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In This Issue 
 

It is with great sadness that we note the recent passing of M.P. Singh, Editor of the Survey Methodology 
journal since the very first issue in 1975. This issue of the journal opens with a brief obituary in memoriam. 

This issue of Survey Methodology also contains the fifth paper in the annual invited paper series in 
honour of Joseph Waksberg. A short biography of Joseph Waksberg was given in the June 2001 issue 
of the journal, along with the first paper in the series. I would like to thank the members of the 
selection committee- Michael Brick, chair, David Bellhouse, Gordon Brackstone and Paul Biemer – 
for having selected Jon Rao as the author of this year’s Waksberg paper. 

In his paper entitled “Interplay Between Sample Survey Theory and Practice: An Appraisal”, Rao 
traces how survey methods are stimulated by new theoretical developments, and how theory is 
challenged by survey practice. After summarizing fifty years of contributions from 1920 to 1970, he 
presents more detailed discussions of more recent developments in several areas. Finally, he discusses 
several examples of important theory that is not yet widely applied in practice. 

In their paper, Fuller and Kim develop and study an efficient hot-deck imputation method under the 
assumption that response probabilities are equal within imputation cells. Their proposed method is 
based on the idea of fractional imputation and uses regression techniques to obtain an approximation 
of the fully efficient version of fractional imputation. Variance estimation is developed for replication 
methods. Their proposed method is shown to work well in a simulation study. 

The paper by Brick, Jones, Kalton and Valliant compares through a simulation study three variance 
estimation methods in the presence of hot-deck imputation: the model-assisted method, the adjusted 
jackknife method and multiple imputation. The goal of the simulation study is to study the properties 
of these variance estimators when their underlying assumptions do not hold. They found that the 
coverage rate of confidence intervals is not close to the nominal level when the point estimates are 
biased due failure to take into account the domains of interest at the imputation stage. They conclude 
by noting that the differences between the variance estimators were too small and inconsistent to 
support claims that any one of them is superior in general. 

Little and Vartivarian study the effect of nonresponse weighting on the Mean Squared Error (MSE) 
of a population mean estimator. Nonresponse weighting adjustments are obtained by adjusting design 
weights by the inverse of response rates within cells. They come to the conclusion that a covariate 
must have two characteristics to reduce nonresponse bias: it needs to be related to both the probability 
of response and to the survey outcome. If the latter is true, nonresponse weighting can also reduce 
nonresponse variance. Estimates of the MSE are proposed and used to define a composite estimator. 
This composite estimator worked well when evaluated in a simulation study. 

O’Malley and Zaslavsky present generalized variance-covariance modeling functions (GVCFs) for 
multivariate means of ordinal survey items, for both complete data and data with structured non-
response. After developing and evaluating their methods, they give an illustration using data from the 
Consumer Assessments of Health Plans Study. In the concluding section they discuss some issues 
related to the application of GVCFs. 

The paper by Singh, Shukla and Kundu develops spatial and spatial-temporal models for small area 
estimation, as well as estimation of the MSE of the resulting EBLUPs. The models are applied to 
monthly per capita consumption expenditure data, and they conclude that the models can be very 
effective when there are significant correlations due to neighborhood effects.  

Belsby, Bjørnstad and Zhang discuss modeling to estimate the number of households of different 
sizes when there is nonignorable nonresponse. They model the response mechanism conditional on 
household size, using registered family size as supplementary data. After developing their modeling 
approach, they produce and evaluate estimates using data from the 1992 Norwegian Consumer 
Expenditure Survey. 

Nandram, Cox and Choi consider an analysis for categorical data from a single two-way table with 
both item and unit nonresponse or, in their terminology, partial classification. They propose to use a 
Bayesian approach for modeling different patterns of missingness under ignorability and non-
ignorability assumptions. The methods are illustrated using incompletely-observed bivariate data from 
the National Health and Nutrition Examination Survey where the variables subject to missingness are 
bone mineral density and family income. 
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In the first of three short notes in this issue, Beaumont discusses the use of data collection process 
information in nonresponse weight adjustment. He then presents an example from the Canadian 
Labour Force Survey using the number of attempts to contact a survey unit. An important result is that 
if the collection process information can be treated as random, then this approach does not introduce 
any bias. 

Starting from basic principles, Bustos derives an explicit form for the probability function of an 
ordered sample. Using this function, he shows how it can be used to compute inclusion probabilities 
with illustrations for common sample designs. Finally, he gives the general form for the correlation 
matrix of sample units, which depends solely on the inclusion probabilities. 

Finally, the paper by Wu briefly reviews some theory about the Pseudo Empirical Likelihood (PEL) 
method in survey sampling, and presents algorithms for computing maximum PEL estimators and for 
constructing PEL ratio confidence intervals. Functions using the statistical software R and S-PLUS are 
given to help implement these algorithms in real surveys or in simulation studies. 

 
 
Harold Mantel 
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In Memoriam 
M.P. Singh 
(1941-2005) 

 
 

 
 

Dr. Mangala P. Singh was born in India on December 
26th, 1941 and received his PhD in 1969 from the Indian 
Statistical Institute, with a specialization in survey sampling. 
He joined Statistics Canada in 1970, where he rose to the 
position of Director of Household Survey Methods Division 
in 1994, a position he held at his death on August 24th, 2005.  

M.P., as he was known to everyone, was a leading figure 
in the application of statistical methods at Statistics Canada. 
He was probably most closely associated with the Labour 
Force Survey, one of the agency’s most important surveys. 
He directed the methodology of the LFS through redesigns 
in the 1970s, 1980s, 1990s and early 
21st century, introducing innovations at 
every turn, but always ensuring that 
changes were well-tested and sound. 
In the later years of his career, he also 
oversaw the development of several 
new and innovative health surveys and 
directed the development of statistical 
programs in the areas of household 
expenditures, education and justice. 

M.P.’s role as the Editor-in-Chief of 
the journal Survey Methodology had a 
transformative effect on the profession 
of survey methodology, both in 
Canada and abroad. M.P. was the 
founding editor of the journal, and for 
30 years he guided its evolution into a 
flagship publication of Statistics Can-
ada. Thanks to his ability to attract a 
stellar team of associate editors and contributors, Survey 
Methodology is now recognized as one of the pre-eminent 
journals of its kind in the world. Even in recent years, M.P. 
continued to introduce innovations such as the Waksberg 
series of papers and electronic publishing. 

M.P. was a source of many other “big ideas” throughout 
his career at Statistics Canada. During the 1970s he was 
instrumental in gaining support for the idea of stable 
funding for methodology research, and he personally 
chaired the Methodology Research and Development 

Committee in its formative years. He encouraged numerous 
researchers and went out of his way to make them feel at 
home at Statistics Canada. Turning 60 did not stem the flow 
of ideas in any way. M.P. devoted considerable energy in 
the past four years to his proposal for a major overhaul of 
the way household surveys are conducted in Canada. As a 
result of his efforts, people throughout Statistics Canada are 
working on ways to implement his vision, and his influence 
on Canada’s household surveys will be felt for many years. 

M.P. had a special love for statistical research and for 
statistics as a profession. He personally authored over 40 

papers in international journals, co-
edited two books published by Wiley 
and Sons, and organized sessions and 
presented papers at numerous statis-
tical conferences. He served on vari-
ous committees and task forces of the 
Statistical Society of Canada, the 
International Statistical Institute and 
the American Statistical Association. 
He also served as Secretary of Sta-
tistics Canada’s external Advisory 
Committee on Statistical Methods. In 
turn, the profession honoured him; he 
was elected to the International Sta-
tistical Institute in 1975, and in 1988 
he became a Fellow of the American 
Statistical Association. 

However it is his influence on an 
entire generation of statisticians that 

may be his greatest legacy. He was a mentor, a coach, a 
patriarch and a friend to all who knew him. He inspired 
others to give their best, and they did. He was always ready 
with a laugh, a smile and a friendly word of encouragement. 
He dedicated his life to the profession of statistics and it is 
through those whom he touched that his true contribution is 
measured. 

He is survived by his wife Savitri, his two daughers Mala 
and Mamta, and his son Rahul. 
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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph 
Waksberg, who has made many important contributions to survey methodology. Each year a prominent 
survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper 
reviews the development and current state of a significant topic within the field of survey methodology, and 
reflects the mixture of theory and practice that characterized Waksberg’s work. The author receives a cash 
award made possible by a grant from Westat, in recognition of Joe Waksberg’s contributions during his 
many years of association with Westat. The grant is administered financially by the American Statistical 
Association. Previous winners were Gad Nathan, Wayne Fuller, Tim Holt, Norman Bradburn, Jon Rao, and 
Alastair Scott. The first five papers in the series have already appeared in Survey Methodology. 
 
 
Previous Waksberg Award Winners: 
 
Gad Nathan (2001) 
Wayne A. Fuller (2002) 
Tim Holt (2003) 
Norman Bradburn (2004) 
J.N.K. Rao (2005) 
 
 
 
 
Nominations: 
 
The author of the 2007 Waksberg paper will be selected by a four-person committee appointed by Survey 
Methodology and the American Statistical Association. Nominations of individuals to be considered as 
authors or suggestions for topics should be sent to the chair of the committee, Gordon Brackstone, 78 
Charing Road, Ottawa, Ontario, Canada, K2G 4C9, by email to Gordon.brackstone@sympatico.ca or by fax 
1-613-951-1394. Nominations and suggestions for topics must be received by February 28, 2006. 
 
 
 
 

2005 Waksberg Invited Paper 
 

Author: J.N.K. Rao 
 

J.N.K. Rao is Distinguished Research Professor at Carleton University, Ottawa. He has published many 
articles on a wide range of topics in survey sampling theory and methods and he is the author of the 2003 
Wiley book “Small Area Estimation”. His research interests in survey sampling include analysis of survey 
data, small area estimation, missing data and imputation, re-sampling methods and empirical likelihood 
inference. His 1981 JASA paper (with A.J. Scott) on analysis of survey data was selected as a landmark 
paper in survey sampling theory and methods. He has been a Member of the Advisory Committee on 
Statististical Methods of Statistics Canada since its inception 20 years ago. He is a Fellow of the Royal 
Society of Canada and received the 1994 Gold Medal of the Statistical Society of Canada. 
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Members of the Waskberg Paper Selection Committee (2005-2006) 
 
Gordon Brackstone, (Chair) 
Wayne Fuller, Iowa State University 
Sharon Lohr, Arizona State University 
 
 
 
Past Chairs: 
 
Graham Kalton (1999 - 2001) 
Chris Skinner (2001 - 2002) 
David A. Binder (2002 - 2003) 
J. Michael Brick (2003 - 2004) 
David R. Bellhouse (2004 - 2005) 
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Interplay Between Sample Survey Theory and Practice: An Appraisal 

J.N.K. Rao 1 

Abstract 

A large part of sample survey theory has been directly motivated by practical problems encountered in the design and 
analysis of sample surveys. On the other hand, sample survey theory has influenced practice, often leading to significant 
improvements. This paper will examine this interplay over the past 60 years or so. Examples where new theory is needed or 
where theory exists but is not used will also be presented. 

                                                           
1. J.N.K. Rao, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6. 

  
Key Words: Analysis of survey data; Early contributions; Inferential issues; Re-sampling methods; Small area 

estimation. 
 
 

 

1. Introduction  
In this paper I will examine the interplay between sample 

survey theory and practice over the past 60 years or so. I 
will cover a wide range of topics: early landmark contri-
butions that have greatly influenced practice, inferential 
issues, calibration estimation that ensures consistency with 
user specified totals of auxiliary variables, unequal proba-
bility sampling without replacement, analysis of survey 
data, the role of resampling methods, and small area esti-
mation. I will also present some examples where new theory 
is needed or where theory exists but is not used widely.  

2. Some Early Landmark Contributions: 
1920 – 1970  

This section gives an account of some early landmark 
contributions to sample survey theory and methods that 
have greatly influenced the practice. The Norwegian statis-
tician A.N. Kiaer (1897) is perhaps the first to promote sam-
pling (or what was then called “the representative method”) 
over complete enumeration, although the oldest reference to 
sampling can be traced back to the great Indian epic 
Mahabharata (Hacking 1975, page 7). In the representative 
method the sample should mirror the parent finite 
population and this may be achieved either by balanced 
sampling through purposive selection or by random sam-
pling. The representative method was used in Russia as 
early as 1900 (Zarkovic 1956) and Wright conducted 
sample surveys in the United States around the same period 
using this method. By the 1920s, the representative method 
was widely used, and the International Statistical Institute 
played a prominent role by creating a committee in 1924 to 
report on the representative method. This committee’s re-
port discussed theoretical and practical aspects of the ran-
dom sampling method. Bowley’s (1926) contribution to this 
report includes his fundamental work on stratified random 

sampling with proportional allocation, leading to a represen-
tative sample with equal inclusion probabilities. Hubback 
(1927) recognized the need for random sampling in crop 
surveys: “The only way in which a satisfactory estimate can 
be found is by as close an approximation to random 
sampling as the circumstances permit, since that not only 
gets rid of the personal limitations of the experimenter but 
also makes it possible to say what is the probability with 
which the results of a given number of samples will be 
within a given range from the mean. To put this into definite 
language, it should be possible to find out how many 
samples will be required to secure that the odds are at least 
20:1 on the mean of the samples within one maund of the 
true mean”. This statement contains two important obser-
vations on random sampling: (1). It avoids personal biases 
in sample selection. (2). Sample size can be determined to 
satisfy a specified margin of error apart from a chance of 1 
in 20. Mahalanobis (1946b) remarked that R.A. Fisher’s 
fundamental work at Rothamsted Experimental Station on 
design of experiments was influenced directly by Hubback 
(1927).  

