in measuring variation caused by time-related factors for the most up-

to-date RP predictions. To achieve this goal, we first propose potential time-dependent factors. As an 

illustrative example of a time series divided into the following components: trend, seasonality, and so on, 

Figure 2.1 compares the overall response rate to the following time-dependent variation: 
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• Trend. The trend describes the long-term movement of the observed time series without the 

seasonal variation. It shows the general tendency of the population-level response rates over 

years, which can be linear or nonlinear. Hence, the growth or the fall of the long-term forecasts 

can be studied by this trend. As seen in Figure 2.1, the long-term direction does not behave like 

a cyclic fluctuation. Of greater importance for model development is to separate the total trend 

into a global trend shared by all strata, and local, i.e., stratum-specific trends. 

• Seasonality. Seasonal variation in the overall responses describe periodic movements that recur 

regularly and do not influence annual averages. The periodic fluctuations possess a systematic 

and calendar-related nature that can be predicted and attributed to a fixed season per year. For 

instance, the response rate would be higher in the early period of the year while relatively lower 

in the middle year or in December. 

• Residual fluctuation. The residual variation is the part of the signal obtained after excluding all 

of the above components. This part is usually modeled as white noise, i.e., as independent 

normally distributed fluctuations.  

 
Figure 2.1 The observed series of simulated overall response rates over years versus its decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 
In addition, there may also be some additional time-dependent components not revealed in Figure 2.1 

that nevertheless have a strong impact on the reliability of stratum RP predictions. For this reason, we also 

consider extra stratum-related time-dependent components: 
 

• Stratum. Different subgroups have different response behaviors, such as, young subgroups are 

more likely to respond to the web survey than old subgroups due to the latter having potentially 

less access to or unfamiliarity with the internet. This variation in subgroups leads to a 
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differential stratum-level trend and could potentially also contribute to differential seasonal 

movement. 

• Sampling variation. Sampling variation complicates the estimation of RPs, especially for strata 

with small sample sizes. The sampling variation is taken into account by adopting a binomial 

likelihood. 

• Unexpected events. Unexpected events, such as web servers being down temporarily, will 

appear as outliers and may violate the existing pattern. They correspond to irregular movements 

during short periods. The resulting variation does not follow a particular model, is 

unpredictable, and can become influential in predicting future RPs. 

• Intervention. Design change, such as introducing incentive, is used widely to conduct 

intervention on purpose, in order to stimulate responses for an improvement in data collection 

quality, and even to efficiently allocate limited resources for a reduction in survey cost. 

Intervention has a permanent impact on response propensities. The influence can be predictable, 

but only can be studied at the expense of wasting the potential value of rich historic data and of 

a long time period of data collection since then the implement of intervention. The resulting 

variation is less likely to affect seasonal patterns, while it can bring similar impacts on 

responses for some strata. 

 

All components together, except for the sampling variation, form the signal, i.e., the latent true but 

unknown RPs. The mathematical formulations corresponding to each component are introduced in the 

following section that proposes the structural time series model (See Harvey, 1990 and Durbin and 

Koopman, 2012 for general background information on those time series components and models). 

 
3. Methods 
 

In this section, we translate the time series components discussed in Section 2 to multilevel time series 

models and devise the estimation strategy. We adopt a Bayesian approach in order to account for the 

uncertainty within the historic survey data and to update response propensity (RP) predictions in time. The 

use of multilevel models is widespread in small area estimation, in which interest focusses on reliable 

estimation for domains such as geographic areas, time periods, demographic subgroups, or a combination 

thereof, whose sample sizes are often too small to provide reliable direct estimates, see Rao and Molina 

(2015) for an overview. Early references to the literature of small area studies using time series multilevel 

models include Pfeffermann and Burck (1990), Rao and Yu (1994), Datta, Lahiri, Maiti and Lu (1999), 

You, Rao and Gambino (2003). In most such studies, including Boonstra and van den Brakel (2019), a 

Gaussian sampling distribution is assumed, possibly after a suitable transformation of the data. A notable 

difference of our current application to RPs is that we use a binomial sampling distribution, which is a 

natural distribution to describe the response process given the number of sampled individuals in each 
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demographic subgroup and time period. Such binomial time series models have been considered by 

Franco and Bell (2015). Their approach bears a resemblance to our strategy, whereas ours involves more 

different types of time series components in the model specification, such as seasonality. 

We begin the discussion of our method by first introducing the notation used throughout the paper. 

Next, we describe our model and the strategy used for estimating the RP, and we conclude with outlining 

the criteria used to evaluate the performance and applicability of prediction models for RPs in the 

Bayesian framework. 

 
3.1 The multi-level time series model specification 
 

The objective is to predict stratum-level RPs at a certain point in time. The population or a sample is 

partitioned into strata based on several auxiliary variables, i.e., stratified, equivalent to a cross-

classification of selected variables. Here, we assume the stratification is specified prior to fitting the 

models. The categories of each variable may be merged to ensure sufficient sample sizes.  

Let sample size in stratum g  at wave t  be ,g tn  and the number of respondents be , ,g tr  where 

 1, ,g G   and  1, , .t T   The number of strata G  is typically in the order of 10 to 20, and T  

refers to survey waves, each of which is a new replication of the survey starting from a fresh sample. We 

assume that all sampled units are independent in their response behavior within and between strata. For 

stratum g  and time ,t  response ,g tr  follows a binomial distribution conditionally on RP ,g t  and sample 

size , ,g tn  i.e.,  , , , , ,, Binom , .~g t g t g t g t g tr n n   Because RP is constrained to fall between 0 and 1, we 

transform the 0-1 scale to the real line   by utilizing a logit link function, where other link functions are 

usable as well. The function provides a nonlinear transformation and produces a latent variable , ,g t  

which follows the log-odds function,  

   ,

, ,

,

logit ln .
1

g t

g t g t

g t


 


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We can reverse the transformation to compute , ,g t  
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1 exp
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






  

For any stratum g  and any time ,t  the linear predictor ,g t  can take the most general form that can be 

linear, additive, multilevel and comprised of several time series components. As outlined in Section 2.2, 

there are demographic variables defining the strata, an overall trend, seasonal variation, stratum-specific 

trends, and a residual variation. Therefore, the multilevel model becomes: 

               , , , ,g t g t g t g t g tt v u z w       β x δ s  (3.1) 

where the p -vector of regression effects β  is associated with time-independent covariates .gx  In the 

application we focus on later in this paper, all covariates are binary as we only consider categorical 
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variables. However, in more general usage, the entries could be ordinal or numerical variables, such as 

contact attempts, and even they could vary over time. 

Scalar   is the slope parameter for the overall linear time trend. Vector δ contains seasonal effects 

with vector ts  selecting the season corresponding to month .t  The seasonal effects are either common to 

all strata, or they can be stratum-specific. In this paper, we define seasons as a division of months in a 

calendar year, i.e., sets {1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11} and {12} as Winter, Spring, Summer, Fall 

and Christmas.  

The first three terms are modelled as fixed effects while the last four terms are modelled as random 

effects in (3.1). The first of these random terms is the random intercepts for strata assumed to be normally 

distributed with mean 0 and variance 2
v  as 

  20~ ,g vv N   (3.2) 

identically and independently for 1, , .g G   Secondly, a global time trend is defined by a random effect 

vector  1, , Tu u u  distributed as  

       2~ 0, .u uN u V  (3.3) 

Covariance matrix uV  describes the covariance structures between any iu  and .ju  One can assume 

either a first-order random walk (RW1, known as a local level trend) or a second-order random walk 

(RW2, the so-called smooth trend). The time-dependence structures are more conveniently expressed by 

the precision matrix, 1.u u
Q V  The precision matrix is preferred over the covariance matrix, since it is 

sparse and allows for efficient computation for hierarchical posterior inference in a Bayesian analysis, see 

e.g., Rue and Held (2005). The matrix uQ  for RW1 and RW2 is a tridiagonal matrix and a pentadiagonal 

matrix (Assumed a band matrix is  , ,i jQ q  1 has one non-zero bands along the main diagonal such that 

, 0i jq   if 1,i j   while 2 has two non-zero bands such that , 0i jq   if 2.)i j   respectively (see 

Appendix C for their definitions). Note that the precision matrices uQ  are singular, leading to an improper 

prior. This is not a problem, as constraints can be imposed on these random effects to ensure that all model 

coefficients remain identifiable. Under RW1 and RW2 ,u  the constraint is 0.tt
u   Under RW2 ,u  the 

constraint 0tt
tu   is additionally imposed, so that the corresponding overall level and linear slope are 

captured by the model’s intercept and fixed effect .  

We also consider distributions other than the normal distribution in (3.3). In particular, we consider 

Laplace, Student-t and horseshoe priors as alternatives. Such priors can be framed as scale-mixtures of the 

normal distribution, see West (1987), Carvalho, Polson and Scott (2010) and Polson and Scott (2010). 

The third random effect term  ,1 ,, ,g g g Tz z z  denotes stratum-specific trends distributed as 

    20,~g z zN z V  (3.4) 

for 1, , .g G …  Covariance matrix zV  describes a RW1 over the months. The corresponding precision 

matrix is the same as described above, and a sum-to-zero constraint is imposed on each trend vector ,gz  
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as the stratum-specific levels are already captured by the random intercepts .gv  Important to note is that 

the trends gz  share a common covariance parameter 2 .z  One could consider a separate variance 

parameter per stratum but we found it resulted in overfitting.  