Neyman’s (1934) classic landmark paper laid the theo-
retical foundations to the probability sampling (or design-
based) approach to inference from survey samples. He 
showed, both theoretically and with practical examples, that 
stratified random sampling is preferable to balanced sam-
pling because the latter can perform poorly if the underlying 
model assumptions are violated. Neyman also introduced 
the ideas of efficiency and optimal allocation in his theory 
of stratified random sampling without replacement by 
relaxing the condition of equal inclusion probabilities. By 
generalizing the Markov theorem on least squares esti-
mation, Neyman proved that the stratified mean, =sty  

,hh h yW∑  is the best estimator of the population mean, 
,hh hYWY ∑=  in the linear class of unbiased estimators of 

the form ,hii hih hb ybWy ∑∑=  where hh yW ,  and hY  are 
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the thh stratum weight, sample mean and population mean 
),...,,1( Lh =  and hib  is a constant associated with the 

item value hiy ′ observed on the thi  sample draw =i(  
)...,,1 hn  in the thh  stratum. Optimal allocation ...,,( 1n  

)Ln  of the total sample size, ,n  was obtained by minimi-
zing the variance of sty  subject to ;nnh h =∑  an earlier 
proof of Neyman allocation by Tschuprow (1923) was later 
discovered. Neyman also proposed inference from larger 
samples based on normal theory confidence intervals such 
that the frequency of errors in the confidence statements 
based on all possible stratified random samples that could be 
drawn does not exceed the limit prescribed in advance 
“whatever the unknown properties of the population”. Any 
method of sampling that satisfies the above frequency 
statement was called “representative”. Note that Hubback 
(1927) earlier alluded to the frequency statement associated 
with the confidence interval. Neyman’s final contribution to 
the theory of sample surveys (Neyman 1938) studied two-
phase sampling for stratification and derived the optimal 
first phase and second phase sample sizes, n′  and ,n  by 
minimizing the variance of the estimator subject to a given 
cost ,nccnC +′′=  where the second phase cost per unit, 

,c  is large relative to the first phase cost per unit, .c′  
The 1930’s saw a rapid growth in demand for informa-

tion, and the advantages of probability sampling in terms of 
greater scope, reduced cost, greater speed and model-free 
features were soon recognized, leading to an increase in the 
number and type of surveys taken by probability sampling 
and covering large populations. Neyman’s approach was 
almost universally accepted by practicing survey statis-
ticians. Moreover, it inspired various important extensions, 
mostly motivated by practical and efficiency considerations. 
Cochran’s (1939) landmark paper contains several impor-
tant results: the use of ANOVA to estimate the gain in effi-
ciency due to stratification, estimation of variance compo-
nents in two-stage sampling for future studies on similar 
material, choice of sampling unit, regression estimation 
under two-phase sampling and effect of errors in strata sizes. 
This paper also introduced the super-population concept: 
“The finite population should itself be regarded as a random 
sample from some infinite population”. It is interesting to 
note that Cochran at that time was critical of the traditional 
fixed population concept: “Further, it is far removed from 
reality to regard the population as a fixed batch of known 
numbers”. Cochran (1940) introduced ratio estimation for 
sample surveys, although an early use of the ratio estimator 
dates back to Laplace (1820). In another landmark paper 
(Cochran 1942), he developed the theory of regression 
estimation. He derived the conditional variance of the usual 
regression estimator for a fixed sample and also a sample 
estimator of this variance, assuming a linear regression 
model ,exy +β+α=  where e  has mean zero and 

constant variance in arrays in which x  is fixed. He also 
noted that the regression estimator remains (model) unbi-
ased under non-random sampling, provided the assumed 
linear regression model is correct. He derived the average 
bias under model deviations (in particular, quadratic regres-
sion) for simple random sampling as the sample size n  
increased. Cochran then extended his results to weighted 
regression and derived the now well-known optimality 
result for the ratio estimator, namely it is a “best unbiased 
linear estimate if the mean value and variance both change 
proportional to x ”. The latter model is called the ratio mod-
el in the current literature. Madow and Madow (1944) and 
Cochran (1946) compared the expected (or anticipated) 
variance under a super-population model to study the 
relative efficiency of systematic sampling and stratified 
random sampling analytically. This paper stimulated much 
subsequent research on the use of super-population models 
in the choice of probability sampling strategies, and also for 
model-dependent and model-assisted inferences (see section 
3).  

In India, Mahalanobis made pioneering contributions to 
sampling by formulating cost and variance functions for the 
design of surveys. His 1944 landmark paper (Mahalanobis 
1944) provides deep theoretical results on the efficient de-
sign of sample surveys and their practical applications, in 
particular to crop acreage and yield surveys. The well-
known optimal allocation in stratified random sampling 
with cost per unit varying across strata is obtained as a 
special case of his general theory. As early as 1937, 
Mahalanobis used multi-stage designs for crop yield surveys 
with villages, grids within villages, plots within grids and 
cuts of different sizes and shapes as sampling units in the 
four stages of sampling (Murthy 1964). He also used a two-
phase sampling design for estimating the yield of cinchona 
bark. He was instrumental in establishing the National 
Sample Survey (NSS) of India, the largest multi-subject 
continuing survey operation with full-time staff using 
personal interviews for socioeconomic surveys and physical 
measurements for crop surveys. Several prominent survey 
statisticians, including D.B. Lahiri and M.N. Murthy, were 
associated with the NSS. 

P.V. Sukhatme, who studied under Neyman, also made 
pioneering contributions to the design and analysis of large-
scale agricultural surveys in India, using stratified multi-
stage sampling. Starting in 1942 – 1943 he developed 
efficient designs for the conduct of nationwide surveys on 
wheat and rice crops and demonstrated high degree of 
precision for state estimates and reasonable margin of error 
for district estimates. Sukhatme’s approach differed from 
that of Mahalanobis who used very small plots for crop 
cutting employing ad hoc staff of investigators. Sukhatme 
(1947) and Sukhatme and Panse (1951) demonstrated that 
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the use of a small plot might give biased estimates due to the 
tendency of placing boundary plants inside the plot when 
there is doubt. They also pointed out that the use of an 
ad hoc staff of investigators, moving rapidly from place to 
place, forces the plot measurements on only those sample 
fields that are ready for harvest on the date of the visit, thus 
violating the principle of random sampling. Sukhatme’s 
solution was to use large plots to avoid boundary bias and to 
entrust crop-cutting work to the local revenue or agricultural 
agency in a State.  

Survey statisticians at the U.S. Census Bureau, under the 
leadership of Morris Hansen, William Hurwitz, William 
Madow and Joseph Waksberg, made fundamental contribu-
tions to sample survey theory and practice during the period 
1940 – 70, and many of those methods are still widely used 
in practice. Hansen and Hurwitz (1943) developed the basic 
theory of stratified two-stage sampling with one primary 
sampling unit (PSU) within each stratum drawn with proba-
bility proportional to size measure (PPS sampling) and then 
sub-sampled at a rate that ensures self-weighting (equal 
overall probabilities of selection) within strata. This ap-
proach provides approximately equal interviewer work 
loads which is desirable in terms of field operations. It also 
leads to significant variance reduction by controlling the 
variability arising from unequal PSU sizes without actually 
stratifying by size and thus allowing stratification on other 
variables to reduce the variance. On the other hand, 
workloads can vary widely if the PSUs are selected by 
simple random sampling and then sub-sampled at the same 
rate within each stratum. PPS sampling of PSUs is now 
widely used in the design of large-scale surveys, but two or 
more PSUs are selected without replacement from each 
stratum such that the PSU inclusion probabilities are 
proportional to size measures (see section 5).  

Many large-scale surveys are repeated over time, such as 
the monthly Canadian Labour Force Survey (LFS) and the 
U.S. Current Population Survey (CPS), with partial replace-
ment of ultimate units (also called rotation sampling). For 
example, in the LFS the sample of households is divided 
into six rotation groups (panels) and a rotation group re-
mains in the sample for six consecutive months and then 
drops out of the sample, thus giving five-sixth overlap be-
tween two consecutive months. Yates (1949) and Patterson 
(1950), following the initial work of Jessen (1942) for 
sampling on two occasions with partial replacement of 
units, provided the theoretical foundations for design and 
estimation of repeated surveys, and demonstrated the effi-
ciency gains for level and change estimation by taking 
advantage of past data. Hansen, Hurwitz, Nisseslson and 
Steinberg (1955) developed simpler estimators, called −K  
composite estimators, in the context of stratified multi-stage 
designs with PPS sampling in the first stage. Rao and 

Graham (1964) studied optimal replacement policies for the 
−K composite estimators. Various extensions have also 

been proposed. Composite estimators have been used in the 
CPS and other continuing large scale surveys. Only re-
cently, the Canadian LFS adopted a type of composite esti-
mation, called regression composite estimation, that makes 
use of sample information from previous months and that 
can be implemented with a regression weights program (see 
section 4).  

Keyfitz (1951) proposed an ingenious method of 
switching to better PSU size measures in continuing surveys 
based on the latest census counts. His method ensures that 
the probability of overlap with the previous sample of one 
PSU per stratum is maximized, thus reducing the field costs 
and at the same time achieving increased efficiency by using 
the better size measures in PPS sampling. The Canadian 
LFS and other continuing surveys have used the Keyfitz 
method. Raj (1956) formulated the optimization problem as 
a “transportation problem” in linear programming. Kish and 
Scott (1971) extended the Keyfitz method to changing strata 
and size measures. Ernst (1999) has given a nice account of 
the developments over the past 50 years in sample co-
ordination (maximizing or minimizing the sample overlap) 
using transportation algorithms and related methods; see 
also Mach, Reiss and Schiopu-Kratina (2005) for appli-
cations to business surveys with births and deaths of firms. 

Dalenius (1957, Chapter 7) studied the problem of opti-
mal stratification for a given number of strata, ,L  under the 
Neyman allocation. Dalenius and Hodges (1959) obtained a 
simple approximation to optimal stratification, called the 
cum f  rule, which is extensively used in practice. For 
highly skewed populations with a small number of units 
accounting for a large share of the total ,Y  such as business 
populations, efficient stratification requires one take-all 
stratum )( 11 Nn =  of big units and take-some strata of 
medium and small size units. Lavallée and Hidiroglou 
(1988) and Rivest (2002) developed algorithms for deter-
mining the strata boundaries using power allocation (Fellegi 
1981; Bankier 1988) and Neyman allocation for the take 
some strata. Statistics Canada and other agencies currently 
use those algorithms for business surveys. 

The focus of research prior to 1950 was on estimating 
population totals and means for the whole population and 
large planned sub-populations, such as states or provinces. 
However, users are also interested in totals and means for 
unplanned sub-populations (also called domains) such as 
age-sex groups within a province, and parameters other than 
totals and means such as the median and other quantiles, for 
example median income. Hartley (1959) developed a 
simple, unified theory for domain estimation applicable to 
any design, requiring only the standard formulae for the 
estimator of total and its variance estimator, denoted in the 
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operator notation as )(ˆ yY  and )( yv  respectively. He 
introduced two synthetic variables ij y  and ij a  which take 
the values iy  and 1 respectively if the unit i  belongs to 
domain j  and equal to 0 otherwise. The estimators of do-
main total )( yYY jj =  and domain size )( aYN jj =  are 
then simply obtained from the formulae for )(ˆ yY  and 

)( yv  by replacing iy  by ij y  and ij a  respectively. Sim-
ilarly, estimators of domain means and domain differences 
and their variance estimators are obtained from the basic 
formulae for )(ˆ yY  and ).( yv  Durbin (1968) also obtained 
similar results. Domain estimation is now routinely done 
using Hartley’s ingenious method.  

For inference on quantiles, Woodruff (1952) proposed a 
simple and ingenious method of getting a level)1( −α−  
confidence interval under general sampling designs, using 
only the estimated distribution function and its standard 
error (see Lohr’s (1999) book, pages 311 – 313). Note that 
the latter are simply obtained from the formulae for a total 
by changing y  to an indicator variable. By equating the 
Woodruff interval to a normal theory interval on the 
quantile, a simple formula for the standard error of the thp  
quantile estimator may also be obtained as half the length of 
the interval divided by the upper point2/ −α  of the 
standard N(0, 1) distribution which equals 1.96 if α  = 0.05 
(Rao and Wu 1987; Francisco and Fuller 1991). A sur-
prising property of the Woodruff interval is that it performs 
well even when p  is small or large and sample size is 
moderate (Sitter and Wu 2001). 

The importance of measurement errors was realized as 
early as the 1940s. Mahalanobis’ (1946a) influential paper 
developed the technique of interpenetrating sub-samples 
(called replicated sampling by Deming 1960). This method 
was extensively used in large-scale sample surveys in India 
for assessing both sampling and measurement errors. The 
sample is drawn in the form of two or more independent 
sub-samples according to the same sampling design such 
that each sub-sample provides a valid estimate of the total or 
mean. The sub-samples are assigned to different interview-
ers (or teams) which leads to a valid estimate of the total 
variance that takes proper account of the correlated response 
variance component due to interviewers. Interpenetrating 
sub-samples increase the travel costs of interviewers, but 
they can be reduced through modifictions of interviewer 
assignments. Hansen, Hurwitz, Marks and Mauldin (1951), 
Sukhatme and Seth (1952) and Hansen, Hurwitz and 
Bershad (1961) developed basic theories under additive 
measurement error models, and decomposed the total vari-
ance into sampling variance, simple response variance and 
correlated response variance. The correlated response vari-
ance due to interviewers was shown to be of the order 1−k  
regardless of the sample size, where k  is the number of 
interviewers. As a result, it can dominate the total variance 

if k  is not large. The 1950 U.S. Census interviewer vari-
ance study showed that this component was indeed large for 
small areas. Partly for this reason, self-enumeration by mail 
was first introduced in the 1960 U.S. Census to reduce this 
component of the variance (Waksberg 1998). This is indeed 
a success story of theory influencing practice. Fellegi (1964) 
proposed a combination of interpenetration and replication 
to estimate the covariance between sampling and response 
deviations. This component is often neglected in the decom-
position of total variance but it could be sizeable in practice. 

Yet another early milestone in sample survey methods is 
the concept of design effect (DEFF) due to Leslie Kish (see 
Kish 1965, section 8.2). The design effect is defined as the 
ratio of the actual variance of a statistic under the specified 
design to the variance that would be obtained under simple 
random sampling of the same size. This concept is espe-
cially useful in the presentation and modeling of sampling 
errors, and also in the analysis of complex survey data 
involving clustering and unequal probabilities of selection 
(see section 6).  

We refer the reader to Kish (1995), Kruskal and 
Mosteller (1980), Hansen, Dalenius and Tepping (1985) and 
O’Muircheartaigh and Wong (1981) for reviews of early 
contributions to sample survey theory and methods.   

3. Inferential Issues  
3.1 Unified Design-Based Framework  

The development of early sampling theory progressed 
more or less inductively, although Neyman (1934) studied 
best linear unbiased estimation for stratified random 
sampling. Strategies (design and estimation) that appeared 
reasonable were entertained and relative properties were 
carefully studied by analytical and/or empirical methods, 
mainly through comparisons of mean squared errors, and 
sometimes also by comparing anticipated mean squared 
errors or variances under plausible super-population models, 
as noted in section 2. Unbiased estimation under a given 
design was not insisted upon because it “often results in 
much larger mean squared error than necessary” (Hansen, 
Hurwitz and Tepping 1983). Instead, design consistency 
was deemed necessary for large samples i.e., the estimator 
approches the population value as the sample size increases. 
Classical text books by Cochran (1953), Deming (1950), 
Hansen, Hurwitz and Madow (1953), Sukhatme (1954) and 
Yates (1949), based on the above approach, greatly influ-
enced survey practice. Yet, academic statisticians paid little 
attention to traditional sampling theory, possibly because it 
lacked a formal theoretical framework and was not 
integrated with mainstream statistical theory. Numerous 
prestigious statistics departments in North America did not 
offer graduate courses in sampling theory. 
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Formal theoretical frameworks and approaches to inte-
grating sampling theory with mainstream statistical infer-
ence were initiated in the 1950s under a somewhat idealistic 
set-up that focussed on sampling errors assuming the ab-
sence of measurement or response errors and non-response. 
Horvitz and Thompson (1952) made a basic contribution to 
sampling with arbitrary probabilities of selection by formu-
lating three subclasses of linear design-unbiased estimators 
of a total Y  that include the Markov class studied by 
Neyman as one of the subclasses. Another subclass with 
design weight id  attached to a sample unit i  and depending 
only on i  admitted the well-known estimator with weight 
inversely proportional to the inclusion probability iπ  as the 
only unbiased estimator. Narain (1951) also discovered this 
estimator, so it should be called the Narain-Horvitz-
Thompson (NHT) estimator rather than the HT estimator as 
it is commonly known. For simple random sampling, the 
sample mean is the best linear unbiased estimator (BLUE) 
of the population mean in the three subclasses, but this is not 
sufficient to claim that the sample mean is the best in the 
class of all possible linear unbiased estimators. Godambe 
(1955) proposed a general class of linear unbiased esti-
mators of a total Y  by recognizing the sample data as 

}),,{( siyi i ∈  and by letting the weight depend on the 
sample unit i  as well as on the other units in the sample ,s  
that is, the weight is of the form ).(sd i  He then established 
that the BLUE does not exist in the general class  

,)(ˆ
isi i ysdY ∑ ∈=  (1) 

even under simple random sampling. This important neg-
ative theoretical result was largely overlooked for about 10 
years. Godambe also established a positive result by relating 
y  to a size measure x  using a super-population regression 

model through origin with error variance proportional to 
,2x  and then showing that the NHT estimator under any 

fixed sample size design with iπ  proportional to ix  
minimizes the anticipated variance in the unbiased class (1). 
This result clearly shows the conditions on the design for the 
use of the NHT estimator. Rao (1966) recognized the lim-
itations of the NHT estimator in the context of surveys with 
PPS sampling and multiple characteristics. Here the NHT 
estimator will be very inefficient when a characteristic y  is 
unrelated or weakly related to the size measure x  (such as 
poultry count y  and farm size x  in a farm survey). Rao 
proposed efficient alternative estimators for such cases that 
ignore the NHT weights. Ignoring the above results, some 
theoretical criteria were later advanced in the sampling 
literature to claim that the NHT estimator should be used for 
any sampling design. Using an amusing example of circus 
elephants, Basu (1971) illustrated the futility of such criteria. 
He constructed a “bad” design with iπ  unrelated to iy  and 
then demonstrated that the NHT estimator leads to absurd 

estimates which prompted the famous mainstream Bayesian 
statistician Dennis Lindley to conclude that this counte-
rexample destroys the design-based sample survey theory 
(Lindley 1996). This is rather unfortunate because NHT and 
Godambe clearly stated the conditions on the design for a 
proper use of the NHT estimator, and Rao (1966) and Hajek 
(1971) proposed alternative estimators to deal with multiple 
characteristics and bad designs, respectively. It is interesting 
to note that the same theoretical criteria led to a bad variance 
estimator of the NHT estimator as the ‘optimal’ choice (Rao 
and Singh 1973).  