The last term ,g tw  in (3.1) represents white noise and allows for remaining unstructured variation in 

RPs over time and strata, i.e., at the most detailed level. For any stratum g  and time ,t  these components 

are independently and identically distributed as 

  2
, ~ 0, ,g t ww N   (3.5) 

using a single variance parameter 2 .w  

(3.1) describes the most general model considered combining all underlying components. Section 4 

investigates this encompassing model as well as models built from various subsets of the components 

described in (3.2)-(3.5). 

 

3.2 The estimation strategy 
 

In this section, we adopt a hierarchical Bayesian approach to estimate model coefficients and predict 

RPs. Since the posterior distributions are unavailable in closed form a Gibbs sampler is used as 

implemented in the mcmcsae R package (Boonstra, 2021). We begin this subsection by specifying the 

priors assigned to the model parameters. 

For the fixed effects β  we assume a weakly informative prior, 

           ~ 0,100 ,N β I   

with identity matrix .I  Standard errors for β  are taken as 10, which is sufficiently large concerning the 

scale of RPs relative to the covariate scales. Similarly, the linear time trend ,  and seasonal effects ,  are 

assigned weakly informative priors also, with the same standard error.  

For the random-effect components, the variance parameters in (3.2)-(3.5) are assigned inverse 2  

priors, conditionally on auxiliary parameters ,  with 1 degree of freedom and a scale parameter 2 .  For 

example,  2 2 2Inv – 1, .~v v v     The hyperparameters   are assigned  0,1N  priors. Combining the 

normal   with the conditional inverse chi-squared variances results in marginal half-Cauchy priors for 

each standard deviation parameter ,v ,u z  and .w  As Gelman (2006) and Polson and Scott (2010) 

suggest, the half-Cauchy priors for standard deviations, or the more general half-t family of priors, 

generally perform better than the commonly used inverse gamma priors for variance parameters, which 

can be too informative.  

The (hyper) parameter vector, denoted by ,  

  2 2 2 2, , , , , , , , , , , , , ,v u z w v u z wv u z w              

includes all parameters in (3.1), the variance parameters associated with random effect terms as well as the 

introduced auxiliary parameters. The likelihood function can be written as  
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     , ,,

, ,
,

,, 1
g t g tg t

n rr

g t g t
g t

p r n   


   (3.6) 

where   1logit    and   is the linear predictor function of vector   as expressed in (3.1). Based 

on Bayes’ theorem, the posterior of vector   is proportional to the product of the prior and the likelihood, 

i.e.,      , , .p n r p p r n    The Gibbs sampler then generates samples from the joint posterior, 

and the posterior estimates of RP ,g t  comes as a by-product of these samples ‒ per sample, RPs can be 

computed using reversed logit transformation. Repeated samples are drawn from the full conditional 

posterior of each (hyper) parameter. See Appendix D for more information on the full conditional 

posterior distributions. 

Three Markov Chains are produced by the Gibbs Sampler using the mcmcsae package (Boonstra, 

2021) programmed in R (R Core Team, 2020). Each chain consists of 1,500 draws that are sequentially 

generated; however only the last 1,000 draws are kept for the estimation algorithm. Convergence of the 

MCMC sample is assessed using trace and autocorrelation plots. The Gelman-Rubin potential scale 

reduction factor (Gelman and Rubin, 1992) is evaluated to diagnose the mixing of the chains. In particular, 

the autocorrelation of sequential draws is reduced, as the blocked Gibbs sampler updates all fixed and 

random coefficients simultaneously. In addition, the approach includes a novel data augmentation 

approach for sampling from binomial logistic models (Polson, Scott and Windle, 2013) which is known to 

lead to an efficient and relatively fast converging sampler. 

 

3.3 Performance criteria 
 

To guide the model building using the model components and priors described in Sections 3.1 and 3.2, 

and to assess the models’ adequacy, we employ three criteria for model assessment and one for model 

predictive performance.  

The common and popular selection criteria in Bayesian hierarchical settings are the Widely Applicable 

Information Criterion (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criterion (DIC) 

(Spiegelhalter, Best, Carlin and van der Linde, 2002). They are chosen in the pursuit of a reasonable 

balance between model fit, model complexity and efficient computation (see Appendix C for their 

definitions). Models with lower DIC/WAIC are preferred. Next, we use posterior predictive p-values to 

check model adequacy, i.e., simulating draws from the posterior predictive distribution and comparing 

them to the observed data, see e.g., Gelman, Meng and Stern (1996). This evaluates whether the multilevel 

model can reproduce data similar to the observations. The p-values are defined as  

     repPr ,p S r S r r   (3.7) 

where S  is a test statistic and 
repr  denotes a replicated dataset generated from the posterior predictive 

distribution based on the fitted model,      rep rep , , .p r p r n p r dr n     The p-values are 

estimated from the MCMC output, and values close to 0 or 1 are indicative of a poor fit regarding statistic 

.S  Here we consider two test statistics: 

1.   ,S r r  the unweighted mean of the replicate data-vector. 
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2.    
2

1
,GT 1 ,

,g tg t
S r r r


   the unweighted variance of the replicate data-vector and r  is the 

mean of , .g tr  

 

To assess the models’ prediction performance, we define a predictive measure: the root mean squared 

error (RMSE) in stratum g  at month t  as the square root of the sum of two terms: 1) the quadratic 

differences between the posterior means of ,g t  and the observed response rate (RR), and 2) the posterior 

variances of , .g t  The general form of the expression in stratum g  at month t  is  

       
2

, , , ,ˆRMSE , var
t tg t g t g tg t E       (3.8) 

where ,
ˆ

g t  is the realized value of RP and estimated by the observed RR, and t  is the posterior 

predictive distribution of the RPs, when employing historic data up to and including 1t   and new data in 

t  for RP prediction. For ease of notation, the two terms under the square root in (3.8) are referred to as the 

bias term   ,B g t  and the standard deviation   SD , .g t  The bias term in (3.8) will, in general, be 

larger than zero due to random variation in the sampling of strata and in the response of sample units. For 

this reason, we benchmark the RMSE against an empirical lower bound denoted by RMSEmin. The lower 

bound estimate is called the Monte Carlo approximation to the posterior mean of the binomial standard 

deviations, which is a function of the thk  iteration from the posterior draws of , ,g t  

  
    , ,

min
1 ,

11
RMSE ,   ,

k k
K

g t g t

k g t

g t
K n

 




   (3.9) 

where k  runs over MCMC draws and ,g tn  is the size of stratum g  sample in month .t  (3.8) and (3.9) 

give one-month assessments per stratum .g  They need to be aggregated across strata and in time to get 

meaningful overall assessments. 

In any particular month, a stratum with a larger sample size should impose more weight on the reliable 

predictions. The weights ,g td  are defined as the sample proportion, i.e.,  

,

, ,

,

subject to 1.
g t

g t g tg
g tg

n
d d

n
 


 

Thus, the sub-terms  

           
2

, , ,
ˆ

tg t g t g tg
B t d E      

and  

        , ,SD var
tg t g tg

t d      

in month t  should be the square root of the sum of the weighted individual measures  ,B g t  and 

 SD ,g t  by ,g td  over strata, while the lower bound over strata in time  t  becomes 
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     
    , ,

min ,1
,

11
RMSE   .

k k

g t g tK

g tk g
g t

t d
K n

 




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Also, the stratum-specific sub-terms  

     
2

, ,
ˆ

1
,

t g t g tt
B g T E

T
      

and  

           ,

1
SD , var

t g tt
g T

T
     

in a time period  1, , TT t t t   are the average of the individual measures  ,B g t  and  SD ,g t  over 

months where t  indicates a month, while stratum-specific lower bound over time period T  becomes the 

average of the individual measures  minRMSE , ,g t  i.e.,  

                                          
    , ,

min 1
,

11 1
RMSE , .

k k

g t g tK

t k
g t

g T
T K n

 




     

Furthermore, the overall sub-terms or term in a time period T  becomes the average of the weighted sub-

terms  ,B t  SD t  and  minRMSE t  over months, i.e.,  

                         
2

, , ,
ˆ

1
 ,

tg t g t g tt g
B T d E

T
       

                , ,

1
SD var

tg t g tg
T d

T
     

and 

              
    , ,

min ,1
,

11 1
RMSE .

k k

g t g tK

g tt k g
g t

T d
T K n

 




      

 
4. Analysis of results 
 

In this section, we introduce the Dutch Health Survey (GEZO) as a case study to demonstrate how the 

multi-level time series models can be built and how we update RPs in time. We address the four research 

questions in corresponding subsections. 
 

4.1 The Dutch Health Survey 
 

The GEZO has been conducted annually since 1981 by Statistics Netherlands as a repeated cross-

sectional survey in which a sample of households was interviewed with the aim of providing an overview 

of developments in the health, medical consumption, lifestyle and preventive behavior of the Dutch 

population. The sampling frame is formed by first drawing a sample from municipalities and then from all 
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people who live in the selected municipalities. As of 2010, the survey changed to a mixed-mode survey 

involving an initial web and the follow-up telephone (or face-to-face) interview. Non-respondents to web 

were contacted via telephone if their telephone numbers were known at the register, and otherwise a face-

to-face interview was arranged. Over these years, the sample size was increased to 15,000 and the overall 

response rate was increased by 25%. From 2014 onwards, the mix of the follow-ups was changed to a 

face-to-face interview. In 2018, however, a part of the web non-responses was approached via a face-to-

face interview in a more effective way. The propensity to respond to personal interviews in a time series 

strongly depends on web response outcomes, so in a sense modeling follow-up propensity is conditional 

on web RP model. This issue needs consideration more than interpreting time change in web RP and is 

beyond the main aim of this paper. For the sake of simplicity, our concern is to model web response 

propensity in this paper as a fundamental start, hence modeling follow-up RP in a time series is more 

suited to future research. As an important note here, only the web GEZO data from 2014-01 up to and 

including 2019-10 are analyzed in this study. We employ three auxiliary variables that stem from 

administrative frame or registers. The prescribed auxiliary variables are age, gender and ethnicity, which 

divides the population or its sample into 20 disjoint strata (see Appendix A for more information).  

The GEZO conducted over many years is a relatively consistent survey design. This feature makes 

exploring time-dependence in RPs valid because of the abundant time series. Our interest focuses on 

monthly response data, i.e., sample size and the number of respondents of each stratum. Predictions are 

made monthly but also can be aggregated quarterly or annually.  

 

4.2 What time series components contribute most to variation in RPs? 
 

We address this question in two steps: First, we go through model combinations and then we compare 

their performance. The comparison of multiple models is made from two views: (1) “what combination 

fits best to response data?” and (2) “what combination makes the most reliable predictions?” We use 

information criteria and posterior predictive p-values to measure the performance of each model, and thus 

search for an “optimal” model. The model is preferred when it has lower information criteria and 

predictive p-values closer to 0.5.  

Since trying all combinations of components in (3.1) places a heavy burden on computation, it is 

important to apply an efficient search for the “optimal” model. To do so, we fit the models to response 

data using the following strategy:  

1. Start with the baseline model (auxiliary variables only). 

2. Add fixed effects sequentially, linear time trend and seasonal trends, to the baseline. 

3. Investigate whether the model in 2 continues to improve with global time effects or global 

seasonality. 

4. Investigate whether stratum-specific time trends or seasonal effects further improve the model. 

5. Determine whether a white noise term for unexplained variation is needed. 

6. Explore robustness for outliers through different prior specifications or time-dependent 

structure of global random intercepts over time. 

7. Evaluate the model using a number of diagnostics. 
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Table 4.1 shows the selection results. The fixed-effect models (M1 to M3) behave worse than the 

mixed effect models relative to the trade-off between fitness and complexity, as the latter ones yield lower 

ICs (DIC, WAIC). Comparing M2/M3 to M1 implies that time slope   or seasonality   causes a 

decrease in ICs. However, the model further improves by introducing global trend ,tu  as a significant 

decrease in ICs in M4 relative to M3 is observed. As M5 and M6 show, the improvement continues with 

the addition of random intercepts for strata gv  and stratum-specific time trends , .g tz  Although white 

noise ,g tw  seems to add only very little in M7 overall, the posterior predictive p-values for variances 

imply that it is worth to include white noise. Further, we found that using a local level trend (RW1) or 

smooth trend (RW2) as the global trend tu  makes hardly any difference concerning ICs for models M6 to 

M11.  

Finally, the 4th column of Table 4.1 shows the prior distribution used for the global trend coefficients 

.tu  The non-normal priors that have been attempted do not further improve ICs, but because of heavier 

tails they help to combat an outlier in the data, an exceptional issue in February 2017.  

 
Table 4.1 

Summary of the multilevel time-series models considered 
 

Model Fixed  Random  Prior DIC pDIC WAIC pWAIC 
PPP 

Mean Variance 

M1   - - 7,511 7 7,518 13 0.501 0.006 

M2 ,   - - 7,415 8 7,421 15 0.503 0.051 

M3 , ,    - - 7,368 12 7,378 22 0.498 0.092 

M4 ,   tu  Normal 7,255 43 7,280 68 0.484 0.168 

M5 ,   ,t gu v  Normal 6,916 56 6,925 65 0.491 0.172 

M6 ,   ,, ,t gu v zg t  Normal 6,790 98 6,781 90 0.494 0.356 

M7 ,   , ,, , ,t g g tu v z wg t  Normal 6,790 131 6,769 110 0.517 0.425 

M8 ,   , ,, , ,t g g tu v z wg t  Laplace 6,790 133 6,768 111 0.503 0.397 

M9 ,   , ,, , ,t g g tu v z wg t  T-distributed 6,790 130 6,769 110 0.492 0.391 

M10 ,   , ,, , ,t g g tu v z wg t  Horseshoe 6,790 131 6,769 110 0.518 0.411 

M11 , ,    , ,, , ,t g g tu v z wg t  Laplace 6,806 150 6,779 122 0.519 0.413 

Notes: “-” indicates no random effects or prior. 
 Deviance Information Criterion (DIC); Widely Applicable Information Criterion (WAIC); Posterior predictive p-values (PPP). 

 
T-distributed and horseshoe priors are likely to accommodate and be robust against the outlier better 

than normal and Laplace priors, as shown by comparing their posterior means of global trend tu  in 

Appendix B. Besides, the local level trend of M8 seems to outweigh slightly the smooth trends of M11. P-

values of the mean of M8 bring the value closer to 0.5 than M9 and M11. 

To determine which model is flexible to the outlier and which one generates reliable estimation 

throughout the series, we look further into the discrepancy between observations and model-based 

estimates, specially M8, M9 and M11. The comparison demonstrates that the three models have limited 

ability to combat the outlier. The lower quantiles attempt to reach to the outlier but cannot cover it. In 

addition, the Laplace prior has slightly smaller uncertainty about the posterior estimates than the T-

distributed prior, but it has similar size in uncertainty to the smooth trend model (see Appendix B). 
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4.3 What level of response propensity prediction accuracy can be achieved 
for the next upcoming new time period? 

 

To answer the second research question, we estimate the level of and variation in overall response 

predictions for the forthcoming data collection wave. The estimated level is the deviation of the expected 

posterior propensity prediction from the realized response rate, while the estimated variation refers to the 

prediction accuracy in the overall RP. Also, we measure the balance between the level and variation and 

compare it with the benchmark in (3.9). The assessment allows us to validate if gains can be achieved 

from our method. Actions can be taken to adapt/maintain data collection in the following wave once the 

gain is known upon historic series.  

We stress that the analysis is made based on the “optimal” model, M8. For all strata in a new sample 

per month, the months since January 2014 up to but not including the present month are viewed as the 

historic time series, which are used for training M8. Then we use the fresh sample from the present month 

for the estimated predictive criteria. The historic time series is accumulated and predictive criteria are 

updated with the new wave. The rolling assessment ends with 2019-09 as one month must be left for the 

prediction exercise because 2019-10 is the last month of data available. To lend robustness to the impact 

of historic size on predictive performance, we let historic time series start with 60 months (from 2014-01 

to 2018-12) as the default initial trial.  

Table 4.2 shows that the posterior uncertainty in the overall RP predictions decrease steadily but 

slowly and converge to around 0.027. Because of the sampling variation that is inherent to the bias term, 

the pattern for bias is erratic and shows at best a modest decrease. Relative to the realized response rates, 

the greatest deviation of posterior means is around 0.07 in January and June, and the smallest deviation 

around 0.04 in March, May, August and October. The RMSE results vary along with the bias term across 

months, as the estimated SDs are much smaller than the estimated biases. The RMSE has a maximum 

value of 0.084 in January, and is likely caused by the outlier months in early 2017. Although the model 

reacts to this disruption, it has a negative impact on the performance of the resulting predictions in this 

month. Aside from January, in some months the estimated RMSE is close to the benchmark RMSEmin. It 

can be concluded that the estimated accuracy lies relatively close to the maximal possible accuracy. 
 

Table 4.2 

One month ahead prediction of three measures of RPs over strata: bias, standard deviation (SD), and the root 

mean square error (RMSE) compared to the benchmark (RMSEmin) 
 

 2019 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct 
bias 0.078 0.064 0.045 0.062 0.046 0.077 0.063 0.049 0.058 0.048 
SD 0.030 0.031 0.031 0.029 0.028 0.029 0.028 0.027 0.028 0.027 
RMSE 0.084 0.071 0.055 0.069 0.054 0.082 0.068 0.056 0.065 0.055 
RMSEmin 0.055 0.056 0.055 0.055 0.055 0.055 0.048 0.048 0.049 0.049 
Notes : The column indicates the present month for evaluating prediction performance.  
 Response propensities (RPs). 
           

4.4 How does prediction accuracy vary over population strata? 
 

This research question concerns the different strata and how well the model performs in predicting RP 

per stratum. For this purpose, we consider the stratum-level RMSE as well as its two components, i.e., 
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bias and standard deviation. The evaluation measures are taken as the average over the ten months ahead 

predictions. Month 2019-10 is the last month available. Looking ahead by almost a year allows data 

collection staff to plan adaptive designs well ahead of time. 

Similar to Section 4.3, we limit the analysis to the assumptions. The preferred model is selected from 

Section 4.1, and the historic time series is fixed to be 60 months (2014 to 2018). For each stratum, the 

model is fully trained by the fixed historic data and makes inference on predictions in the remaining 

months in 2019.  

Table 4.3 shows prediction criteria for each stratum together with the benchmark. The estimated bias 

terms vary widely between strata. The greatest departure of posterior expectation from the realized 

response rates occurs in stratum 8, 10, 12, and 18, all with biases larger than 0.1. Compared to biases, 

there is a relatively smooth change in the estimated SDs around 0.03, where stratum 4 has smallest 

uncertainty about the posterior estimates with 0.018.  

Some strata with greater biases may have less accuracy in posterior estimates of RPs than strata with 

less biased propensity. Similarly, the more biased the prediction is, the greater the RMSE is estimated to 

be. This is because the estimated biases are much greater than the estimated SDs. It is not surprising that 

stratum 10 has the greatest value in RMSE, where the prediction is the most biased and has the least 

precision. The RMSE results can catch up with, and even can be comparable/superior to the benchmark. 