Attempts were also made to integrate sample survey 
theory with mainstream statistical inference via the like-
lihood function. Godambe (1966) showed that the likeli-
hood function from the sample data },),,{( siyi i ∈  re-
garding the −N vector of unknown −y values as the para-
meter, provides no information on the unobserved sample 
values and hence on the total .Y  This uninformative feature 
of the likelihood function is due to the label property that 
treats the N  population units as essentially N  post-strata. 
A way out of this difficulty is to take the Bayesian route by 
assuming informative (exchangeable) priors on the para-
meter vector (Ericson 1969). An alternative route (design-
based) is to ignore some aspects of the sample data to make 
the sample non-unique and thus arrive at an informative 
likelihood function (Hartley and Rao 1968; Royall 1968). 
For example, under simple random sampling, suppressing 
the labels i  and regarding the data as },{ siyi ∈  in the 
absence of information relating i  to ,iy  leads to the sample 
mean as the maximum likelihood estimator of the popu-
lation mean. Bayesian estimation, assuming non-informa-
tive prior distributions, leads to results similar to Ericson’s 
(1969) but depends on the sampling design unlike Ericson’s. 
In the case iy  is a vector that includes auxiliary variables 
with known totals, Hartley and Rao (1968) showed that the 
maximum likelihood estimator under simple random sam-
pling is approximately equal to the traditional regression 
estimator of the total. This paper was the first to show how 
to incorporate known auxiliary population totals in a like-
lihood framework. For stratified random sampling, labels 
within strata are ignored but not strata labels because of 
known strata differences. The resulting maximum likelihood 
estimator is approximately equal to a pseudo-optimal linear 
regression estimator when auxiliary variables with known 
totals are available. The latter estimator has some good con-
ditional design-based properties (see section 3.4). The focus 
of Hartley and Rao (1968) was on the estimation of a total, 
but the likelihood approach has much wider scope in sam-
pling,  including  the  estimation  of  distribution  functions 
and  quantiles  and  the  construction  of  likelihood  ratio  
based confidence  intervals  (see section  8.1).  The  Hartley-
Rao non-parametric likelihood approach was discovered 
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independently twenty years later (Owen 1988) in the 
mainstream statistical inference under the name “empirical 
likelihood”. It has attracted a good deal of attention, 
including its application to various sampling problems. So 
in a sense the integration efforts with mainstream statistics 
were partially successful. Owen’s (2002) book presents a 
thorough account of empirical likelihood theory and its 
applications.   
3.2 Model-Dependent Approach  

The model-dependent approach to inference assumes that 
the population structure obeys a specified super-population 
model. The distribution induced by the assumed model 
provides inferences referring to the particular sample of 
units s  that has been drawn. Such conditional inferences 
can be more relevant and appealing than repeated sampling 
inferences. But model-dependent strategies can perform 
poorly in large samples when the model is not correctly 
specified; even small deviations from the assumed model 
that are not easily detectable through model checking 
methods can cause serious problems. For example, consider 
the often-used ratio model when an auxiliary variable x  
with known total X  is also measured in the sample: 

Nixy iii ...,,1; =ε+β=  (2) 

where the iε  are independent random variables with zero 
mean and variance proportional to .ix  Assuming the model 
holds for the sample, that is, no sample selection bias, the 
best linear model-unbiased predictor of the total Y  is given 
by the ratio estimator Xxy )/(  regardless of the sample 
design. This estimator is not design consistent unless the 
design is self-weighting, for example, stratified random 
sampling with proportional allocation. As a result, it can 
perform very poorly in large samples under non-self-
weighting designs even if the deviations from the model are 
small. Hansen et al. (1983) demonstrated the poor perfor-
mance under a repeated sampling set-up, using a stratified 
random sampling design with near optimal sample alloca-
tion (commonly used to handle highly skewed populations). 
Rao (1996) used the same design to demonstrate poor 
performance under a conditional framework relevant to the 
model-dependent approach (Royall and Cumberland 1981). 
Nevertheless, model-dependent approaches can play a vital 
role in small area estimation where the sample size in a 
small area (or domain) can be very small or even zero; see 
section 7. 

Brewer (1963) proposed the model-dependent approach 
in the context of the ratio model (2). Royall (1970) and his 
collaborators made a systematic study of this approach. 
Valliant, Dorfman and Royall (2000) give a comprehensive 
account of the theory, including estimation of the (condi-
tional) model variance of the estimator which varies with .s  

For example, under the ratio model (2) the model variance 
depends on the sample mean .sx  It is interesting to note 
that balanced sampling through purposive selection appears 
in the model-dependent approach in the context of protec-
tion against incorrect specification of the model (Royall and 
Herson 1973).   
3.3 Model-Assisted Approach  

The model-assisted approach attempts to combine the 
desirable features of design-based and model-dependent 
methods. It entertains only design-consistent estimators of 
the total Y  that are also model unbiased under the assumed 
“working” model. For example, under the ratio model (2), a 
model-assisted estimator of Y  for a specified probability 
sampling design is given by the ratio estimator =rŶ  

XXY )ˆ/ˆ( NHTNHT  which is design consistent regardless of 
the assumed model. Hansen et al. (1983) used this estimator 
for their stratified design to demonstrate its superior 
performance over the model dependent estimator .)/( Xxy  
For variance estimation, the model-assisted approach uses 
estimators that are consistent for the design variance of the 
estimator and at the same time exactly or asymptotically 
model unbiased for the model variance. However, the infer-
ences are design-based because the model is used only as a 
“working” model. 

For the ratio estimator rŶ  the variance estimator is given 
by  

),()ˆ/()ˆ(var 2
NHT evXXYr =  (3) 

where in the operator notation )(ev  is obtained from )( yv  
by changing iy  to the residuals /ˆ( NHTYye ii −=  

.)ˆ
NHT ixX  This variance estimator is asymptotically equiv-

alent to a customary linearization variance estimator ),(ev  
but it reflects the fact that the information in the sample 
varies with :ˆ

NHTX  larger values lead to smaller variability 
and smaller values to larger variability. The resulting normal 
pivotal leads to valid model-dependent inferences under the 
assumed model (unlike the use of )(ev  in the pivotal) and 
at the same time protects against model deviations in the 
sense of providing asymptotically valid design-based infer-
ences. Note that the pivotal is asymptotically equivalent to 

2/1)]~(/[)~(ˆ eveY  with .)/(~
iii xXYye −=  If the devia-

tions from the model are not large, then the skewness in the 
residuals ie~  will be small even if iy  and ix  are highly 
skewed, and normal confidence intervals will perform well. 
On the other hand, for highly skewed populations, the 
normal intervals based on NHTŶ  and its standard error may 
perform poorly under repeated sampling even for fairly 
large samples because the pivotal depends on the skewness 
of the .iy  Therefore, the population structure does matter in 
design-based inferences contrary to the claims of Neyman 
(1934), Hansen et al. (1983) and others. Rao, Jocelyn and 
Hidiroglou (2003) considered the simple linear regression 
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estimator under two-phase simple random sampling with 
only x  observed in the first phase. They demonstrated that 
the coverage performance of the associated normal intervals 
can be poor even for moderately large second phase samples 
if the true underlying model that generated the population 
deviated significantly from the linear regression model (for 
example, a quadratic regression of y  on )x  and the 
skewness of x  is large. In this case, the first phase −x  
values are observed, and a proper model-assisted approach 
would use a multiple linear regression estimator with x  and 

2xz =  as the auxiliary variables. Note that for single phase 
sampling such a model-assisted estimator cannot be imple-
mented if only the total X  is known since the estimator 
depends on the population total of .z  

Särndal, Swenson and Wretman (1992) provide a com-
prehensive account of the model-assisted apporach to esti-
mating the total Y  of a variable y  under the working linear 
regression model  

Nixy iii ...,,1; =ε+β′=  (4) 

with mean zero, uncorrelated errors iε  and model variance 
22)( iiim qV σ=σ=ε  where the iq  are known constants 

and the −x vectors have known totals X  (the population 
values Nxx ...,,1  may not be known). Under this set-up, 
the model-assisted approach leads to the generalized regres-
sion (GREG) estimator with a closed-form expression 

,)(:)ˆ(ˆˆˆ
NHTNHT i

si
igr yswXXBYY ∑

∈
=−′+=  (5) 

where  

( )iiis i qyxTB /ˆˆ 11 ∑ −− π=  (6) 

with iiis i qxxT /ˆ 1 ′π= ∑ −  is a weighted regression coeffi-
cient, and 1)()( −π= iii sgsw  with )ˆ(1)( NHT

′−+= XXsg i  
,/ˆ 1

ii qxT −  known as “ −g weights”. Note that the GREG 
estimator (5) can also be written as NHT

ˆˆ EyUi i +∑ ∈ , where 
Bxy ii
ˆˆ ′=  is the predictor of iy  under the working model 

and NHTÊ  is the NHT estimator of the total prediction error 
∑ ∈= Ui ieE  with .ˆ iii yye −=  This representation shows 

the role of the working model in the model-assisted 
approach. The GREG estimator (5) is design-consistent as 
well as model-unbiased under the working model (4). 
Moreover, it is nearly “optimal” in the sense of minimizing 
the asymptotic anticipated MSE (model expectation of the 
design MSE) under the working model, provided the 
inclusion probability, ,iπ  is proportional to the model 
standard deviation .iσ  However, in surveys with multiple 
variables of interest, the model variance may vary across 
variables. Because one must use a general-purpose design 
such as the design with inclusion probabilities proportional 
to sizes, the optimality result no longer holds, even if the 
same vector ix  is used for all the variables iy  in the 
working model.  

The GREG estimator simplifies to the ‘projection’ esti-
mator is i yswBX )(ˆ ∑=′  with iii qxTXsg /ˆ)( 1−′=  if the 
model variance 2

iσ  is proportional to ixλ′  for some .λ  
The ratio estimator is obtained as a special case of the pro-
jection estimator by letting ,ii xq =  leading to =)(sg i  

.ˆ/ HTXX  Note that the GREG estimator (5) requires only 
the population totals X  and not necessarily the individual 
population values .ix  This is very useful because the 
auxiliary population totals are often ascertained from exter-
nal sources such as demographic projections of age and sex 
counts. Also, it ensures consistency with the known totals 
X  in the sense of .)( Xxsw is i =∑  Because of this prop-
erty, GREG is also a calibration estimator. 

Suppose there are p  variables of interest, say ...,,)1(y  
,)( py  and we want to use the model-assisted approach to 

estimate the corresponding population totals ....,, )()1( pYY  
Also, suppose that the working model for )( jy  is of the 
form (4) but requires possibly different vector−x  )( jx  
with known total )( jX  for each :...,,1 pj =  

....,,1,)()()()( Nixy j
i

jj
i

j
i =ε+β= ′  (7) 

In this case, the −g weights depend on j  and in turn the 
final weights )(swi  also depend on .j  In practice, it is 
often desirable to use a single set of final weights for all the 
p  variables to ensure internal consistency of figures when 

aggregated over different variables. This property can be 
achieved only by enlarging the −x vector in the model (7) 
to accommodate all the variables ,)( jy  say x~  with known 
total X

~
 and then using the working model  

....,,1,~ )()()( Nixy j
i

j
i

j
i =ε+β′=  (8)  

However, the resulting weighted regression coefficients 
could become unstable due to possible multicolinearity in 
the enlarged set of auxiliary variables. As a result, the 
GREG estimator of )( jY  under model (8) is less efficient 
compared to the GREG estimator under model (7). More-
over, some of the resulting final weights, say ),(~ swi  may 
not satisfy range restrictions by taking either values smaller 
than 1 (including negative values) or very large positive 
values. A possible solution to handle this problem is to use a 
generalized ridge regression estimator of )( jY  that is 
model-assisted under the enlarged model (Chambers 1996; 
Rao and Singh 1997). 

For variance estimation, the model-assisted approach 
attempts to used design-consistent variance estimators that 
are also model-unbiased (at least for large samples) for the 
conditional model variance of the GREG estimator. De-
noting the variance estimator of the NHT estimator of Y  by 

)( yv  in an operator notation, a simple Taylor linearization 
variance estimator satisfying the above property is given by 

),( gev  where )( gev  is obtained by changing iy  to 

ii esg )(  in the formula for );( yv  see Hidiroglou, Fuller 
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and Hickman (1976) and Särndal, Swenson and Wretman 
(1989). 

In the above discussion, we have assumed a working lin-
ear regression model for all the variables .)( jy  But in prac-
tice a linear regression model may not provide a good fit for 
some of the −y variables of interest, for example, a binary 
variable. In the latter case, logistic regression provides a 
suitable working model. A general working model that cov-
ers logistic regression is of the form =)( im yE =β′ )( ixh  

,iμ  where (.)h  could be non-linear; model (5) is a special 
case with .)( aah =  A model-assisted estimator of the total 
under the general working model is the difference estimator 

,ˆˆˆ 1
NHT is iU iY μπ−μ+ ∑∑ −  where =μ iˆ )ˆ( β′ixh  and β̂  is 

an estimator of the model parameter .β  It reduces to the 
GREG estimator (5) if .)( aah =  This difference estimator 
is nearly optimal if the inclusion probability iπ  is pro-
portional to ,iσ  where 2

iσ  denotes the model variance, 
).( im yV  

GREG estimators have become popular among users 
because many of the commonly used estimators may be 
obtained as special cases of (5) by suitable specifications of 

ix  and .iq  A Generalized Estimation System (GES) based 
on GREG has been developed at Statistics Canada.  