For example, when the model generates prediction for stratum 20, more significant gains can be achieved 

than other strata.  

 
Table 4.3 

The average of ten months ahead prediction of three measures in each stratum: bias, standard deviation (SD), 

and the root mean square error (RMSE) that is compared to the benchmark (RMSEmin) 
 

 bias SD RMSE RMSEmin 

1 0.045 0.030 0.060 0.046 
2 0.066 0.030 0.077 0.094 
3 0.028 0.025 0.039 0.039 
4 0.049 0.018 0.053 0.061 
5 0.035 0.026 0.045 0.035 
6 0.047 0.021 0.053 0.064 
7 0.062 0.032 0.073 0.054 
8 0.105 0.030 0.111 0.154 
9 0.047 0.031 0.060 0.045 

10 0.165 0.035 0.173 0.160 
11 0.044 0.031 0.057 0.048 
12 0.134 0.030 0.138 0.092 
13 0.030 0.027 0.044 0.042 
14 0.081 0.022 0.086 0.074 
15 0.044 0.028 0.056 0.038 
16 0.067 0.022 0.072 0.072 
17 0.030 0.031 0.048 0.053 
18 0.114 0.029 0.120 0.146 
19 0.031 0.029 0.046 0.041 
20 0.095 0.030 0.105  0.172 

 
The predictive performance shows a significant difference between strata when there is only one 

different characteristic. For example, stratum 20 RMSE is 0.06 lower than stratum 10 RMSE. This seems 
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to imply that female groups may have smaller bias or variance than male groups when non-western people 

above the age of 64 are considered. Given the age and ethnicity of groups and compared with non-western 

groups (even rows), RMSE results are much lower in western groups (odd rows). To validate this 

supposition, some strata are combined into subgroups with less detailed characteristics. As Figure 4.1 

shows, the model yields better predictions for western group than non-western groups, as expected 

posterior estimates reach mostly the observed response per month. The comparative performance for 

age/gender groups are in Appendix B. 

 
Figure 4.1 Monthly posterior means of RP aggregated over Ethnic groups versus observed response rates 

(RR) of Ethnic groups.  

 

 

 

 

 

 

 

 

 
 

Note: Month 2014-01 to 2018-12 for the estimated model and Month 2019-01 to 2019-10 for RP predictions. 

 
4.5 How does prediction accuracy depend on the length of the historic survey 

time series? 
   

The primary concern of this question is to find out how robust the prediction performance is to the 

amount of historic time series that is used for model training and predicting. For this purpose, we continue 

with the average of three-month ahead predictions of RMSE and its two terms, bias and SD, at the overall 

level at any given time point. We call this length-based average the quarterly average. To explore the 

impact of historic data size, we perform 3-split time series cross validation on dataset, i.e., successively 

add three months of new data to the training dataset used for model-based predictions. This analysis is 

iterated on a rolling basis and the step-by-step strategy is laid down as follows, 

1.  Select the model components based on the whole time series. 

2.  Select the baseline set of historic time periods of length .t  Partition the window into the 

training set oD  of the first 3t   time periods and the test set tD  of the last three periods.  

3. Data oD  trains the selected model, by simulating from the posterior distribution of all model 

parameters, given .oD  
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4. Based on the simulated model in 3, posterior predictive means and variances are computed for 

the RPs for each stratum and each time point in the test set .tD  

5. Based on individual RPs predictions in 4, compute overall Bias, and SD, by using the sample 

proportion ,g td  in stratum g  at time t  as weights, then equation (3.8) computes the quarterly 

average of RMSE. 

6. Expand the window to 1,t   moving one time period forward. Repeat 3-5 for updating the 

predictions of RMSE and its two terms.  

7. Repeat 6 until length t  is the last available time period.  
 

We stress that it is necessary to use at least two years as the initial training length when seasonal 

components are included. In our case, time periods are months and the time series runs until 2019-07. 

In Figure 4.2 RMSE, Bias and SD estimates are length-dependent and computed over strata for three 

months ahead. The baseline window of training data for fitting the optimal model are 2014-01 to 2015-12. 

Along the time series window, bias results are approximately greater than two times the SDs. 

Consequently, RMSE results are dominated by biases and show the same volatility. At the end, their 

estimates are approximately 0.06, whereas SD estimates undergo a slight increase. The latter is somewhat 

surprising, as one would normally expect that using a longer time series to estimate the model would 

decrease the posterior standard errors of prediction. It turns out, however, that two events had a large 

impact on the prediction performance. First, early in 2017, data collection experienced an interruption 

caused by technical issues with the web server. This incident had a large immediate impact on RPs and 

consequently also on model prediction performances. Second, in 2018, conditional incentives were 

introduced and the survey questionnaire was made smartphone proof. This design intervention had a more 

gradual and longer lasting impact. 

 
Figure 4.2 One-step forward moving average of quarterly Bias (upper panel), quarterly SD (middle panel) 

and quarterly RMSE (bottom panel). RMSE (solid) against benchmark RMSE (dashed) when the 
length of training data set moves on x axis. 

 

 

 

 

 

 

 

 

 

 

 
 

 

0.10 
 

0.08 
 
 

0.06 
 

0.04 
 
 
 

0.10 
 

 

0.08 
 
 

0.06 
 
 

0.04 

 
 

 

0.10 
 

 

0.08 
 
 

0.06 
 
 

0.04 

    

20
15

-1
2     

20
16

-0
3     

20
16

-0
6     

20
16

-0
9     

20
16

-1
2     

20
17

-0
3    

20
17

-0
6     

20
17

-0
9    

20
17

-1
2     

20
18

-0
3    

20
18

-0
6    

20
18

-0
9     

20
18

-1
2     

20
19

-0
3    

20
19

-0
6     

20
19

-0
9 

          B
ias                    S

D
                 R

M
S

E
 



180 Wu et al.: Modelling time change in survey response rates: A Bayesian approach with an application to... 

 

 
Statistics Canada, Catalogue No. 12-001-X 

The Bias and RMSE results undergo a big increase from 2016-10 to 2017-02. When the training 

window arrives at time point 2016-10, the test window starts to include 2017-01 data where RPs dropped. 

Their climbing curves continues and reach maxima around 0.1, when the training window moves to 2016-

12 and the test window first moves to the “stable” month 2017-03 where the Bias and RMSE curves drop 

back around 0.05. During these months a slight, gradual increase in SD can be observed as well. 

The inclusion of these outlier months affects prediction accuracy during 2017. Between month 2017-

03 and 2017-12 the Bias and RMSE curves are more volatile, and decline only after 2018-01. The SDs 

have a rising tendency from 2017-03 to 2017-12 and hardly decrease. 

In 2018, the impact of the design intervention on RPs was much more modest than in 2017, but since it 

is structural it does affect prediction accuracy in 2018 and 2019. The two events, one technical incident 

and one design change, are realistic in survey practice and when ignored can have a devastating impact. 

We set an example of how one might deal with them. The extra efforts are: 

• Discard method. For the original data, clear the response numbers ,g tr  in 2017-01 and -02 and 

treat them as missing data. Impute these missing ,g tr  by the posterior means of simulated 

responses from the posterior predictive distribution. Note that in Section 4.2 we argued that 

using specific non-normal priors for time series components can also limit the effect of outliers. 

If an outlier is quite extreme and known to occur at a specific time, it may however be better to 

discard it.  

• Intervention method. Include an intervention term in the model orcapturing the possible 

structural change. Add intervention binary variables to the original data series and let them be 

0-1, where in our case they would take the value 1 and become active from 2018-01. The 

potential intervention-related effects could be either a single fixed effect, stratum-specific 

random effect or both.  

 
Results from applying these two methods separately are shown in Figure 4.3. 

The two methods have a clear effect on predictions. In the period of 2016-12 to 2017-05 where the 

training time series window stops, the posterior means of the discard method show a declining trend, 

relative to the original model’s posterior means (“Whole” in Figure 4.3). However, from 2017-10 to 2018-

03 the difference in the mode-based means and observations becomes small for the discard method. Also, 

the discard method decreases uncertainty about posterior means as the credible band becomes narrower 

since from 2016-12. The intervention-related impact on overall RP cannot be estimated well using just a 

few new months of data.  
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Figure 4.3 One-step forward moving average of quarterly posterior estimates of overall RP under three 
scenarios: (1) the original time series (top panel); (2) the new time series by discarding early 2017 
data (middle panel), and (3) the new time series by adding intervention-related effects (bottom 
panel).  

 

 

 

 

 

 

 

 

 

 

 

Note: Compared to the moving average of observed response rates quarterly (dashed), the model-based estimates are summarized as the 
posterior means (solid) with 95% credible region (band in grey). X axis labels the length of training data from 2014 to that time point. 

 

While, it was not our intention to provide a detailed account of modelling options for incidental and 

structural changes, the time series model we propose can be modified in a relatively straightforward and 

flexible way. Replication with long survey time series is warranted to get a sense of what options are 

superior. 

 
5. Discussion 
 

Accurate and reliable prediction of response propensities (RPs) is the key to improving and optimizing 

adaptive survey designs. Such inference can be complicated due to seasonal variation and time-related 

trends that may be specific to population strata. In this paper, we introduce a Bayesian multilevel time 

series model for stratum-level RP predictions. The model is flexible enough to include seasonal variation, 

various forms of trends, design changes and stratum-dependency, so that it can facilitate preparation for 

adaptive survey design in a changing survey climate. They are elicited from historic survey data and 

updated with new survey data.  

In this paper, we apply the method to a general population repeated survey, the Dutch Health Survey at 

Statistics Netherlands, to provide empirical support in a realistic case. The major focus is on improving 

stratum-level RP predictions that are subject to time-related factors. Based on various model combinations 

made of these factors, one of our concrete objectives is to search for the highest-performance model that 

makes a trade-off between model fitness and computational ease. The optimal model is selected based on 

criteria that assess both performance (high IC, p-value 0.5)  and predictive ability (low RPRMSE ).  
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These measures provide valuable insight into the relative gain achieved by adding new factors. This 

flexible approach allows other survey researchers to consider different time-related factors and ultimately 

choose the preferred model in their settings.  

The remaining objectives of this paper center on evaluating the prediction performance of stratum-

level/overall RPs based on the preferred model. We use predictive metrics, specifically the root-mean-

square error (RMSE), to assess uncertainty in predictions. This allows us to directly compare: (1) overall 

predicted response in first forthcoming data, (2) annual-averages of predicted response for each stratum, 

and (3) quarter-averages of overall predicted response. We evaluate the role of length of the historic 

survey time series in both the ultimately preferred model and a model that is re-optimized when data come 

in. Doing so we can find out when is a suitable time to start implementing an adaptive survey design. Note 

that when the survey design is made adaptive, it becomes less evident how to learn about the time change 

in model parameters. Also, the time series model itself may need to be updated depending on the type of 

survey adaptation. 

While our attempt is a first step to adaptive survey designs, there are, however, various methodological 

and practical considerations that should be addressed. First, our approach is applied to a frequently-

repeated cross-sectional survey. Historic data in such surveys has rich resources for relatively robust 

estimates of model coefficients and for making reliable predictions. When a survey is novel or conducted 

infrequently at a statistics bureau, our approach may be less powerful. Second, we assume that 

stratification is done through a fully-saturated model, i.e., strata are pre-specified by some auxiliary 

variables that are strong predictors for web responses. How does the prediction performance change when 

adding less influential auxiliary variables? It is important to assess the sensitivity of reliable predictions to 

the choice of auxiliary variables. Also, we assume that strata are fixed throughout the time series. In 

survey practice, the selected auxiliary data may gradually change over time, and thus also the relevance of 

certain strata. Hence, it is essential to consider auxiliary-related change in stratification when predicting 

responses. Third, we assume the design of a survey should be the same over time, i.e., the model 

assumptions must be valid over the whole time series. If an intervention or another self-reported mode 

(e.g., smartphone) is introduced, variation in responses caused by this must be included explicitly. The 

advanced method is needed because there is no prior historic knowledge for a design change before it 

happens. A large jump can be caused by the inclusion of such a change in the model and, before the model 

can be informative about the effects of the change on RPs, a sufficiently long historic sampling must first 

be acquired. 

We see also some limitations to the proposed methodology. In one particular year of the Dutch Health 

Survey data, we find a sudden increase in the standard deviations of predicted response propensities and 

overall quality indicators. The increase was the result of the intervention (smartphones were introduced as 

devices as well as conditional incentives). The results show that the model can be sensitive to design 

change. Hence, accounting for design changes is necessary and will temporarily reduce prediction 

performance.  
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Future research needs to address conditional response predictions in mixed-mode survey designs. In 

this paper, we focus only on single mode response predictions. Such considerations are worthwhile for 

optimizing decisions of adaptive survey designs, for example, whether to switch to a cheap or expensive 

mode given the budget. Our method paves the way for the development of such conditional models.  

Currently, the proposed model is designed for repeated cross-sectional surveys, but one may extend to 

other survey and sampling designs such as rotating panels. Such an extension would imply that panel 

response/attrition propensities are added to the model vector, and that the correlation structure among the 

propensities needs to be revisited. 
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Appendix A 
 
Table A.1 

Auxiliary variables form 20 strata and season is considered as an influential factor to predict response 

propensities 
 

  Category 

Auxiliary Variable Gender Male 

Female 

Age Youth (<= 17) 

Young (18-34) 

Middle-aged (35-54) 

Old (55-64) 

Retired (>= 65) 

Ethnicity Western (incl. native, first and second western generation) 

Non-western (incl. first and second non-western generation) 

Variable Season Winter (January-February) 

Spring (March-May) 

Summer (June-August) 

Autumn (September-November) 

Christmas (December) 
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Appendix B 
 

Figure B.1 The posterior means of global time trends tu  under M7 to M10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.2 Compare the posterior predictions of RP over strata made by four models (M7 to M10) to the 

observed RR and make a choice on the most compatible model with the observed outliers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The overall RP predictions are summarized as the posterior means (RP) and 95% credible region (CI). 
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Figure B.3 The posterior predictions of RP over strata against the observed RR under M8, M9 and M11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The overall RP predictions are summarized as the posterior means (RP) and 95% credible region (CI). 

 

Figure B.4 Monthly posterior means of RP of Age groups versus observed response rates (RR) of Age groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Month 2014-01 to 2018-12 for a model fit and Month 2019-01 to 2019-10 for RP predictions. 
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Figure B.5 Monthly posterior means of RP of Gender groups versus observed response rates (RR) of Gender 
groups.  

 

 

 

 

 

 

 

 

 

 

Note: Month 2014-01 to 2018-12 for a model fit and Month 2019-01 to 2019-10 for RP predictions. 

 
Appendix C 
 

The precision matrix uQ  contains the neighbor structure of the trend innovations (e.g., Rue and Held, 

2005). For first order random walk it is  

 

1 1

1 2 1

1 2 1
,

1 2 1

1 1

u
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 
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 
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Q
  

  

and for second order random walk is 

                   

1 2 1

2 5 4 1

1 4 6 4 1

1 4 6 4 1
.
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The DIC is defined as 

      post DICDIC 2 log , ,p r n E p     
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      DIC post post2 log , log , ,p p r n E E p r n     

where  postE   is the posterior mean of the latent parameter,   post,p r n E   is the likelihood evaluated 

at the posterior mean of   and DICp  is an estimate of the effective number of model parameters. Models 

with lower DIC values are preferred.  

The WAIC is defined as 

                                        
 

 post WAIC
1, GT

, ,WAIC 2 log 2i i
i

E p r n p


     

                  
 

    WAIC post post
1, GT

, .2 log l ,ogi i i i
i

p E p r n E p r n 


 
   

 
   

Here  ,i ip r n   is the pointwise-likelihood for stratum-by-time combination .i  Similar to DIC, 

models with lower WAIC values are preferred.  

 
Appendix D 
 

The binomial multi-level time-series models are fit using a Gibbs sampler. For the derivation of the set 

of full conditional distributions we refer to the (appendix of the) technical report version of Boonstra and 

van den Brakel (2022). There, the Gibbs sampler has been worked out for a general class of multilevel 

models, which encompasses the set of models discussed here, except for the fact that here we employ a 

binomial instead of Gaussian data distribution. Fortunately, the use of the scale-mixture data augmentation 

approach for binomial-logistic likelihoods (Polson, Scott and Windle, 2013) ensures that the same closed-

form full conditional distributions as in the Gaussian case can be used with only minimal changes to their 

parameters, along with an additional full conditional distribution for the auxiliary latent scale factors. To 

start with the latter, the full conditional for scale factor i  is given by 

    G ,, . Pi i i irp n     

independently for all .i  For notational simplicity we use index i  instead of the double index ,g t  used in 

the main text, and r  denotes the full observed response vector. Here  i  is the linear predictor, and 

 PG ,i i in   denotes the Pólya-Gamma distribution with parameters in  and   ,i  see Polson, Scott and 

Windle (2013). The coefficients’ full conditionals change only in their parameters. For example, in the full 

conditional for a general random effects component, equation (A.28) in the technical report, the precision 

matrix 
1Σ
 becomes  1Σ diag    and the response vector y  gets replaced by “working response” 

2 .r n




 

The same holds true for the full conditionals of the fixed effects and auxiliary parameters .  All other full 

conditionals remain unchanged.  
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Sampling with adaptive drawing probabilities 

Bardia Panahbehagh, Yves Tillé and Azad Khanzadi1 

Abstract 

In this paper, with and without-replacement versions of adaptive proportional to size sampling are presented. 
Unbiased estimators are developed for these methods and their properties are studied. In the two versions, the 
drawing probabilities are adapted during the sampling process based on the observations already selected. To 
this end, in the version with-replacement, after each draw and observation of the variable of interest, the vector 
of the auxiliary variable will be updated using the observed values of the variable of interest to approximate the 
exact selection probability proportional to size. For the without-replacement version, first, using an initial 
sample, we model the relationship between the variable of interest and the auxiliary variable. Then, utilizing 
this relationship, we estimate the unknown (unobserved) population units. Finally, on these estimated 
population units, we select a new sample proportional to size without-replacement. These approaches can 
significantly improve the efficiency of designs not only in the case of a positive linear relationship, but also in 
the case of a non-linear or negative linear relationship between the variables. We investigate the efficiencies of 
the designs through simulations and real case studies on medicinal flowers, social and economic data. 

 
Key Words: Adaptive sampling; Efficiency; Regression models; Sampling design. 

 
 

1. Introduction 
 

In probability proportional to size sampling (PS), the sample units are selected proportional to size of 

an auxiliary variable. The sampling design with unequal probabilities with-replacement, PPS, is first 

introduced by Hansen and Hurwitz (1943). Madow (1949), Narain (1951) and Horvitz and Thompson 

(1952) proposed without-replacement versions of PPS as PS.  Many different schemes have been 

proposed for PS  of which 50 of them are listed in Brewer and Hanif (1983) and Tillé (2006, 2020). 