Kott (2005) has proposed an alternative paradigm in-
ference, called the randomization-assisted model-based ap-
proach, which attempts to focus on model-based inference 
assisted by randomization (or repeated sampling). The def-
inition of anticipated variance is reversed to the ran-
domization-expected model variance of an estimator, but it 
is identical to the customary anticipated variance when the 
working model holds for the sample, as assumed in the 
paper. As a result, the choices of estimator and variance 
estimator are often similar to those under the model-assisted 
approach. However, Kott argues that the motivation is 
clearer and “the approach proposed here for variance 
estimation leads to logically coherent treatment of finite 
population and small-sample adjustments when needed”.   
3.4 Conditional Design-Based Approach  

A conditional design-based approach has also been 
proposed. This approach attempts to combine the condi-
tional features of the model-dependent approach with the 
model-free features of the design-based approach. It allows 
us to restrict the reference set of samples to a “relevant” 
subset of all possible samples specified by the design. 
Conditionally valid inferences are obtained in the sense that 
the conditional bias ratio (i.e., the ratio of conditional bias to 
conditional standard error) goes to zero as the sample size 
increases. Approximately %)1(100 α−  of the realized con-
fidence intervals in repeated sampling from the conditional 
set will contain the unknown total .Y  

Holt and Smith (1979) provide compelling arguments in 
favour of conditional design based inference, even though 
the discussion was confined to one-way post-stratification of 
a simple random sample in which case it is natural to make 
inferences conditional on the realized strata sample sizes. 
Rao (1992, 1994) and Casady and Valliant (1993) studied 
conditional inference when only the auxiliary total X  is 
known from external sources. In the latter case, conditioning 
on the NHT estimator NHTX̂  may be reasonable because it 
is “approximately” an ancillary statistic when X  is known 
and the difference XX −NHT

ˆ  provides a measure of imbal-
ance in the realized sample. Conditioning on NHTX̂  leads to 
the “optimal” linear regression estimator which has the 
same form as the GREG estimator (5) with B̂  given by (6) 
replaced by the estimated optimal value optB̂  of the regres-
sion coefficient which involves the estimated covariance of 

NHTŶ  and NHTX̂  and the estimated variance of .ˆ
NHTX  This 

optimal estimator leads to conditionally valid design-based 
inferences and model-unbiased under the working model 
(4). It is also a calibration estimator depending only on the 
total X  and it can be expressed as isi i ysw )(~∑ ∈  with 
weights )(~)(~ sgdsw iii =  and the calibration factor )(~ sg i  
depending only on the total X  and the sample −x values. 
It works well for stratified random sampling (commonly 
used in establishment surveys). However, optB̂  can become 
unstable in the case of stratified multistage sampling unless 
the number of sample clusters minus the number of strata is 
fairly large. The GREG estimator does not require the latter 
condition but it can perform poorly in terms of conditional 
bias ratio and conditional coverage rates, as shown by Rao 
(1996). The unbiased NHT estimator can be very bad condi-
tionally unless the design ensures that the measure of imbal-
ance as defined above is small. For example, in the Hansen 
et al. (1983) design based on efficient −x stratification, the 
imbalance is small and the NHT estimator indeed performed 
well conditionally. 

Tillé (1998) proposed an NHT estimator of the total Y  
based on approximate conditional inclusion probabilities 
given .ˆ

NHTX  His method also leads to conditionally valid 
inferences, but the estimator is not calibrated to X  unlike 
the “optimal” linear regression estimator. Park and Fuller 
(2005) proposed a calibrated GREG version based on 
Tillé’s estimator which leads to non-negative weights more 
often than GREG. 

I believe practitioners should pay more attention to 
conditional aspects of design-based inference and seriously 
consider the new methods that have been proposed.  

Kalton (2002) has given compelling arguments for fa-
voring design-based approaches (possibly model-assisted 
and/or conditional) for inference on finite population de-
scriptive parameters. Smith (1994) named design-based 
inference as “procedural inference” and argued that 
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procedural inference is the correct approach for surveys in 
the public domain. We refer the reader to Smith (1976) and 
Rao and Bellhouse (1990) for reviews of inferential issues 
in sample survey theory.  

 
4. Calibration Estimators  

Calibration weights )(swi  that ensure consistency with 
user-specified auxiliary totals X  are obtained by adjusting 
the design weights 1−π= iid  to satisfy the benchmark con-
straints .)( Xxsw isi i =∑ ∈  Estimators that use calibration 
weights are called calibration estimators and they use a 
single set of weights )}({ swi  for all the variables of 
interest. We have noted in section 3.4 that the model-
assisted GREG estimator is a calibration estimator, but a 
calibration estimator may not be model-assisted in the sense 
that it could be model-biased under a working model (4) 
unless the −x variables in the model exactly match the 
variables corresponding to the user-specified totals. For 
example, suppose the working model suggested by the data 
is a quadratic in a scalar variable x  while the user-specified 
total is only its total .X  The resulting calibration estimator 
can perform poorly even in fairly large samples, as noted in 
section 3.3, unlike the model-assisted GREG estimator 
based on the working quadratic model that requires the 
population total of the quadratic variables 2

ix  in addition to 
.X  
Post-stratification has been extensively used in practice 

to ensure consistency with known cell counts corresponding 
to a post-stratification variable, for example counts in dif-
ferent age groups ascertained from external sources such as 
demographic projections. The resulting post-stratified esti-
mator is a calibration estimator. Calibration estimators that 
ensure consistency with known marginal counts of two or 
more post-stratification variables have also been employed 
in practice; in particular raking ratio estimators that are 
obtained by benchmarking to the marginal counts in turn 
until convergence is approximately achieved, typically in 
four or less iterations. Raking ratio weights )(swi  are 
always positive. In the past, Statistics Canada used raking 
ratio estimators in the Canadian Census to ensure consis-
tency of 2B – item estimators with known 2A – item counts. 
In the context of the Canadian Census, Brackstone and Rao 
(1979) studied the efficiency of raking ratio estimators and 
also derived Taylor linearization variance estimators when 
the number of iterations is four or less. Raking ratio 
estimators have also been employed in the U.S. Current 
Population Survey (CPS). It may be noted that the method 
of adjusting cell counts to given marginal counts in a two-
way table was originally proposed in the landmark paper by 
Deming and Stephan (1940). 

Unified approaches to calibration, based on minimizing a 
suitable distance measure between calibration weights and 
design weights subject to benchmark constraints, have 
attracted the attention of users due to their ability to accom-
modate arbitrary number of user-specified benchmark con-
straints, for example, calibration to the marginal counts of 
several post-stratification variables. Calibration software is 
also readily available, including GES (Statistics Canada), 
LIN WEIGHT (Statistics Netherlands), CALMAR (INSEE, 
France) and CLAN97 (Statistics Sweden).  

A chi-squared distance, ,/)( 2
iiisi i dwdq −∑ ∈  leads to 

the GREG estimator (5), where the x – vector corresponds to 
the user-specified benchmark constraints (BC) and )(swi  
is denoted as iw  for simplicity (Huang and Fuller 1978; 
Deville and Särndal 1992). However, the resulting cal-
ibration weights may not satisfy desirable range restrictions 
(RR), for example some weights may be negative or too 
large especially when the number of constraints is large and 
the variability of the design weights is large. Huang and 
Fuller (1978) proposed a scaled modified chi-squared 
distance measure and obtained the calibration weights 
through an iterative solution that satisfies BC at each 
iteration. However, a solution that satisfies BC and RR may 
not exist. Another method, called shrinkage minimization 
(Singh and Mohl 1996) has the same difficulty. Quadratic 
programming methods that minimize the chi-squared 
distance subject to both BC and RR have also been pro-
posed (Hussain 1969) but the feasible set of solutions satis-
fying both BC and RR can be empty. Alternative methods 
propose to change the distance function (Deville and 
Särndal 1992) or drop some of the BC (Bankier, Rathwell 
and Majkowski 1992). For example, an information dis-
tance of the form })/(log{ iiiiisi i dwdwwq +−∑ ∈  gives 
raking ratio estimators with non-negative weights ,iw  but 
some of the weights can be excessively large. “Ridge” 
weights obtained by minimizing a penalized chi-squared 
distance have also been proposed (Chambers 1996), but no 
guarantee that either BC or RR are satisfied, although the 
weights are more stable than the GREG weights. Rao and 
Singh (1997) proposed a “ridge shrinkage” iterative method 
that ensures convergence for a specified number of 
iterations by using a built-in tolerance specification to relax 
some BC while satisfying RR. Chen, Sitter and Wu (2002) 
proposed a similar method.  

GREG calibration weights have been used in the 
Canadian Labour Force Survey and more recently it has 
been extended to accommodate composite estimators that 
make use of sample information in previous months, as 
noted in section 2 (Fuller and Rao 2001; Gambino, Kennedy 
and Singh 2001; Singh, Kennedy and Wu 2001). GREG-
type calibration estimators have also been used for the 
integration of two or more independent surveys from the 
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same population. Such estimators ensure consistency be-
tween the surveys, in the sense that the estimates from the 
two surveys for common variables are identical, as well as 
benchmarking to known population totals (Renssen and 
Nieuwenbroek 1997; Singh and Wu 1996; Merkouris 2004). 
For the 2001 Canadian Census, Bankier (2003) studied cali-
bration weights corresponding to the “optimal” linear re-
gression estimator (section 3.3) under stratified random 
sampling. He showed that the “optimal” calibration method 
performed better than the GREG calibration used in the 
previous census, in the sense of allowing more BC to be 
retained while at the same time allowing the calibration 
weights to be at least one. The “optimal” calibration weights 
can be obtained from GES software by including the known 
strata sizes in the BC and defining the tuning constant iq  
suitably. Note that the “optimal” calibration estimator also 
has desirable conditional design properties (section 3.4). 
Weighting for the 2001 Canadian census switched from 
projection GREG (used in the 1996 census) to “optimal” 
linear regression. 

Demnati and Rao (2004) derived Taylor linearization 
variance estimators for a general class of calibration esti-
mators with weights ),ˆ( λ′= iii xFdw  where the LaGrange 
multiplier λ̂  is determined by solving the calibration 
constraints. The choice aaF += 1)(  gives GREG weights 
and aeaF =)(  leads to raking ratio weights. In the special 
case of GREG weights, the variance estimator reduces to 

)( gev  given in section 3.3. 
We refer the reader to the Waksberg award paper of 

Fuller (Fuller 2002) for an excellent overview and appraisal 
of regression estimation in survey sampling, including 
calibration estimation. 

 
5. Unequal Probability Sampling 

     Without Replacement  
We have noted in section 2 that PPS sampling of PSUs 

within strata in large-scale surveys was practically moti-
vated by the desire to achieve approximately equal work-
loads. PPS sampling also achieves significant variance re-
duction by controlling on the variability arising from un-
equal PSU sizes without actually stratifying by size. PSUs 
are typically sampled without replacement such that the 
PSU inclusion probability, ,iπ  is proportional to PSU size 
measure .ix  For example, systematic PPS sampling, with 
or without initial randomization of the PSU labels, is an 
inclusion probability proportional to size (IPPS) design (also 
called PSπ  design) that has been used in many complex 
surveys, including the Canadian LFS. The estimator of a 
total associated with an IPPS design is the NHT estimator.  

Development of suitable (IPPS, NHT) strategies raises 
theoretically challenging problems, including the evaluation 

of exact joint inclusion probabilities, ,ijπ  or accurate 
approximations to ijπ  requiring only the individual iπ s, 
that are needed in getting unbiased or nearly unbiased 
variance estimator. My own 1961 Ph.D. thesis at Iowa State 
University addressed the latter problem. Several solutions, 
requiring sophisticated theoretical tools, have been 
published since then by talented mathematical statisticians. 
However, this theoretical work is often classified as “theory 
without application” because it is customary practice to treat 
the PSUs as if sampled with replacement since that leads to 
great simplification. The variance estimator is simply 
obtained from the estimated PSU totals and, in fact, this 
assumption is the basis for re-sampling methods (section 6). 
This variance estimator can lead to substantial over-esti-
mation unless the overall PSU sampling fraction is small. 
The latter may be true in many large-scale surveys. In the 
following paragraphs, I will try to demonstrate that the 
theoretical work on (IPPS, NHT) strategies as well as some 
non-IPPS designs have wide practical applicability. 

First, I will focus on (IPPS, NHT) strategies. In Sweden 
and some other countries in Europe, stratified single-stage 
sampling is often used because of the availability of list 
frames and IPPS designs are attractive options, but sampling 
fractions are often large. For example, Rosén (1991) notes 
that Statistics Sweden’s Labour Force Barometer samples 
some 100 different populations using systematic PPS 
sampling and that the sampling rates can exceed 50%. Aires 
and Rosén (2005) studied Pareto PSπ sampling for Swedish 
surveys. This method has attractive properties, including 
fixed sample size, simple sample selection, good estimation 
precision and consistent variance estimation regardless of 
sampling rates. It also allows sample coordination through 
permanent random numbers (PRN) as in Poisson sampling, 
but the latter method leads to variable sample size. Because 
of these merits, Pareto PSπ  has been implemented in a 
number of Statistics Sweden surveys, notably in price index 
surveys. Ohlsson (1995) described PRN techniques that are 
commonly used in practice.  

The method of Rao-Sampford (see Brewer and Hanif 
1983, page 28) leads to exact IPPS designs and non-
negative unbiased variance estimators for arbitrary fixed 
sample sizes. It has been implemented in the new version of 
SAS. Stehman and Overton (1994) note that variable proba-
bility structure arises naturally in environmental surveys 
rather than being selected just for enhanced efficiency, and 
that the siπ  are only known for the units i  in the sample 

.s  By treating the sample design as randomized systematic 
PPS, Stehman and Overton obtained approximations to the 

ijπ s that depend only ,, sii ∈π  unlike the original ap-
proximations of Hartley and Rao (1962) that require the 
sum of squares of all the iπ s in the population. In the 
Stehman and Overton applications, the sampling rates are 
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substantial enough to warrant the evaluation of the joint 
inclusion probabilities.  

I will now turn to non-IPPS designs using estimators 
different from the NHT estimator that ensure zero variance 
when y  is exactly proportional to .x  The random group 
method of Rao, Hartley and Cochran (1962) permits a 
simple non-negative variance estimator for any fixed sample 
size and yet compares favorably to (IPPS, NHT) strategies 
in terms of efficiency and is always more efficient than the 
PPS with replacement strategy. Schabenberger and Gregoire 
(1994) noted that (IPPS, NHT) strategies have not enjoyed 
much application in forestry because of difficulty in im-
plementation and recommended the Rao-Hartley-Cochran 
strategy in view of its remarkable simplicity and good 
efficiency properties. It is interesting to note that this 
strategy has been used in the Canadian LFS on the basis of 
its suitability for switching to new size measures, using the 
Keyfitz method within each random group. On the other 
hand, (IPPS, NHT) strategies are not readily suitable for this 
purpose (Fellegi 1966). I understand that the Rao-Hartley-
Cochran strategy is often used in audit sampling and other 
accounting applications.  

Murthy (1957) used a non-IPPS design based on drawing 
successive units with probabilities ),1/(, iji ppp − /kp  

)1( ji pp −−  and so on, and the following estimator: 

,
)(

)|(ˆ
sp

isp
yY

si
iM ∑

∈
=  (9) 

where )|( isp  is the conditional probability of obtaining 
the sample s  given that unit i  was selected first. He also 
provided a non-negative variance estimator requiring the 
conditional probabilities, ),,|( jisp  of obtaining s  given 
i  and j  are selected in the first two draws. This method did 
not receive practical attention for several years due to 
computational complexity, but more recently it has been 
applied in unexpected areas, including oil discovery 
(Andreatta and Kaufmann 1986) and sequential sampling 
including inverse sampling and some adaptive sampling 
schemes (Salehi and Seber 1997). It may be noted that 
adaptive sampling has received a lot of attention in recent 
years because of its potential as an efficient sampling 
method for estimating totals or means of rare populations 
(Thompson and Seber 1996). In the oil discovery appli-
cation, the successive sampling scheme is a characterization 
of discovery and the order in which fields are discovered is 
governed by sampling proportional to field size and without 
replacement, following the industry folklore “on the 
average, the big fields are found first”. Here Yyp ii /=  
and the total oil reserve Y  is assumed to be known from 
geological considerations. In this application, geologists are 
interested in the size distribution of all fields in the basin and 
when a basin is partially explored the sample is composed 

of magnitudes iy  of discovered deposits. The size distri-
bution function )(aF  can be estimated by using Murthy’s 
estimator (9) with iy  replaced by the indicator variable 

).( ayI i ≤  The computation of )|( isp  and ),(sp  how-
ever, is formidable even for moderate sample sizes. To over-
come this computational difficulty, Andreatta and Kaufman 
(1986) used integral representations of these quantities to 
develop asymptotic expansions of Murthy’s estimator, the 
first few terms of which are easily computable. Similarly, 
they obtain computable approximations to Murthy’s vari-
ance estimator. Note that the NHT estimator of )(aF  is not 
feasible here because the inclusion probabilities are func-
tions of all the −y values in the population.  

The above discussion is intended to demonstrate that a 
particular theory can have applications in diverse practical 
areas even if it is not needed in a particular situation, such as 
large-scale surveys with negligible first stage sampling frac-
tions. Also it shows that unequal probability sampling de-
signs play a vital role in survey sampling, despite Särndal’s 
(1996) contention that simpler designs, such as stratified 
SRS and stratified Bernoulli sampling, together with GREG 
estimators should replace strategies based on unequal proba-
bility sampling without replacement.  

 
6. Analysis of Survey Data 
      and Resampling Methods  

Standard methods of data analysis are generally based on 
the assumption of simple random sampling, although some 
software packages do take account of survey weights and 
provide correct point estimates. However, application of 
standard methods to survey data, ignoring the design effect 
due to clustering and unequal probabilities of selection, can 
lead to erroneous inferences even for large samples. In 
particular, standard errors of parameter estimates and 
associated confidence intervals can be seriously under-
stated, type I error rates of tests of hypotheses can be much 
bigger than the nominal levels, and standard model 
diagnostics, such as residual analysis to detect model 
deviations, are also affected. Kish and Frankel (1974) and 
others drew attention to some of those problems and empha-
sized the need for new methods that take proper account of 
the complexity of data derived from large-scale surveys. 
Fuller (1975) developed asymptotically valid methods for 
linear regression analysis, based on Taylor linearization 
variance estimators. Rapid progress has been made over the 
past 20 years or so in developing suitable methods. Re-
sampling methods play a vital role in developing methods 
that take account of survey design in the analysis of data. 
All one needs is a data file containing the observed data, the 
final survey weights and the corresponding final weights for 
each pseudo-replicate generated by the re-sampling method. 
Software packages that take account of survey weights in 
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the point estimation of parameters of interest can then be 
used to calculate the correct estimators and standard errors, 
as demonstrated below. As a result, re-sampling methods of 
inference have attracted the attention of users as they can 
perform the analyses themselves very easily using standard 
software packages. However, releasing public-use data files 
with replicate weights can lead to confidentiality issues, 
such as the identification of clusters from replicate weights. 
In fact, at present a challenge to theory is to develop suitable 
methods that can preserve confidentiality of the data. Lu, 
Brick and Sitter (2004) proposed grouping strata and then 
forming pseudo-replicates using the combined strata for 
variance estimation, thus limiting the risk of cluster identifi-
cation from the resulting public-use data file. Grouping 
strata and/or PSUs within strata simplifies variance esti-
mation by reducing the number of pseudo-replicates used in 
variance estimation compared to the commonly used delete-
cluster jackknife discussed below. A method of inverse 
sampling to undo the complex survey data structure and yet 
provide protection against revealing cluster labels (Hinkins, 
Oh and Scheuren 1997; Rao, Scott and Benhin 2003) 
appears promising, but much work on inverse sampling 
methods remains to be done before it becomes attractive to 
the user.  

Rao and Scott (1981, 1984) made a systematic study of 
the impact of survey design effect on standard chi-squared 
and likelihood ratio tests associated with a multi-way table 
of estimated counts or proportions. They showed that the 
test statistic is asymptotically distributed as a weighted sum 
of independent 2

1χ  variables, where the weights are the 
eigenvalues of a “generalized design effects” matrix. This 
general result shows that the survey design can have a 
substantial impact on the type I error rate. Rao and Scott 
proposed simple first-order corrections to the standard chi-
squared statistics that can be computed from published 
tables that include estimates of design effects for cell esti-
mates and their marginal totals, thus facilitating secondary 
analyses from published tables. They also derived second 
order corrections that are more accurate, but require the 
knowledge of a full estimated covariance matrix of the cell 
estimates, as in the case of familiar Wald tests. However, 
Wald tests can become highly unstable as the number of 
cells in a mult-way table increases and the number of 
sample clusters decreases, leading to unacceptably high type 
I error rates compared to the nominal levels, unlike the Rao-
Scott second order corrections (Thomas and Rao 1987). The 
first and second order corrections are now known as 
Rao-Scott corrections and are given as default options in the 
new version of SAS. Roberts, Rao and Kumar (1987) 
developed Rao-Scott type corrections to tests for logistic 
regression analysis of estimated cell proportions associated 
with a binary response variable. They applied the methods 

to a two-way table of employment rates from the Canadian 
LFS 1977 obtained by cross-classifying age and education 
groups. Bellhouse and Rao (2002) extended the work of 
Roberts et al. to the analysis of domain means using 
generalized linear models. They applied the methods to 
domain means from a Fiji Fertility Survey cross-classified 
by education and years since the woman’s first marriage, 
where a domain mean is the mean number of children ever 
born for women of Indian race belonging to the domain.   

Re-sampling methods in the context of large-scale sur-
veys using stratified multi-stage designs have been studied 
extensively. For inference purposes, the sample PSUs are 
treated as if drawn with replacement within strata. This 
leads to over-estimation of variances but it is small if the 
overall PSU sampling fraction is negligible. Let θ̂  be the 
survey-weighted estimator of a “census” parameter of inter-
est computed from the final weights ,iw  and let the corre-
sponding weights for each pseudo-replicate r  generated by 
the re-sampling method be denoted by .)( r

iw  The estimator 
based on the pseudo-replicate weights )( r

iw  is denoted as 
)(ˆ rθ  for each ....,,1 Rr =  Then a re-sampling variance 

estimator of θ̂  is of the form 

)ˆˆ()ˆˆ()ˆ( )(

1

)( ′θ−θθ−θ=θ ∑
=

r
R

r

r
rcv  (10) 

for specified coefficients rc  in (10) determined by the re-
sampling method. 

Commonly used re-sampling methods include (a) delete-
cluster (delete-PSU) jackknife, (b) balanced repeated rep-
lication (BRR) particularly for 2=hn  PSUs in each stra-
tum h  and (c) the Rao and Wu (1988) bootstrap. Jackknife 
pseudo-replicates are obtained by deleting each sample 
cluster )(hjr =  in turn, leading to jackknife design weights 

)( r
id  taking the value 0  if the sample unit i  is in the 

deleted cluster, )1/( −hih ndn  if i  is not in the deleted 
cluster but in the same stratum, and unchanged if i  is in a 
different stratum. The jackknife design weights are then 
adjusted for unit non-response and post-stratification, 
leading to the final jackknife weights .)( r

iw  The jackknife 
variance estimator is given by (10) with hhr nnc /)1( −=  
for ).(hjr =  The delete-cluster jackknife method has two 
possible disadvantages: (1) When the total number of sam-
pled PSUs, ,∑= hnn  is very large, R  is also very large 
because .nR =  (2) It is not known if the delete-jackknife 
variance estimator is design-consistent in the case of non-
smooth estimators ,θ̂  for example the survey-weighted 
estimator of the median. For simple random sampling, the 
jackknife is known to be inconsistent for the median or 
other quantiles. It would be theoretically challenging and 
practically relevant to find conditions for the consistency of 
the delete-cluster jackknife variance estimator of a non-
smooth estimator .θ̂  
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BRR can handle non-smooth ,θ̂  but it is readily appli-
cable only for the important special case of 2=hn  PSUs 
per stratum. A minimal set of balanced half-samples can be 
constructed from an RR ×  Hadamard matrix by selecting 
H  columns, excluding the column of 1+ ’s, where ≤+ 1H  

4+≤ HR  (McCarthy 1969). The BRR design weights 
)( r

id  equal id2  or 0  according as whether or not i  is in 
the half-sample. A modified BRR, due to Bob Fay, uses all 
the sampled units in each replicate unlike the BRR by de-
fining the replicate design weights as =ε)()( r

id id)1( ε+  
or id)1( ε−  according as whether or not i  is in the half-
sample, where ;10 <ε<  a good choice of ε  is .2/1  The 
modified BRR weights are then adjusted for non-response 
and post-stratification to get the final weights )()( εr

iw  and 
the estimator ).(ˆ )( εθ r  The modified BRR variance 
estimator is given by (10) divided by 2ε  and )(ˆ rθ  replaced 
by );(ˆ )( εθ r  see Rao and Shao (1999). The modified BRR 
is particularly useful under independent re-imputation for 
missing item responses in each replicate because it can use 
the donors in the full sample to impute unlike the BRR that 
uses the donors only in the half-sample.  

The Rao-Wu bootstrap is valid for arbitrary )2(≥hn  
unlike the BRR, and it can also handle non-smooth .θ̂  Each 
bootstrap replicate is constructed by drawing a simple 
random sample of PSUs of size 1−hn  from the hn  sample 
clusters, independently across the strata. The bootstrap 
design weights )( r

id  are given by i
r

hihh dmnn )()]1/([ −  if 
i  is in stratum h and replicate ,r  where )( r

him  is the number 
of times sampled PSU )(hi  is selected, .1)( −=∑ hi

r
hi nm  

The weights )( r
id  are then adjusted for unit non-response 

and post-stratification to get the final bootstrap weights and 
the estimator .ˆ )( rθ  Typically, 500=R  bootstrap replicates 
are used in the bootstrap variance estimator (10). Several 
recent surveys at Statistics Canada have adopted the boot-
strap method for variance estimation because of the flex-
ibility in the choice of R  and wider applicability. Users of 
Statistics Canada survey micro data files seem to be very 
happy with the bootstrap method for analysis of data. 

Early work on the jackknife and the BRR was largely 
empirical (e.g., Kish and Frankel 1974). Krewski and Rao 
(1981) formulated a formal asymptotic framework appropri-
ate for stratified multi-stage sampling and established design 
consistency of the jackknife and BRR variance estimators 
when θ̂  can be expressed as a smooth function of estimated 
means. Several extensions of this basic work have been 
reported in the recent literature; see the book by Shao and 
Tu (1995, Chapter 6). Theoretical support for re-sampling 
methods is essential for their use in practice. 

In the above discussion, I let θ̂  denote the estimator of a 
“census” parameter. The census parameter Cθ  is often 
motivated by an underlying super-population model and the 
census is regarded as a sample generated by the model, 
leading to census estimating equations whose solution is 

.Cθ  The census estimating functions )(θCU  are simply 
population totals of functions )(θiu  with zero expectation 
under the assumed model, and the census estimating equa-
tions are given by 0)( =θCU  (Godambe and Thompson 
1986). Kish and Frankel (1974) argued that the census 
parameter makes sense even if the model is not correctly 
specified. For example, in the case of linear regression, the 
census regression coefficient could explain how much of the 
relationship between the response variable and the indepen-
dent variables is accounted by a linear regression model. 
Noting that the census estimating functions are simply pop-
ulation totals, survey weighted estimators )(ˆ θU  from the 
full sample and )(ˆ )( θrU  from each pseudo-replicate are 
obtained. The solutions of corresponding estimating equa-
tions 0)(ˆ =θU  and 0)(ˆ )( =θrU  give θ̂  and )(ˆ rθ  respec-
tively. Note that the re-sampling variance estimators are 
designed to estimate the variance of θ̂  as an estimator of the 
census parameters but not the model parameters. Under 
certain conditions, the difference can be ignored but in 
general we have a two-phase sampling situation, where the 
census is the first phase sample from the super-population 
and the sample is a probability sample from the census 
population. Recently, some useful work has been done on 
two-phase variance estimation when the model parameters 
are the target parameters (Graubard and Korn 2002; Rubin-
Bleuer and Schiopu-Kratina 2005), but more work is needed 
to address the difficulty in specifying the covariance 
structure of the model errors.  

A difficulty with the bootstrap is that the solution )(ˆ rθ  
may not exist for some bootstrap replicates r  (Binder, 
Kovacevic and Roberts 2004). Rao and Tausi (2004) used 
an estimating function (EF) bootstrap method that avoids 
the difficulty. In this method, we solve )ˆ(ˆ)(ˆ )( θ=θ rUU  
for θ  using only one step of the Newton-Raphson iteration 
with θ̂  as the starting value. The resulting estimator )(~ rθ  is 
then used in (10) to get the EF bootstrap variance estimator 
of θ̂  which can be readily implemented from the data file 
providing replicate weights, using slight modifications of 
any software package that accounts for survey weights. It is 
interesting to note that the EF bootstrap variance estimator is 
equivalent to a Taylor linearization sandwich variance esti-
mator that uses the bootstrap variance estimator of )(ˆ θU  
and the inverse of the observed information matrix (deriv-
ative of )),(ˆ θ− U  both evaluated at θ=θ ˆ  (Binder et al. 
2004).  

Taylor linearization methods provide asymptotically val-
id variance estimators for general sampling designs, unlike 
re-sampling methods, but they require a separate formula for 
each estimator θ̂ . Binder (1983), Rao, Yung and Hidiroglou 
(2002) and Demnati and Rao (2004) have provided unified 
linearization variance formulae for estimators defined as 
solutions to estimating equations.  
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Pfeffermann (1993) discussed the role of design weights 
in the analysis of survey data. If the population model holds 
for the sample (i.e., if there is no sample selection bias), then 
model-based unweighted estimators will be more efficient 
than the weighted estimators and lead to valid inferences, 
especially for data with smaller sample sizes and larger 
variation in the weights. However, for typical data from 
large-scale surveys, the survey design is informative and the 
population model may not hold for the sample. As a result, 
the model-based estimators can be seriously biased and 
inferences can be erroneous. Pfeffermann and his colleagues 
initiated a new approach to inference under informative 
sampling; see Pfeffermann and Sverchkov (2003) for recent 
developments. This approach seems to provide more effi-
cient inferences compared to the survey weighted approach, 
and it certainly deserves the attention of users of survey 
data. However, much work remains to be done, especially in 
handling data based on multi-stage sampling.  

Excellent accounts of methods for analysis of complex 
survey data are given in Skinner, Holt and Smith (1989), 
Chambers and Skinner (2003) and Lehtonen and Pahkinen 
(2004).  

7. Small Area Estimaton  
Previous sections of this paper have focussed on tradi-

tional methods that use direct domain estimators based on 
domain-specific sample observations along with auxiliary 
population information. Such methods, however, may not 
provide reliable inferences when the domain sample sizes 
are very small or even zero for some domains. Domains or 
sub-populations with small or zero sample sizes are called 
small areas in the literature. Demand for reliable small area 
statistics has greatly increased in recent years because of the 
growing use of small area statistics in formulating policies 
and programs, allocation of funds and regional planning. 
Clearly, it is seldom possible to have a large enough overall 
sample size to support reliable direct estimates for all 
domains of interest. Also, in practice, it is not possible to 
anticipate all uses of survey data and “the client will always 
require more than is specified at the design stage” (Fuller 
1999, page 344). In making estimates for small areas with 
adequate level of precision, it is often necessary to use 
“indirect” estimators that borrow information from related 
domains through auxiliary information, such as census and 
current administrative data, to increase the “effective” 
sample size within the small areas. 