Almost all of these methods use the  -estimator (Narain, 1951; Horvitz and Thompson, 1952) to derive 

an unbiased estimator of the population total and its variance estimator. Generally PS  is more efficient 

than PPS, however PPS offers advantages over PS  with respect to simplicity of the sample selection 

and the variance estimator calculations. 

Our goal is to improve PPS and PS  designs based on an adaptive approach. The word “adaptive” 

refers to the use of information from sampled units in the sampling process (Seber and Salehi, 2013). In 

adaptive designs, it is not possible to select the final sample before starting the sampling process. The 

concept of an adaptive design is to use the information from the observed sample units to obtain as much 

information as possible about the population. The proposed approaches are easy to implement. In 

Section 2, adaptive PPS and, in Section 3, adaptive PS  sampling are presented. Section 4 and 5 contain 

simulations and real case studies to evaluate the effectiveness of PPS sampling and PS  sampling, 

respectively. Conclusions are drawn in Section 6. 
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2. Adaptive PPS (APPS) sampling 
 

Assume that we have a finite population whose set of labels is denoted by  1, , , , .U k N … …  The 

variable of interest is  1, , , ,k Ny y yy … …
T

 and the auxiliary variable is  1, , , , .k Nx x xx … …
T

 Both 

variables are assumed to be positive and non-zero, i.e., 0, .N
y x   Suppose that the parameter of interest 

is the total of the variable of interest,  

 .y k
k U

t y


    

The total of the auxiliary variable is denoted by  

 .x k
k U

t x


    

Also, for any subset A  of U  with cardinality ,AN  we define  

 
1

, and = .yA k A k xA k
k A k A k AA

t y y y t x
N  

      

The basic idea behind APPS is to update the vector of auxiliary variables based on the information of the 

observed variable of interest after each draw. To take an APPS sample of size ,n  we proceed as described 

in Algorithm 1. 

 
Algorithm 1. Adaptive PPS (APPS) 

Define  

   1
1 11 1 1, , , , , , , , .k N

k N

x x x x

x xx
p p p

t t t t

 
    

 

x
p … … … …

T

T
 (2.1) 

Define  
0s   

For 1, ,i n …  do   

• Select a unit (say )j  in U  with probabilities  1, , , , .i i ik iNp p pp … …
T

  

• Define  1 .i is s j   

• Compute       1 1 1 1 1
, , , , ,i i i k i N

p p p   
p … …

T
 where  

  1

1

if
, for all .

if

i

i

k xs

i

x ysi k

k i

y t
k s

t tp k U

p k s






 




 (2.2) 
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In Algorithm 1, the first two units are selected with-replacement using 1p  and  2 1p p  respectively 

and we observe their y  values. Indeed, according to (2.2) in Algorithm 1, after observing the y  value of 

the first sample unit (say )j  we have  

 
1

2

1

if
, for all ,

if

j j j

j

x j xk

k

y x x
p k j

t y tp k U

p k j


  

 
 

  

or briefly 2 1.p p  Therefore at least the y  values of two different units are required to update the 

drawing probabilities vector  .p  For the third unit onwards, based on the observed y  values, we update 

the vector of drawing probabilities. Each unit is then selected using a different drawing probabilities 

vector.  

 

Result 1. In APPS, for each =1, , ,i n…  

                                                       1,ik
k U

p


   

and  

                                 
APPS

1

1ˆ i

i

n
k

i ik

y
t

n p

   

is an unbiased estimator of yt  with variance  

  
2

2APPS
1 1

1ˆ .
n N

k
y ik

i k ik

y
V t E t p

n p 

  
   
   

   

An unbiased estimator of the variance is given by:  

           

2

APPS APPS
1

1ˆ ˆ ˆ ,
1

i

i

n
k

i ik

y
V t t

n n p

 
  

   
   

where 
iikp  is th

ik  unit of  1 2, , , .i i i iNp p pp …
T

 

For the proof of Result 1, see Appendix A. 

Setting the drawing probabilities exactly proportional to size of ,y  i.e., ,k k yp y t  will lead to an 

unbiased estimator for yt  with zero variance,  

        
APPS

1 =1

1 1ˆ .i

i

n n
k ki

y
i iik k yi

y y
t t

n p n y t

      

By following the procedure of Algorithm 1 step by step, the drawing probability for unit k  approaches 

the ideal probability proportional to size based on .y  As evidence, consider that if units k  and   have 
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been selected at least once in steps up to and including ,i  then in all the steps after step ,i  the ratio of their 

drawing probabilities is equal to ,ky y  which is the same as the ideal case,  

 

1

, .j j

j j

xs k xsjk k y

j x ys x ys y

y t y tp y t
j i

p t t t t y t


 
   
 
 



 

  

 
3. Adaptive PS  (A PS)  sampling 
 

In general, without-replacement designs are more efficient than with-replacement designs of the same 

size due to the inclusion of unduplicated information. A PS  is a kind of adaptive version of PS.  To 

take a A PS  sample of size ,n  we proceed as described in Algorithm 2. 

 
Algorithm 2. Adaptive PS  (A PS)  

1. Based on a conventional design (like Simple Random Sampling without-replacement 

(SRSWOR) or PS)  an initial sample 0s  of size 0n  will be selected.  

2. Using 0 ,s  y  is modeled, for example, by a polynomial of order M  of x  to detect the 

potentially non-linear relationship between x  and .y  In other words, we assume a 

superpopulation model as  

 2
0 1 2 , ,M

k k k M k ky x x x k U          …   

where k  is a random variable independent of kx  with   0kE    and then  

 2 *
0 1 2 0
ˆ ˆ ˆ ˆˆ , \ ,M

k k k M ky x x x k U U s         …   

where ˆ , 1, , ,m m M  …  can be estimated using the least square method in finite population 

sampling. If ˆky  is negative or null, it is replaced by a small positive value of the ,y  so as not 

to have zero inclusion probabilities.  

3. Based on *ˆ ,ky k U  we select a PS  of size *
0 ,n n n   say *.s  

 
In Algorithm 2, one can obviously use any parametric or non-parametric model instead of a linear 

model to obtain a forecast of .ky  Our sampling method will be all the more efficient if the prediction of 

ky  is accurate. The predicted values must be positive. With an A PS  sampling design, we can estimate 

the population total by  

 
*

0

*PS
ˆ ,k

kA
k sk s k

y
t y




 


    



Survey Methodology, June 2023 195 

 

 
Statistics Canada, Catalogue No. 12-001-X 

with 

 
   

 
*

* *
0

* * *

ˆmin ,1 ,

ˆwhere constant is defined by min ,1 ,

k k k

k

k U

E I s c y

c c y n


  


 

(3.1)
 

where kI  is an indicator function which takes 1 if unit k  is selected as a unit of *.s  With inclusion 

probabilities exactly proportional to the size of y  as in (3.1), provided that  

 
*

*
*0 1, for all ,k

yU

n y
k U

t
     

we will have  

 
*

*
* *, for all ,k
k

yU

n y
k U

t
     

which will lead to an unbiased estimator for yt  with zero variance,  

 *
0

* * *0 0

* *PS
ˆ .k k

k k ys yyUA
k s k sk s k sk k yU

y y
t y y t t t

n y t
  

      


      

Then, if we can estimate the y  values with high accuracy based on Algorithm 2 and using initial sample 

0 ,s  we can estimate yt  with high efficiency. 

 

Result 2. In ,A PS  

 
*

0

*PS
ˆ ,k

kA
k sk s k

y
t y




 


    

is an unbiased estimator of yt  with variance  

         
* *

*

* *PS
ˆ ,k

kA
k U U k

y y
V t E


 

 
     

  


 

  

and provided that all the *
k   are strictly positive (which depends on the sampling design used in * ,U )  an 

unbiased estimator of variance is 

                
* *

*

* * *PS

ˆ ˆ ,k k

A
k s s k k

y y
V t


 




  
  

  

  

where * * * *
k k k         and  *

0 .k kE I I s    

For the proof of Result 2, see Appendix B. 
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In 
PS

ˆ ,
A

t


 for extreme cases where the size of *s  is too small, we may exaggerate the role of *s  in 

estimation relative to 0 .s  Then we can adjust the estimator by adding a weighting parameter, say 0 1   

as follows:  

                 
*

0

*PS
0 0

1 1ˆ 1 .k
kA

k sk s k

y
t N y

N n n
 




 
   

   
    

 

Result 3. In PS ,A   if we select 0s  by SRSWOR, then   

(i) 
PS PS

ˆ ˆ ,
A A

t t
 
  for  0 ,N n N    

(ii) 
PS

ˆ
A

t


 is unbiased,  PS
ˆ ,yA

E t t


  

(iii) with the following variance  

   

 
  * *

2
2 *

2 * *PS
0

2

2 20

0 0

ˆ

1
1 ,

1

k
kA

k U U k

y

y y
V t N E

N n

f
N S

f n








 

 
      

   
    

   

  


 
  

where 0 0 ,f n N  

(iv) and an unbiased estimator of the variance, provided that all the *
k   are strictly positive, is  

 
  * *

*2
2

2 * * *PS
0

2

2 20
0

0 0

ˆ ˆ

1
1 ,

1

k k

A
k s s k k

y

y y
V t N

N n

f
N s

f n








 




  

   
    

   

  

  