It is now generally recognized that explicit models 
linking the small areas through auxiliary information and 
accounting for residual between – area variation through 
random small area effects are needed in developing indirect 
estimators. Success of such model-based methods heavily 

depends on the availability of good auxiliary information 
and thorough validation of models through internal and 
external evaluations. Many of the random effects methods 
used in mainstream statistical theory are relevant to small 
area estimation, including empirical best (or Bayes), empir-
ical best linear unbiased prediction and hierarchical Bayes 
based on prior distributions on the model parameters. A 
comprehensive account of such methods is given in Rao 
(2003). Practical relevance and theoretical interest of small 
area estimation have attracted the attention of many re-
searchers, leading to important advances in point and mean 
squared error estimation. The “new” methods have been 
applied successfully worldwide to a variety of small area 
problems. Model-based methods have been recently used to 
produce county and school district estimates of poor school-
age children in the U.S.A. The U.S. Department of Edu-
cation allocates annually over $7 billion of funds to counties 
on the basis of model-based county estimates. The allocated 
funds support compensatory education programs to meet the 
needs of educationally disadvantaged children. We refer to 
Rao (2003, example 7.1.2) for details of this application. In 
the United Kingdom, the Office for National Statistics 
established a Small Area Estimation Project to develop 
model-based estimates at the level of political wards 
(roughly 2,000 households). The practice and estimation 
methods of U.S. federal statistical programs that use indirect 
estimators to produce published estimates are documented 
in Schaible (1996). Singh, Gambino and Mantel (1994) and 
Brackstone (2002) discuss some practical issues and strat-
egies for small area statistics.  

Small area estimation is a striking example of the inter-
play between theory and practice. The theoretical advances 
are impressive, but many practical issues need further 
attention of theory. Such issues include: (a) Benchmarking 
model-based estimators to agree with reliable direct esti-
mators at large area levels. (b) Developing and validating 
suitable linking models and addressing issues such as errors 
in variables, incorrect specification of the linking model and 
omitted variables. (c) Development of methods that satisfy 
multiple goals: good area-specific estimates, good rank 
properties and good histogram for small areas.  

 
8. Some Theory Deserving Attention of  

        Practice and Vice Versa  
In this section, I will briefly mention some examples of 

important theory that exists but not widely used in practice.   
8.1 Empirical Likelihood Inference   

Traditional sampling theory largely focused on point 
estimation and associated standard errors, appealing to nor-
mal approximations for confidence intervals on parameters 
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of interest. In mainstream statistics, the empirical likelihood 
(EL) approach (Owen 1988) has attracted a lot of attention 
due to several desirable properties. It provides a non-
parametric likelihood, leading to EL ratio confidence inter-
vals similar to the parametric likelihood ratio intervals. The 
shape and orientation of EL intervals are determined en-
tirely by the data, and the intervals are range preserving and 
transformation respecting, and are particularly useful in 
providing balanced tail error rates, unlike the symmetric 
normal theory intervals. As noted in section 3.1, the EL 
approach was in fact first introduced in the sample survey 
context by Hartley and Rao (1968), but their focus was on 
inferential issues related to point estimation. Chen, Chen 
and Rao (2003) obtained EL intervals on the population 
mean under simple random and stratified random sampling 
for populations containing many zeros. Such populations are 
encountered in audit sampling, where y  denotes the 
amount of money owed to the government and the mean Y  
is the average amount of excessive claims. Previous work 
on audit sampling used parametric likelihood ratio intervals 
based on parametric mixture distributions for the variable 

.y  Such intervals perform better than the standard normal 
theory intervals, but EL intervals perform better under 
deviations from the assumed mixture model, by providing 
non-coverage rate below the lower bound closer to the 
nominal error rate and also larger lower bound. For general 
designs, Wu and Rao (2004) used a pseudo-empirical 
likelihood (Chen and Sitter 1999) to obtain adjusted pseudo-
EL intervals on the mean and the distribution function that 
account for the design features, and showed that the 
intervals provide more balanced tail error rates than the 
normal theory intervals. The EL method also provides a 
systematic approach to calibration estimation and integra-
tion of surveys. We refer the reader to the review papers by 
Rao (2004) and Wu and Rao (2005). 

Further refinements and extensions remain to be done, 
particularly on the pseudo-empirical likelihood, but the EL 
theory in the survey context deserves the attention of 
practice.   
8.2 Exploratory Analyses of Survey Data  

In section 6 we discussed methods for confirmatory 
analysis of survey data taking the design into account, such 
as point estimation of model (or census) parameters and 
associated standard errors and formal tests of hypotheses. 
Graphical displays and exploratory data analyses of survey 
data are also very useful. Such methods have been exten-
sively developed in the mainstream literature. Only recently, 
some extensions of these modern methods are reported in 
the survey literature and deserve the attention of practice. I 
will briefly mention some of those developments. First, non-
parametric kernel density estimates are commonly used to 

display the shape of a data set without relying on parametric 
models. They can also be used to compare different sub-
populations.  

Bellhouse and Stafford (1999) provided kernel density 
estimators that take account of the survey design and studied 
their properties and applied the methods to data from the 
Ontario Health Survey. Buskirk and Lohr (2005) studied 
asymptotic and finite sample properties of kernel density 
estimators and obtained confidence bands. They applied the 
methods to data from the US National Crime Victimization 
Survey and the US National Health and Nutrition Exam-
ination Survey.   

Secondly, Bellhouse and Stafford (2001) developed local 
polynomial regression methods, taking design into account, 
that can be used to study the relationship between a re-
sponse variable and predictor variables, without making 
strong parametric model assumptions. The resulting graph-
ical displays are useful in understanding the relationships 
and also for comparing different sub-populations. Bellhouse 
and Stafford (2001) illustrated local polynomial regression 
on the Ontario Health Survey data; for example, the 
relationship between body mass index of females and age. 
Bellhouse, Chipman and Stafford (2004) studied additive 
models for survey data via penalized least squares method to 
handle more than one predictor variable, and illustrated the 
methods on the Ontario Health Survey data. This approach 
has many advantages in terms of graphical display, 
estimation, testing and selection of “smoothing” parameters 
for fitting the models.   
8.3 Measurement Errors  

Typically, measurement errors are assumed to be addi-
tive with zero means. As a result, usual estimators of totals 
and means remain unbiased or consistent. However, this 
nice feature may not hold for more complex parameters 
such as distribution functions, quantiles and regression 
coefficients. In the latter case, the usual estimators will be 
biased, even for large samples, and hence can lead to 
erroneous inferences (Fuller 1995). It is possible to obtain 
bias-adjusted estimators if estimates of measurement error 
variances are available. The latter may be obtained by 
allocating resources at the design stage to make repeated 
observations on a sub-sample. Fuller (1975, 1995) has been 
a champion of proper methods in the presence of 
measurement errors and the bias-adjusted methods deserve 
the attention of practice. 

Hartley and Rao (1978) and Hartley and Biemer (1978) 
provided interviewer and coder assignment conditions that 
permit the estimation of sampling and response variances 
for the mean or total from current surveys. Unfortunately, 
current surveys are often not designed to satisfy those 
conditions and even if they do the required information on 
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interviewer and coder assignments is seldom available at the 
estimation stage.  

Linear components of variance models are often used to 
estimate interviewer variability. Such models are appropri-
ate for continuous responses, but not for binary responses. 
The linear model approach for binary responses can result in 
underestimating the intra-interviewer correlations. Scott and 
Davis (2001) proposed multi-level models for binary re-
sponses to estimate interviewer variability. Given that re-
sponses are often binary in many surveys, practice should 
pay attention to such models for proper analyses of survey 
data with binary responses.   
8.4 Imputation for Missing Survey Data  

Imputation is commonly used in practice to fill in 
missing item values. It ensures that the results obtained from 
different analyses of the completed data set are consistent 
with one another by using the same survey weight for all 
items. Marginal imputation methods, such as ratio, nearest 
neighbor and random donor within imputation classes are 
used by many statistical agencies. Unfortunately, the im-
puted values are often treated as if they were true values and 
then used to compute estimates and variance estimates. The 
imputed point estimates of marginal parameters are gen-
erally valid under an assumed response mechanism or impu-
tation model. But the “naïve” variance estimators can lead 
to erroneous inferences even for large samples; in particular, 
serious underestimation of the variance of the imputed esti-
mator because the additional variability due to estimating 
the missing values is not taken into account. Advocates of 
Rubin’s (1987) multiple imputation claim that the multiple 
imputation variance estimator can fix this problem because 
a between imputed estimators sum of squares is added to the 
average of naïve variance estimators resulting from the 
multiple imputations. Unfortunately, there are some diffi-
culties associated with multiple imputation variance esti-
mators, as discussed by Kott (1995), Fay (1996), Binder and 
Sun (1996), Wang and Robins (1998), Kim, Brick, Fuller 
and Kalton (2004) and others. Moreover, single imputation 
is often preferred due to operational and cost considerations. 
Some impressive advances have been made in recent years 
on making efficient and asymptotically valid inferences 
from singly imputed data sets. We refer the reader to review 
papers by Shao (2002) and Rao (2000, 2005) for methods of 
variance estimation under single imputation. Kim and Fuller 
(2004) studied  fractional  imputation using more than one 
randomly imputed value and showed that it also leads to 
asymptotically valid inferences; see also Kalton and Kish 
(1984) and Fay (1996). An advantage of fractional impu-
tation is that it reduces the imputation variance relative to 
single imputation using one randomly imputed value. The 
above methods of variance estimation deserve the attention 
of practice.  

8.5 Multiple Frame Surveys  
Multiple frame surveys employ two or more overlapping 

frames that can cover the target poulation. Hartley (1962) 
studied the special case of a complete frame B  and an 
incomplete frame A  and simple random sampling indepen-
dently from both frames. He showed that an “optimal” dual 
frame estimator can lead to large gains in efficiency for the 
same cost over the single complete frame estimator, pro-
vided the cost per unit for frame A  is significantly smaller 
than the cost per unit for frame .B  Multiple frame surveys 
are particularly suited for sampling rare or hard-to-reach 
populations, such as homeless populations and persons with 
AIDS, when incomplete list frames contain high proportions 
of individuals from the target population. Hartley’s (1974) 
landmark paper derived “optimal” dual frame estimators for 
general sampling designs and possibly different obser-
vational units in the two frames. Fuller and Burmeister 
(1972) proposed improved “optimal” estimators. However, 
the optimal estimators use different sets of weights for each 
item ,y  which is not desirable in practice. Skinner and Rao 
(1996) derived pseudo-ML (PML) estimators for dual frame 
surveys that use the same set of weights for all items ,y  
similar to “single frame” estimators (Kalton and Anderson 
1986), and maintain efficiency. Lohr and Rao (2005) 
developed a unified theory for the multiple frames setting 
with two or more frames, by extending the optimal, pseudo-
ML and single frame estimators. Lohr and Rao (2000, 2005) 
obtained asymptotically valid jackknife variance estimators. 
Those general results deserve the attention of practice when 
dealing with two or more frames. Dual frame telephone 
surveys based on cell phone and landline phone frames need 
the attention of theory because it is unclear how to weight in 
the cell phone survey: some families share a cell phone and 
others have a cell phone for each person.   
8.6 Indirect Sampling  

The method of indirect sampling can be used when the 
frame for a target population BU  is not available but the 
frame for another population ,AU  linked to ,BU  is 
employed to draw a probability sample. The links between 
the two populations are used to develop suitable weights 
that can provide unbiased estimators and variance esti-
mators. Lavallée (2002) developed a unified method, called 
Generalized Weight Sharing, (GWS), that covers several 
known methods: the weight sharing method of Ernst (1989) 
for cross sectional estimation from longitudinal household 
surveys, network sampling and multiplicity estimation 
(Sirken 1970) and adaptive cluster sampling (Thompson 
and Seber 1996). Rao’s (1968) theory for sampling from a 
frame containing an unknown amount of duplication may be 
regarded as a special case of GWS. Multiple frames can also 
be handled by GWS and the resulting estimators are simple 
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but not necessarily efficient compared to the optimal esti-
mators of Hartley (1974) or the PML estimators. The GWS 
method has wide applicability and deserves the attention of 
practice.  

 
9. Concluding Remarks  

Joe Waksberg’s contributions to sample survey theory 
and methods truly reflect the interplay between theory and 
practice. Working at the US Census Bureau and later at 
Westat, he faced real practical problems and produced 
sound theoretical solutions. For example, his landmark pa-
per (Waksberg 1978) studied an ingenious method (pro-
posed by Warren Mitofsky) for random digit dialing (RDD) 
that significantly reduces the survey costs compared to 
dialing numbers completely at random. He presented sound 
theory to demonstrate its efficiency. The widespread use of 
RDD surveys is largely due to the theoretical development 
in Waksberg (1978) and subsequent refinements. Joe 
Waksberg is one of my heroes in survey sampling and I feel 
greatly honored to have received the 2005 Waksberg award 
for survey methodology.  
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Abstract 

Hot deck imputation is a procedure in which missing items are replaced with values from respondents. A model supporting 
such procedures is the model in which response probabilities are assumed equal within imputation cells. An efficient version 
of hot deck imputation is described for the cell response model and a computationally efficient variance estimator is given. 
An approximation to the fully efficient procedure in which a small number of values are imputed for each nonrespondent is 
described. Variance estimation procedures are illustrated in a Monte Carlo study. 
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1. Introduction  
Imputation is used in sample surveys as a method of 

handling item nonresponse. In hot deck imputation, the 
imputed values are functions of the respondents in the 
current sample. Sande (1983) and Ford (1983) contain 
descriptions of hot deck imputation. Kalton and Kasprzyk 
(1986) and Little and Rubin (2002) review various impu-
tation procedures. 

In one version of hot deck imputation, the imputed value 
is the value of a respondent in the same imputation cell, 
where the imputation cells form an exhaustive and mutually 
exclusive subdivision of the population. In random hot deck 
imputation, respondents are assigned values at random from 
respondents in the same imputation cell. The record 
providing the value is called the donor and the record with 
the missing value is called the recipient. 

The variance of the imputed estimator is generally larger 
than the complete sample variance because nonresponse 
reduces sample size and because the imputed estimator may 
contain a component due to random imputation. Rao and 
Shao (1992) proposed an adjusted jackknife method for hot-
deck imputation where the first phase units are selected 
with-replacement. Rao and Sitter (1995) discussed the 
adjusted jackknife variance estimation method for ratio 
imputation. Rao (1996) and Sitter (1997) applied the 
adjusted jackknife method to regression imputation. Shao, 
Chen and Chen (1998) apply the idea of Rao and Shao 
(1992) to the balanced repeated replication method. Shao 
and Steel (1999) propose variance estimation for survey 
data with composite imputation, where more than one 
imputation method is used, and the sampling fractions are 
included in the variance expressions. Yung and Rao (2000) 
applied the adjusted jackknife method to imputed estimators 
constructed with a poststratified sample. Rubin (1987) and 

Rubin and Schenker (1986) suggested multiple imputation 
procedures. Tollefson and Fuller (1992), and Särndal (1992) 
proposed imputation methods and corresponding variance 
estimators. Kim and Fuller (2004) studied the use of 
fractional imputation for the model in which observations in 
an imputation cell are independently and identically 
distributed. 

In this paper, we consider hot deck imputation for a 
population divided into imputation cells. The response 
model is described in section 2. In section 3, we introduce 
fully efficient fractional imputation and present a variance 
estimation method for the imputation estimator, under the 
assumptions that the probability of nonresponse is constant 
within a cell. In section 4 we suggest a modification of the 
fully efficient method that uses a smaller number of donors. 
In section 5, an example is introduced to illustrate the actual 
implementation of the proposed method. In section 6, results 
of a simulation study are reported. Summary is presented in 
the last section. 

 
2. Basic Setup  

Consider a population of N elements identified by a set of 
indices }.,,2,1{ NU K=  Associated with each unit i in the 
population there is a study variable iy  and a vector ix  of 
auxiliary information. The set of vectors, ),,( iiy x  

,,,2,1 Ni K=  is denoted by .F   
Let A denote the indices of the elements in a sample 

selected by a set of probability rules called the sampling 
mechanism. Let the population quantity of interest be ,Nθ  
let θ̂  be a full sample, linear-in-y, estimator of ,Nθ  and 
write  

.ˆ ∑
∈

=θ
Ai

ii yw  (1) 
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If iw  is the inverse of the selection probability, then θ̂  is 
unbiased for the population total. 

Let RA  and MA  denote the set of indices of the sample 
respondents and sample nonrespondents, respectively. 
Define the response indicator function 

⎩
⎨
⎧

∈
∈

=
M

R
i Ai

Ai
R

if0

if1
 (2) 

and let }.);,{( AiRi i ∈=R  The distribution of R  is called 
the response mechanism. 

Assume that the finite population U is made up of G  
imputation cells, where the set of elements in cell g is .gU  
Let gn  be the number of sample elements in imputation cell 
g and let ,0, >gg rr  be the number of respondents in impu-
tation cell g. Assume the within-cell uniform response 
model in which the gr  responses in a cell are equivalent to a 
Poisson sample selected with equal probabilities from the 

gn  elements. 
Fractional imputation is a procedure in which more than 

one donor is used per recipient. Kalton and Kish (1984) 
suggested fractional imputation as an efficient imputation 
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where gvgviviv AYye ,−=  is the set of sample indices in the 
thg  cell for the thv  sample, gvY  is the population mean of 

the y – variable in cell gv  of population gvvF π,  is the prob-
ability that an element in cell gv  responds, and vF  denotes 
the thv  population. Also 
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where 
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The estimator (7) can be implemented by using fractional 
imputation in which every responding unit in an imputation 
cell is used as a donor for every nonrespondent in the cell. 
Then, the estimator (7) can be written as the fractionally 
imputed estimator 

∑ ∑ ∑
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∗=θ
G

g UAj UAi
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g gR

yww
1

FEFI ,ˆ  (11) 

where ∗
ijj ww  is the weight of donor i for recipient j, ∗

ijw  is 
the imputation fraction of donor i for recipient j defined in 
(3), and  
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The estimator (11) with ∗
ijw  of (12), algebraically 

equivalent to (7), is called the fully efficient fractionally 
imputed (FEFI) estimator. The fractionally imputed esti-
mator has the advantage that functions of y such as the 
fraction less than a given number can be directly estimated 
from the fractionally imputed data set. 

To consider replication variance estimation, let a replica-
tion variance estimator for the complete sample be 

,)ˆˆ()ˆ(ˆ 2)(

1

θ−θ=θ ∑
=

k
L

k
kcV  (13) 

where )(ˆ kθ  is the thk  estimate of Nθ  based on the observa-
tions included in the thk  replicate, L is the number of repli-
cates, and kc  is a factor associated with replicate k deter-
mined by the replication method. For a discussion of 
replication for survey samples see Krewski and Rao (1981) 
and Rao, Wu and Yue (1992). When the original estimator 
θ̂  is a linear estimator of the form (1), the thk  replicate 
estimate of θ̂  can be written 

∑
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i
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where )(k
iw  denotes the replicate weight for the thi  unit of 

the thk  replication. 
A proposed replicate for the estimator FEFIθ̂  is 
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Using the replicates (15), the replicate variance estimator 
can be written as  
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1

2
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The replicates in (15) can be computed in two steps. 
First, create the usual replicate by defining the weights )(k

iw  
for every element. Second, for a nonrespondent, the repli-
cate imputation fraction for donor i to recipient j is 
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Note that the sum of the fractional replication weights of the 
donor records for each recipient is the same as the replica-
tion weight for that unit in a complete sample. 

The suggested procedure is closely related to the Rao and 
Shao (1992) variance estimator. See also Yung and Rao 
(2000). However, the use of fractional imputation greatly 
simplifies variance estimation. In the creation of replicates, 
only the weights on the imputed values are changed. No 
recomputing of imputed values is required, and once 
computed, the replicate weights can be used for any smooth 
function of the vector y. Also, the fractional replicates make 
the estimator (16) appropriate for a vector of y – variables. 

Theorem 3.1 of Kim, Navarro and Fuller (2005) can be 
used to show that, given a consistent full sample replication 
procedure, 
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where vFE
~θ  is defined in (10), and the distribution is with 

respect to the sampling and response mechanisms. 
If the finite population correction can be ignored, the 

estimator (16) is consistent for }.ˆ{ FEθV  If the sample size is 
large relative to N, then an estimator of 
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should be added to (16). 
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The imputation and variance estimation procedure 
outlined for the response model also produces consistent 
estimators for the cell mean model. Under the cell mean 
model, the elements within a cell of the finite population are 
a realization of independently and identically distributed 
random variables. The imputation procedure based on the 
response model is not necessarily fully efficient for the 
population mean under the cell mean model, but it can be 
shown that the estimator of the mean and the estimator of 
the variance of the estimated mean are consistent. 

 
4. Approximations to the Fully 

        Efficient Procedure  
In the previous sections, the estimator FEFIθ̂  was 

constructed to produce zero imputation variance. The 
implementation of the fractional imputation procedure, as 
described in (11), could require the use of a large number of 
donors for each recipient. Therefore, we outline a procedure 
with a fixed number of donors per recipient that is fully 
efficient for the grand total, but not necessarily fully 
efficient for subpopulations. The procedure assigns donors 
to produce small between-recipient variance of imputed 
values and modifies the weights of donors to attain full 
efficiency for the total. 

Suppose that M donors are to be assigned to each 
recipient. We suggest donors be assigned to recipients to 
approximate the distribution of all respondents in the cell. 
One possible selection method is to select a stratified sample 
for each recipient. A second possibility is to use systematic 
sampling with probability proportional to the weights to 
select donors for each recipient. Initial fractions ∗

0ijw  are 
assigned to the donated values. For systematic sampling 
with equal weights, the initial ∗

0ijw  is .1−M   
After the donors are assigned, the initial fractions, ∗

0ijw  
are adjusted so that the sum of the weights gives the fully 
efficient estimator of the mean of y, and such that the 
estimated cumulative distribution function based on the 
weights approximates the fully efficient estimator of the 
cumulative distribution function. The modification of 
weights using regression has been suggested by Fuller 
(1984, 2003). Chen, Rao and Sitter (2000) discussed an 
efficient imputation method that changes the imputed values 
rather than the weights. Let ),,,( 21 α= jgjgjgjg zzz Kz  be 
a vector defined by 
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where αLLL ,,, 32 K  divide the range of observed y in cell 
g into 1−α  sections. The number of sections that can be 
used depends on the numbers and type of observations in 
the cell, the number of recipients and the number of donors 
per recipient. If the number of donors per recipient is large, 
it is possible to adjust the set of weights for each recipient so 
that the sum of ∗

ijw  over i is one for every j and the sum of 

iij yw∗  over i is the fully efficient estimator for every j. In 
most cases the weights will be adjusted so that the sum of 
the ∗

ijw  over i is one for every j and the cell means of the 
imputed values are equal to the fully efficient estimator. 

Let gFE,z  denote the fully efficient estimator for cell g. 
Using regression procedures, the modified ,∗

ijw  modified to 
give the fully efficient cell mean of ,z  are 
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gLA  is the set of indexes of recipients in cell g, gijg zz =[i]  
is the value imputed from donor i for recipient j, and jg .z  is 
the weighted mean of the imputed values for recipient j 
using the initial .0

∗
ijw  

To estimate the variance, replicates are created so that the 
weights on the donors reflect the effect of the deletion of an 
element on the fully efficient estimator. We use the words 
“deletion” and “delete” to identify the element chosen for 
principal weight modification for replication variance 
estimation. 

Let )(k
iw  be the weight assigned to element i for the thk  

replicate for variance estimation of the full sample esti-
mator. Then the replicate for the fully efficient mean of y for 
cell g is 

 



Survey Methodology, December 2005 143 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

.)(

1

)()(
i

k
i

AiAi

k
i

k
g ww

RgRg

zz ∑∑
∈

−

∈ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  (19) 

Replicate fractions are assigned to donors in cell g so that 
the replicate estimate of the cell mean is .)(k

gz  Initial 
fractional weights )(

0
k

ijw∗  are assigned where )(
0
k

ijw∗  is small, 
but positive, if i is a deleted unit for replicate k. The final 
fractional weights )(k

ijw∗  are computed using the procedure 
of (18) with )(k

gz  replacing g,FEz  and )(
0
k

ijw∗  replacing .0
∗
ijw  

The procedure simulates the effect of deleting a single 
element on the fully efficient estimator. 

 
5. An Artificial Example  

In this section, we present an example with artificial data  
to illustrate the implementation of the proposed method. 
Suppose that two study variables, x and y, are observed in a 
sample of size n = 10 obtained by simple random sampling. 
Variable x is a categorical variable with three categories, say 
1, 2, and 3, and variable y is a continuous variable. Both 
variables have item nonresponse and there is a set of 
imputation cells for each variable. Table 5.1 shows the 
sample observations, where nonresponse is denoted by M in 
the table. We use a weight of one to simplify the presen-
tation. Divide by ten to obtain weights for the mean.  

Table 5.1 
An Illustrative Data Set 

 

Observation Weight Cell for x Cell for y x y 
1 1 1 1 1 7 
2 1 1 1 2 M 
3 1 1 2 3 M 
4 1 1 1 M 14 
5 1 1 2 1 3 
6 1 2 1 2 15 
7 1 2 2 3 8 
8 1 2 1 3 9 
9 1 2 2 2 2 

10 1 2 1 M M  
Because the x variable is a categorical variable with three 

categories, using three fractions for fractional imputation 
gives fully efficient estimators for the distribution of the 

variable−x . Thus the weights in Table 5.2 for the three 
imputed values of x for observation four are the fractions for 
the three categories in x – cell one. 

If a subset of donors is to be used for each recipient, a 
controlled method of selecting donors, such as systematic 
sampling, is suggested. In our simple illustration we could 
easily use fractional imputation with all four y responses in 
cell 1, but to illustrate the regression adjustment we use only 
three. See Table 5.2. 

Several approaches are possible for the situation in which 
two items are missing, including the definition of a third set 

of imputation cells for such cases. Because of the small size 
of our illustration, we impute under the assumption that x 
and y are independent within cells. Thus we impute four 
values for observation ten. For each of the two possible 
values of x we impute two possible values for y. One of the 
pair of imputed y – values is chosen to be less than the mean 
of responses and one is chosen to be greater than the mean. 
See the imputed values for observation 10 in Table 5.2.  

Table 5.2 
Fractional Weights for Means 

 

Observation Weight Donor for y Cell for x Cell for y x y 

1 1.0000  1 1 1 7 
2 0.2886 1 1 1 2 7 
2 0.3960 6 1 1 2 15 
2 0.3154 8 1 1 2 9 
3 0.3333 5 1 2 3 3 
3 0.3333 7 1 2 3 8 
3 0.3334 9 1 2 3 2 
4 0.5000  1 1 1 14 
4 0.2500  1 1 2 14 
4 0.2500  1 1 3 14 
5 1.0000  1 2 1 3 
6 1.0000  2 1 2 15 
7 1.0000  2 2 3 8 
8 1.0000  2 1 3 9 
9 1.0000  2 2 2 2 

10 0.2247 8 2 1 2 9 
10 0.2753 4 2 1 2 14 
10 0.2095 1 2 1 3 7 
10 0.2905 6 2 1 3 15  

Initial fractions of one third are assigned to the three 
imputed values for observations three and four, and initial 
fractions of one fourth are assigned to the four imputed 
values for observation ten. The fractional weights are then 
adjusted using the regression method of equation (18) to 
give the FEFI mean of y as the estimator, where the fully 
efficient estimator for the mean of y is 

∑
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==
2

1
FE .4833.8

g
Rg

g y
n

n
y  

We restrict the weights for observation 10 so that the 
estimated fractions for the two categories of x are the cell 
fractions. Then, because the weighted mean for the categor-
ical variable is controlled for each individual, the vector z  
contains only the y – variable. Table 5.2 gives the final 
fractional weights computed with the regression weighting. 

An analyst can use the data set of Table 5.2 and any full-
sample computer program to compute estimates of 
functions of y and x, such as the mean of y for the x cate-
gories. The fractional data set is fully efficient for any 
function of the x – variable and is also fully efficient for the 
mean of the y – variable. 

For jackknife variance estimation, we repeat the weight 
calculation for each replicate. The replicate estimates of the 
cell means of y are given in Table 5.3 and the replicate 
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estimates of the category fractions for x are given in Table 
5.4. The values in Table 5.3 and in Table 5.4 are used as the 
control totals g,FEz  in the regression weighting. We used 

1)(
0 3−∗ =k

ijw  as the initial value of the replication fractions 
for observation two and 1)(

0 4−∗ =k
ijw  for observation ten. 

Table 5.5 contains the jackknife weights for the 
fractionally imputed data set of Table 5.2. The replicate 
weights are used in the same way as replicates for a full 
sample. They are appropriate, with the caveats of the next 
section, for any statistic for which the full sample jackknife 
is appropriate. Thus the procedure is particularly appealing 
for a general purpose data set, because no additional 
computations are required of the analyst. 

The fully efficient estimator of the mean of y is obtained 
by treating the respondents as the second phase of a two 
phase sample. A two-phase variance estimator is 
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where 2
Rgs  is the within cell sample variance for cell g . If 

we use the replication weights in Table 5.5, the replication 
variance estimate for the mean of y is 
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The difference between the linearized variance estimator 
and the jackknife variance estimator is 
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Thus, the jackknife variance estimator slightly overestimates 
the true variance in this example. 