  

where  

                                                  
0

0

2 22 2
0

0

1 1
,

1 1
y k y k sU

k U k s

S y y and s y y
N n 

   
 
    

 

(v) The optimal value for   to minimize the variance of the estimator is  

                                 
 

0

0

0
2 * ** *

0

1 2

*
0

1* 21
1 .

k

k

f

yn

y fy

k ynN k U U

S
f

E S






  

 
   




 (3.2) 

 
4. Simulations for APPS Sampling 
 

In order to evaluate the designs, we have run simulations on real data. All the simulations in Section 4 

and Section 5 have been implemented using Monte Carlo methods with 2,000 iterations. We use a real 
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case study of medicinal flowers and real data from the statistical center of Iran between 2015-2016 

(https://www.amar.org.ir) to evaluate the results of Section 2. To compare the designs, the efficiency is 

defined by  

 
 
 

Efficiency ,
ˆ

sV N y
F

V t




   (4.1) 

where sy  is the sample mean in Simple Random Sampling with-replacement (SRSWR) with size n  and 

t̂  indicates the Hansen-Hurwitz estimator in PPS, APPS with n  draws or  -estimator in PS.  In each 

case, we indicate the variable of interest and the auxiliary variable. Drawing probabilities for PPS and 

APPS are calculated based on (2.1) and (2.2) respectively. Also inclusion probabilities for PS  are 

calculated based on the auxiliary variable using (3.1). For inclusion probabilities in (3.1) we used U  and 

m  instead of *U  and *n  respectively. As APPS and PS  are with and without-replacement designs 

respectively, in order to have a fair comparison, the cost of the sample needs to be as equal as possible for 

all of the designs. For this purpose, in each iteration an APPS is implemented first, and then for PS,  the 

sample size, is set to the number of distinct units obtained with n  draws in APPS. To implement the PS  

in this section we used the eliminatory method based on UPtille function available in the R package 

sampling (Tillé and Matei, 2015). 

For the simulations, we considered two kinds of data:   

1. Medicinal Flowers: The data come from a real case study on chamomile flower (Panahbehagh, 

Bruggemann, Parvardeh, Salehi and Sabzalian, 2018) as the medicinal use of flowers. The 

population mean of the “Essence” is the parameter of interest with 44.4yt   and 60.N   In 

practice, the variable of interest is not know prior to sampling so we use four readily available 

auxiliary variables with various correlations with the variable of interest. The four auxiliary 

variables and correlations are “Flower fresh weight” with 0.33, “Flower dry weight” with 0.59, 

“Stem height” with 0.53 and “Number of petals” with 0.71. The results are presented in 

Figure 4.1, where the correlations are denoted by .r  

2. Social Data: These data are from the Statistical Center of Iran gathered from 31 provinces of 

Iran in 2015-2016 (www.amar.org.ir). Marriage-Divorce and Academic degrees data are 

official statistics covering all target populations, based on the “National Organization for Civil 

Registration” and the “Ministry of Science, Research and Technology” respectively. In 

addition, the provincial population sizes are based on the 2016 census in Iran. We considered 

four situations having an auxiliary and a variable of interest:   

‒ The registered number of “Divorce less than 1 year” and “Marriage” as the variable of 

interest and the auxiliary variable respectively,  

‒ The registered number of “Divorce less than 1 year” and “Divorce” as the variable of 

interest and the auxiliary variable respectively,  
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‒ The registered number of “Bachelors” and “Diplomas” as the variable of interest and the 

auxiliary variable respectively,  

‒ The registered number of “Masters and higher” and “Diplomas” as the variable of interest 

and the auxiliary variable respectively.  
 

The results are presented in Figure 4.2.  
 

As can be seen in Figure 4.1, comparing the vertical axis, generally the higher the correlation, the 

higher the efficiency. By comparing Figure 4.2 and Figure 4.1, the efficiency increases dramatically for 

the social data compare to the medicinal flowers, which was predictable given the correlations of more 

than 0.90 in the former. A positive relationship between correlation and efficiency was expected because 

when the correlation is high, the drawing probabilities vector approximates the exact sampling probability 

proportional to size more accurately. 

 
Figure 4.1 Efficiencies of PS,  APPS and PPS relative to SRSWR for the medicinal flowers data with 

different auxiliary variables. m  is the size of PS  which is the Monte Carlo expectation of the 
number of distinct units in the respective with-replacement designs (PPS and APPS) of size .n  At 
the top-left of each plot, the variable of interest and the auxiliary variable are indicated, with the 
respective Pearson correlation, indicated by .r  
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Figure 4.2 Efficiencies of PS,  APPS and PPS relative to SRSWR for the social data with different 
auxiliary variables and different correlations. m  is the size of PS  which is the Monte Carlo 
expectation of the number of distinct units in the respective with-replacement designs (PPS and 
APPS) of size .n  At the top-left of each plot, the variable of interest and the auxiliary variable are 
indicated, with the respective Pearson correlation, indicated by .r  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note : Simple random sampling with-replacement (SRSWR); Proportional to size (PS); Adaptive probability proportional to size 
sampling (APPS); Probability proportional to size sampling (PPS). 

 

In Figure 4.1, for the medicinal flowers data, APPS is more efficient than PPS in all cases. The 

efficiency of PPS fluctuates slightly with the variation of ,n  which shows that increasing the sample size, 

improves both SRSWR and PPS at the same level. But at the same time, the efficiency of APPS generally 

increases with increasing sample size. In fact, in APPS, the larger the sample size, the more updated the 

auxiliary variable units, and therefore the more accurate the exact proportional to size approximation. 

Furthermore, although the efficiency of APPS is much closer to PS  compared to PPS in most cases, the 

efficiency of PS,  particularly for large sample sizes, is higher than the other two in all Figure 4.1 cases 

and discrepancy increases with increasing .n  As a final point in Figure 4.1, the efficiency of APPS is 

often about the same as PS  if the sample size is less than around 15% of the population size (a 

reasonable sample size). 

Most of the results in Figure 4.2 are similar to the results in Figure 4.1. For the social data, like the 

medicinal flowers data, APPS is more efficient than PPS in all cases and the efficiency of APPS generally 

increases (with some fluctuations) as the sample size increases. But interestingly, unlike the medicinal 

flowers, APPS is more efficient than PS  in some cases. This is interesting because it is much easier to 

implement and calculate the estimators in APPS than in PS.  Eventually, the efficiency of PPS fluctuates 
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5. Simulations for A PS  
 

Following the notation used in (4.1), “ ”  indicates the particular strategy, PS,  A PS  or A PS  

and sy  is the sample mean in SRSWOR with size .n  Regarding the note in step 2 of Algorithm 2 related 

to negative values of ˆ ,y  we replace them with 0.0001 in the simulations. 

Also for PS  and step 3 of Algorithm 2 in A PS,  we used the maximum entropy design based on 

UPmaxentropy function available in the R package sampling (Tillé and Matei, 2015). 

 

5.1 Boston data 
 

In this subsection, we analyze a dataset for the city of Boston (see Figure 5.1). Three different housing 

value variables for suburbs of Boston (Harrison and Rubinfeld, 1978; Belsley, Kuh and Welsch, 1980) are 

available in R package MASS as:   

• rm: Average number of rooms per dwelling,  

• lstat: Percentage of population in weak and deprived economic situation in Boston Suburbs,  

• medv: Median value of owner-occupied homes in 1,000$s.  

 
Figure 5.1 The relationship among three variables of interest, rm, lstat and medv, for the Boston data. In this 

3 3  matrix of plots, the lower off-diagonal draws scatter plots with fitted linear least squares 
regressions, the diagonal represents histograms with the name of the variables and the upper off-
diagonal reports the Pearson correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note : rm: Average number of rooms per dwelling; lstat: Percentage of population in weak and deprived economic situation in Boston 
Suburbs; medv: Median value of owner-occupied homes in 1,000$s.  
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In urban and residential areas, the larger the dimensions of a house, the more rooms one can expect to 

have. Also, the larger the dimensions of the house, the higher the value of the house. Therefore, there is a 

positive relationship between the dimensions of houses and the average number of rooms in each house 

and a positive relationship between the average number of rooms and the value of the house. In addition, 

economically disadvantaged people typically live in smaller houses, so the higher the proportion of 

disadvantaged people in a residential area, the greater the demand for small houses, and therefore the 

average number of rooms per house in that area will be lower. It follows that in a residential area there 

will be a negative relationship between the proportion of disadvantaged people and the average number of 

rooms in each house. 

To model the variable of interest y  on the auxiliary variable ,x  we used  

 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ ,k k k ky x x x        (5.1) 

where the coefficients are estimated based on the least squares error method. Here based on Result 3, the 

estimator of the optimal value of   given in (3.2) is used, where 2 2
0

ˆ
y yS s  and  

 
* * * *

*
*

* * * * *
ˆ .k k k

k

k U U k s sk k k

y yy y
E

   

  
        

     


   

  

The results of the simulations on the Boston data are presented in Table 5.1. In all cases, A PS  is 

better than A PS  and, in almost all cases, is more efficient than SRSWOR (except for some cases with 

small n  and 0 ).n  Also, for A PS  and A PS  the efficiency generally increases with increasing n  and 

0.n  In each model, the 2’sR  for different cases fluctuated slightly around a certain value, and predictably, 

the values appear to be independent of the initial sample size. Then, we have only reported the median 

values of the 2’sR  for different cases in the table. 

As expected, the higher the absolute value of the correlation between x  and ,y  the higher the 2 .R  

Consequently, as A PS  and A PS  use the regression model to predict y  values, the higher the 2 ,R  

the higher the efficiencies of A PS  and A PS .  Furthermore, PS  is better than SRSWOR only for 

rm-medv, which has a positive and almost linear relationship with some outliers, and PS  is less 

efficient than SRSWOR for the other two models with a negative (albeit strong) correlations. Due to the 

use of a regression model, A PS  and A PS  are not affected by the sign of the correlations. In the rm-

medv model, PS  is better than the others but for large sample size, A PS  could approach PS.  

Looking into Monte Carlo’s results in detail, A PS,  by exaggerating the role of *s  (as discussed in 

Section 3) in certain iterations, results in very biased estimates for the parameter. Since, it cannot be as 

efficient as SRSWOR for medv-rm and lstat-rm model, in the next simulation on economic data, we 

simply compare the efficiencies of A PS  and PS  designs.  
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Table 5.1 

Efficiencies of PS,  A PS  and A PS  with 3M   for Boston data. For each case, the variable of 

interest y  and the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  

respectively, F  indicates efficiency and 2R  is R-squared of model 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ

k k k ky x x x        
 

 n  
0n  2R  PS

F


 
PSA

F


 
PSA

F


 

x = medv, y = rm, N = 506 50 15 0.63 1.65 0.59 0.83 
20   0.70 1.05 
25   0.62 1.22 

75 20  1.65 0.81 1.01 
30   0.84 1.27 
40   0.89 1.43 

100 25  1.50 0.96 1.15 
30   0.78 1.34 
50   0.89 1.36 

x = stat, y = rm, N = 506 50 15 0.49 0.72 0.62 0.91 
20   0.40 1.03 
25   0.63 1.05 

75 20  0.71 0.77 0.97 
30   0.77 1.10 
40   0.71 1.19 

100 25  0.76 0.93 1.15 
30   0.86 1.23 
50   0.79 1.18 

x = medv, y = lstat, N = 506 50 15 0.70 0.11 1.20 1.51 
20   1.12 1.51 
25   1.08 1.64 

75 20  0.11 1.43 1.78 
30   1.41 1.93 
40   1.23 1.76 

100 25  0.10 1.40 1.91 
30   1.42 1.79 
50   1.41 1.93 

Note : rm: Average number of rooms per dwelling; lstat: Percentage of population in weak and deprived economic situation in Boston Suburbs; 

medv: Median value of owner-occupied homes in 1,000$s. 

 
5.2 Economic data 
 

Data from four different economic variables for 180 countries, partially available from 1980 to 2006, 

were used to evaluate the results of Section 3. The data are collected on the website of the World Bank 

(2021). The four variables considered in this simulation are:   

• GDP: Gross domestic product per capita based on purchasing power parity. GDP is gross 

domestic product converted to international dollars using purchasing power parity rates. An 

international dollar has the same purchasing power over GDP as the U.S. dollar has in the 

United States. GDP at purchaser’s prices is the sum of gross value added by all resident 

producers in the economy plus any product taxes and minus any subsidies not included in the 

value of the products. It is calculated without making deductions for depreciation of fabricated 

assets or for depletion and degradation of natural resources. Data are in constant 2,000 

international dollars.  

• MRI: Mortality rate of infants per 1,000 births is the number of infants dying before reaching 

one year of age.  
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• LEX: Life expectancy at birth indicates the number of years a newborn infant would live if 

prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.  

• YSC: Average schooling years in the total population aged over 25.  

 

One of the factors of production is human resources, and the higher the quality and quantity of human 

resources, the higher the productivity and output of the economy. The quality of human resources can be 

enhanced by improving their health and well-being. Improving healthcare leads to increased life 

expectancy and reduced mortality. In addition, the training of human resources leads to their promotion in 

the fields of science and technology. Therefore, live expectancy and average years of schooling have a 

positive relationship with GDP per capita, and mortality rate has a negative relationship with GDP per 

capita. 

The relationship among the four variables are presented in Figure 5.2. The population size N  varies 

for different pairs due to the exclusion of missing data. 

 
Figure 5.2 The relationship among the four variables in economic data. Scatter plots for the variables are 

shown with the Pearson correlations for the two variables at the top of each plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note : Mortality rate of infants (MRI); Life expectancy at birth (LEX); Average schooling years (YSC); Gross domestic product 
(GDP). 
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The results presented in Table 5.2 can be summarized as follows:   

• A PS  is more efficient than SRSWOR in all cases, but PS  is very inefficient for cases 

with non-linear or negative relationships. In all cases, except for model YSC-GDP, A PS  is 

more efficient than  PS.  

• MRI-GDP and LEX-GDP show almost the same pattern but with different signs. A PS  is 

efficient in both of them and is more efficient in the model with higher absolute correlation. But 

PS  is efficient for the positive relationship (LEX-GDP) and very inefficient in the negative 

relationship (MRI-GDP).  

• For YSC-LEX, although the relationship is positive and almost linear (with 2 20.82 0.67R    

for 0 1
ˆ ˆˆ = ),k ky x   but contrary to A PS  which is an efficient design, PS  is very 

inefficient compared to SRSWOR.  

• The correlations in both models YSC-LEX and MRI-YSC are the same, but according to 2 ,R  it 

seems that regression equation (5.1) can predict ŷ  in the latter model better than the former 

model. Therefore the mean of the efficiencies in model MRI-YSC (2.93) is higher than model 

YSC-LEX (2.47).  

• MRI-LEX has the highest 2 ,R  and for large initial and final sample sizes, the efficiency of 

A PS  is the highest compared to other relationships with the same initial and final sample 

sizes.  

• In general, increasing the sample size leads to an increase in the efficiency of A PS .  

• For A PS ,  in all cases (except model MRI-GDP), the highest efficiency (on average) is for 

the largest sample size  150 .n   

 
Table 5.2 

Efficiencies of PS  and A PS  with = 3M  for Economic data. For each case, the variable of interest y  and 

the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  respectively, F  

indicates efficiency and 
2R  is R-squared of model 2 3

0 1 2 3
ˆ ˆ ˆ ˆˆ = .k k k ky x x x       The population size ,N  is 

different for different pairs due to the exclusion of missing data 
 

 n  0n  
2R  

PS
F


 

PSA
F


 

x = MRI, y = GDP, N = 1,522 80 20 0.70 0.07 2.18 
30   2.30 
40   2.35 

100 30  0.08 2.39 
40   2.12 
50   2.13 

150 40  0.07 1.88 
60   1.94 
80   2.22 

x = MRI, y = LEX, N = 1,619 80 20 0.85 0.01 1.32 
30   2.67 
40   2.94 

100 30  0.01 2.02 
40   2.81 
50   2.89 

150 40  0.01 2.62 
60   4.17 
80   3.22 

Note : Mortality rate of infants (MRI); Gross domestic product (GDP); Life expectancy at birth (LEX); Average schooling years (YSC). 
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Table 5.2 (continued) 

Efficiencies of PS  and A PS  with = 3M  for Economic data. For each case, the variable of interest y  and 

the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  respectively, F  

indicates efficiency and 2R  is R-squared of model 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ = .k k k ky x x x       The population size ,N  is 

different for different pairs due to the exclusion of missing data 
 

 n  0n  2R  
PS

F


 
PSA

F


 

x = LEX, y = GDP, N = 2,357 80 20 0.76 1.31 2.46 
30   2.68 
40   2.38 

100 30  1.29 2.63 
40   2.57 
50   2.14 

150 40  1.41 2.86 
60   2.58 
80   2.51 

x = YSC, y = LEX, N = 452 80 20 0.75 0.08 2.29 
30   2.71 
40   2.30 

100 30  0.08 2.66 
40   2.34 
50   2.50 

150 40  0.07 2.82 
60   2.54 
80   2.10 

x = YSC, y = GDP, N = 487 80 20 0.71 3.46 2.30 
30   2.33 
40   2.23 

100 30  4.10 2.87 
40   2.97 
50   2.72 

150 40  7.04 4.49 
60   3.88 
80   2.99 

x = MRI, y = YSC, N = 428 80 20 0.78 0.05 2.82 
30   2.89 
40   2.56 

100 30  0.04 2.73 
40   2.94 
50   2.63 

150 40  0.04 3.65 
60   3.26 
80   2.90 

Note : Mortality rate of infants (MRI); Gross domestic product (GDP); Life expectancy at birth (LEX); Average schooling years (YSC). 

 
6. Conclusions 
 

Two adaptive versions of PS, with- and without- replacement have been presented. Both versions are 

based on information observed in the process of sampling, and help the sampler to obtain a more efficient 

sample, leading to more accurate estimates. Compared to the conventional versions, these adaptive 

versions of PS require no additional information and only need time to analyze the initial sample to decide 

on the next steps in the sampling process. 

APPS is easy to implement, more efficient than its conventional version, PPS, and sometimes more 

efficient than PS.  The simulations show that APPS is always more efficient than the PPS. In addition, 

increasing the sample size gives APPS the ability to update more units of the auxiliary variable, resulting 
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in increased efficiency. Besides these advantages, APPS has two weaknesses: the design is with-

replacement and the sample units must be selected one by one in order. 

On the other hand, A PS  is a without-replacement design that must be implemented in two phases. In 

the first phase, an initial sample is selected and y  is modeled on x  and in the second phase, the final 

sample is selected based on the predicted y  values. The relationship between x  and y  is modeled using 

the sample information based on Taylor expansion theory in the first phase of sampling. Next a 

proportional to size scheme is used in the second phase of sampling. The simulations confirm that A PS  

is an efficient and reliable design. 
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Proof of Result 1 
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and therefore  
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and  
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