  
Table 5.3 

Jackknife Replicates of Cell Mean of y – variable 
 

Replicate Cell 
1 2 3 4 5 6 7 8 9 10 

1 12.67 11.25 11.25 10.33 11.25 10.00 11.25 12.00 11.25 11.25 
2 4.33 4.33 4.33 4.33 5.00 4.33 2.50 4.33 5.50 4.33  

Table 5.4 
Jackknife Replicates of Cell Mean of the Dummy Variables of x – variable 

 

Replicate Cell Level of x 
1 2 3 4 5 6 7 8 9 10 

1 0.33 0.67 0.67 0.50 0.33 0.50 0.50 0.50 0.50 0.50 
2 0.33 0.00 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 1 
3 0.33 0.33 0.00 0.25 0.33 0.25 0.25 0.25 0.25 0.25 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.50 0.50 0.50 0.50 0.50 0.33 0.67 0.67 0.33 0.50 2 
3 0.50 0.50 0.50 0.50 0.50 0.67 0.33 0.33 0.67 0.50  

Table 5.5 
Jackknife Weights for Fractional Imputation 

 

Replicate Obs. 
1 2 3 4 5 6 7 8 9 10 

1 0 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 
2 0.1664 0 0.3206 0.4205 0.3206 0.4563 0.3206 0.2392 0.3206 0.2724 
2 0.6559 0 0.4400 0.3002 0.4400 0.2500 0.4400 0.5540 0.4400 0.5075 
2 0.2888 0 0.3505 0.3904 0.3505 0.4048 0.3505 0.3179 0.3505 0.3312 
3 0.3706 0.3706 0 0.3706 0.3226 0.3706 0.5018 0.3706 0.2867 0.3706 
3 0.3697 0.3697 0 0.3697 0.5018 0.3697 0.0090 0.3697 0.6004 0.3697 
3 0.3708 0.3708 0 0.3708 0.2867 0.3708 0.6003 0.3708 0.2240 0.3708 
4 0.3703 0.7407 0.7407 0 0.3703 0.5556 0.5556 0.5556 0.5556 0.5556 
4 0.3704 0 0.3704 0 0.3704 0.2777 0.2777 0.2777 0.2777 0.2777 
4 0.3704 0.3704 0 0 0.3704 0.2778 0.2778 0.2778 0.2778 0.2778 
5 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 1.1111 1.1111 
6 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 1.1111 
7 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 1.1111 
8 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 1.1111 
9 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 1.1111 0 1.1111 
10 0.1624 0.2777 0.2777 0.3061 0.2777 0.2286 0.3474 0.3013 0.1520 0 
10 0.3931 0.2778 0.2778 0.2494 0.2778 0.1417 0.3934 0.4395 0.2185 0 
10 0.0932 0.2778 0.2778 0.3231 0.2778 0.4400 0.1483 0.0746 0.3171 0 
10 0.4623 0.2778 0.2778 0.2324 0.2778 0.3008 0.2220 0.2957 0.4235 0 

 

 

 

 

 

 



Survey Methodology, December 2005 145 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

 

6. Simulation Studies  
6.1 Study Parameters  

To study the properties of the imputation procedure we 
conducted a Monte Carlo study. The sample is a stratified 
sample with two elements per stratum and two imputation 
cells, where the cells cut across the strata. Cell one is 20% 
of the population in strata 1 – 25 and 80% of the population 
in strata 26 – 50. The probability of response is 0.7 for cell 
one and 0.5 for cell two. Two variables are considered. The 
variable D is always observed and defines a subpopulation. 
The probability that D = 1 is 0.25 for cell one and 0.40 for 
cell two. The variable y is subject to nonresponse with 
constant within-cell response probabilities. The variable D is 
independent of y and of the response probability. The 
variable y is normally distributed, where the parameters for 
a population of 50 strata are given in Table 5.1. In the data 
generating model of Table 6.1, there are no stratum effects. 
The parameters of interest are: mean1 =θ  of mean, 2 =θy  
of y for =θ= 3,1D  fraction of Y ’s less than two, =θ4  
fraction of Y ’s less than one.  

Table 6.1 
Parameter Set A 

 

   Cell One  Cell Two 

Strata 
Element 
Weight  Mean Variance  Mean Variance 

1 – 25 0.01  0.4 0.36  1.6 0.36 
26 – 50 0.01  0.4 0.36  1.6 0.36  

6.2 Estimation Procedures  
In the simulation M = 5 and M = 3 donors were used per 

recipient. Systematic samples were selected to serve as 
donors for each recipient. If the number of respondents in 
the cell is less then M, every respondent was used as a donor 
for every recipient and the ∗

ijw  are proportional to the 
original iw  of the respondents. If there are more than M 
respondents in a cell, the donors are ordered by size and 
numbered from one to .gr  Then the donors are placed in the 
order 1, 3, 5, 2,,,,, 31 KK −− ggg rrr  for gr  odd and the order 

2,,,,,,5,3,1 21 KK −− ggg rrr  for gr  even. The cumulated 
sums of the weights are formed and gm  systematic samples 
of size M are selected, where .ggg rnm −=  The cumulative 
sums are normalized so that the grand sum is one, a random 
number, ,NgR  between zero and gm2.0  is selected and the 

gm  samples are the systematic samples of size M defined 
by the donor associated with ,)1()1(2.0 1−−+−+ gNg mtsR  

5,4,3,2,1=s  for recipients .,,2,1 gmt K=  The initial 
imputation fraction for each donor is .1−∗ = Mwij  

The initial imputation fractions are modified using the 
regression procedure of (18). The donors in a cell were 
ordered from smallest to largest and the cumulative sum of 
the weights formed. Let 
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where ,,,2,1,][ gi riw K=  is the weight of )(, igy  and 

)(,)1(, ngg yy ≤≤K  are the ordered y – values in cell g. To 
define the boundaries of groups to be used to create 
indicator functions, let st∗  be the t for which  

}2.0:{max ,, gwtwgtwg sSSS ≤  

for s = 1, 2, 3, 4, where gwS  is the total of the weights of the 
donors in cell g. Define 
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for s = 1, 2, 3, 4 and let ).,,,( 521 gjgjgjgj zzy K=z  The 
regression modified imputed estimator of the mean for each 
of the five variables in the z – vector is the fully efficient 
estimator of the respective mean. 

The k – deleted FE estimator of the cell mean of z  is 
defined in (19). The initial fractional weight for donor k to 
element j is set at .01.0)(

0
∗∗ = kj

k
kj ww  This initial weight 

assures that the final weight will be small, but permits 
regression adjustment. The final )(k

ijw∗  are computed using 
the regression procedure of (18) using the initial weight 

.)(
0
k

ijw∗    
6.3 Monte Carlo Results  

The Monte Carlo results for 5,000 samples generated by 
the parameters of Table 6.1 are given in Table 6.2 and Table 
6.3. Results are given for the full sample, for fractional 
imputation with 5 donors, fractional imputation with three 
donors, and for multiple imputation (MI) using the 
Approximate Bayesian Bootstrap (ABB) of Rubin and 
Schenker (1986) with M = 5 and ABB with M = 3.  Both the 
FI and MI procedures are unbiased for all four parameters of 
Table 6.2. The last column of Table 6.2 gives the Monte 
Carlo variance of the estimator divided by the Monte Carlo 
variance of the FI procedure with M = 5, expressed in 
percent. The FI procedure is five to ten percent more 
efficient than MI with M = 5 and 9 to 13 percent more 
efficient than MI with M = 3. 

Under the model, the mean of the observed values is not 
the best estimator of the domain mean. In this example, the 
FI estimator is about as efficient as the full sample 
estimator. The effect of a smaller number of observations is 
balanced by the use of a superior estimator of the mean for 
the domain. Under the model, the domain indicator is 
independent of the y values, given the cell. Therefore it is 
efficient to use all values in the cell as donors, not just 
respondents in the domain. 

The properties of the variance estimators are given in 
Table 6.3. The column headed “Relative Mean” gives the 
Monte Carlo estimated mean of the estimated variances 
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divided by the Monte Carlo estimated variance, where the 
Monte Carlo estimated variance is given in Table 6.2. Both 
variance estimation procedures appear to be nearly unbiased 
for the variance of the mean. The relative variance of the MI 
variance estimator for M = 5 is nearly twice that of the FI 
variance estimator for M = 5. For M = 3, the MI variance 
estimator is more than three times that for FI. The MI 
variance estimator has a large variance because the variance 
due to missing observations is estimated with four degrees-
of-freedom for M = 5 and with two-degrees-of freedom for 
M = 3. 

The MI variance estimator for the domain mean is 
seriously biased. This property was first identified by Fay 

(1991, 1992) and studied by Meng (1994) and Wang and 
Robins (1998). The FI variance estimator for the domain 
mean also has a positive bias, though much smaller than that 
of MI. The bias in the FI variance estimator can be reduced 
by increasing M, but the bias of MI has little relationship to 
M.  

All variance estimators for the variance of 4θ̂  are slightly 
negatively biased. We believe FI is slightly biased for 4θ̂  
because, although we use the z – vector, the weights are 
slightly smoothed by the regression procedure. MI is known 
to have a small sample bias. See Kim (2002). 

 
Table 6.2 

Mean and Variance of the Point Estimators Under Setup A (5,000 Samples of Size 100) 
 

Parameter Imputation Scheme Mean Variance Stand. Var. 
Mean Complete Sample 1.00 0.00570 67 

)( 1θ  FI(3) 1.00 0.00849 100 
 ABB(3) 1.00 0.00926 109 
 FI(5) 1.00 0.00849 100 
 ABB(5) 1.00 0.00903 106 

Domain Mean Complete Sample 1.14 0.02020 99 
)( 2θ  FI(3) 1.14 0.02050 100 

 ABB(3) 1.14 0.02230 109 
 FI(5) 1.14 0.02040 100 
 ABB(5) 1.14 0.02170 106 

)2(Pr <Y  Complete Sample 0.87 0.00104 51 
)( 3θ  FI(3) 0.87 0.00202 100 

 ABB(3) 0.87 0.00228 113 
 FI(5) 0.87 0.00202 100 
 ABB(5) 0.87 0.00223 110 

)1(Pr <Y  Complete Sample 0.50 0.00208 66 
)( 4θ  FI(3) 0.50 0.00313 100 

 ABB(3) 0.50 0.00342 109 
 FI(5) 0.50 0.00313 100 
 ABB(5) 0.50 0.00329 105  

Table 6.3 
Relative Mean, t – statistic and Relative Variance for the Variance Estimators Under Setup A 

(5,000 Samples of Size 100) 
 

Parameter Method Relative Mean (%)** t – statistic* Relative Variance (%) 
Mean FI(3) 100.1 0.05 5.66 

)( 1θ  ABB(3) 99.6  – 0.19 19.25 
 FI(5) 100.1 0.03 5.65 
 ABB(5) 98.2  – 0.89 9.95 

Domain Mean FI(3) 115.9 7.54 13.88 
)( 2θ  ABB(3) 127.9 12.72 28.88 

 FI(5) 106.6 3.14 11.62 
 ABB(5) 128.4 13.43 20.03 

)2(Pr <Y  FI(3) 103.9 1.86 13.90 
)( 3θ  ABB(3) 100.8 0.36 48.42 

 FI(5) 101.7 0.82 12.07 
 ABB(5) 98.5  – 0.67 25.10 

)1(Pr <Y  FI(3) 98.5  – 0.75 4.67 
)( 4θ  ABB(3) 96.3  – 1.80 18.51 

 FI(5) 97.6  – 1.20 4.45 
 ABB(5) 96.7  – 1.65 10.17 

 

*   Statistic for hypothesis that the estimated variance is unbiased. 
** Monte Carlo mean of variance estimates divided by Monte Carlo variance of estimates, in percent. 
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In a second set of parameters, denoted by C, the means 
were as follows: 
 

4.0 25;1 strata of 1 Cell =μ−  
0.3 50;26 strata of 1 Cell =μ−  

1.625;1 strata of 2 Cell =μ−  
2.2.50;26 strata of 2 Cell =μ−   

All other parameters are the same as in parameter set A. The 
properties of the estimators are given in Table 6.4. Both FI 
and MI produce unbiased estimates of the means and of the 
domain mean. As with parameter set A, the FI procedure is 
eight to twelve percent more efficient than MI for M = 5 and 
14 to 16 percent more efficient for M = 3. 

The assumptions required for MI variance estimation are 
not satisfied for parameter set C. Therefore the MI estimated 

variance is seriously biased for all parameters. See Table 
6.5. The bias in the MI estimated variance with M = 5 is 
about 17% for the variance of the overall mean and nearly 
50% for the domain mean. The bias of the MI variance of 
the mean for a binomial variable is smaller than the bias for 
the mean of the continuous variable because the stratifica-
tion effect is smaller for the binomial variable. 

The properties of the estimated variances for the FI 
procedures are similar to those for setup A. There is a 
positive bias for the variance of the domain mean of about 
23% for M = 3 and about 6% for M = 5. 

The variance of the MI estimated variance is 2.4 to 3.5 
times the variance of the FI estimated variance for M = 5 
and 3 to 7 times for M = 3, demonstrating the clear supe-
riority of the FI variance estimator for this configuration.  

Table 6.4  
Mean and Variance of the Point Estimators Under Setup C (5,000 Samples of Size 100) 

 

Parameter Imputation Scheme Mean Variance Stand.Variance 
Mean Complete Sample 2.10 0.00500 48 

)( 1θ  FI(3) 2.10 0.01050 100 
 ABB(3) 2.10 0.01220 116 
 FI(5) 2.10 0.01050 100 
 ABB(5) 2.10 0.01150 110 

Domain Mean Complete Sample  0.02530 102 
)( 2θ  FI(3) 2.01 0.02510 101 

 ABB(3) 2.01 0.02850 115 
 FI(5) 2.01 0.02480 100 
 ABB(5) 2.01 0.02710 109 

)2(Pr <Y  Complete Sample  0.00127 45 
)( 3θ  FI(3) 0.45 0.00281 100 

 ABB(3) 0.45 0.00322 115 
 FI(5) 0.45 0.00280 100 
 ABB(5) 0.45 0.00314 112 

)1(Pr <Y  Complete Sample  0.00107 54 
)( 4θ  FI(3) 0.15 0.00199 100 

 ABB(3) 0.15 0.00226 114 
 FI(5) 0.15 0.00199 100 
 ABB(5) 0.15 0.00214 108  

Table 6.5 
Relative Mean, t – statistic and Relative Variance for the Variance Estimators Under Setup C (5,000 Samples of Size 100) 

 

Parameter Method Relative Mean (%) t – statistic* Relative Variance (%) 
Mean FI(3) 100.9 0.41 6.42 

)( 1θ  ABB(3) 116.7 7.31 40.14 
 FI(5) 100.8 0.39 6.42 
 ABB(5) 117.1 7.99 22.29 

Domain Mean FI(3) 122.7 10.78 16.23 
)( 2θ  ABB(3) 144.4 19.79 46.05 

 FI(5) 106.1 2.95 11.95 
 ABB(5) 148.7 22.51 32.49 

)2(Pr <Y  FI(3) 104.4 2.18 6.63 
)( 3θ  ABB(3) 114.7 6.54 42.32 

 FI(5) 101.8 0.89 6.42 
 ABB(5) 112.1 5.74 20.67 

)1(Pr <Y  FI(3) 102.3 1.13 11.08 
)( 4θ  ABB(3) 101.3 0.58 39.14 

 FI(5) 99.9  – 0.04 10.05 
 ABB(5) 102.2 1.04 23.60 

   * Statistic for hypothesis that the estimated variance is unbiased. 
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7. Summary  
In fractional imputation, several donors are used for each 

missing value and each donor is given a fraction of the 
weight of the nonrespondent. If all donors are used, the 
procedure is fully efficient, under the model, for all 
functions of a y – vector. It is shown that the use of fractional 
imputation with a small number of imputations per non-
respondent can give a fully efficient estimator of the mean. 
Estimates of other parameters, such as estimates of the 
cumulative distribution are nearly fully efficient. 

Fractional imputation permits the construction of general 
purpose replicates for variance estimation. A single set of 
replicates can be used for variance estimation for imputed 
variables, variables observed on all respondents, and under 
model assumptions, for functions of the two types of 
variables. The replicates give estimates of the variances of 
domain means with much smaller biases than those of 
multiple imputation. The bias goes to zero as M increases 
and, in the simulation, is modest for M = 5. The replication 
variance estimator is easily implemented with replication 
software such as Wesvar. 

Fractional imputation with a fixed number of donors per 
recipient is slightly more efficient for the mean than 
multiple imputation with the same number of donors. 
Fractional imputation gives variance estimates with smaller 
bias and much smaller variance than multiple imputation 
estimators with the same number of imputations. 
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Variance Estimation with Hot Deck Imputation:  
A Simulation Study of Three Methods 

J. Michael Brick, Michael E. Jones, Graham Kalton and Richard Valliant 1 

Abstract 

Complete data methods for estimating the variances of survey estimates are biased when some data are imputed. This paper 
uses simulation to compare the performance of the model-assisted, the adjusted jackknife, and the multiple imputation 
methods for estimating the variance of a total when missing items have been imputed using hot deck imputation. The 
simulation studies the properties of the variance estimates for imputed estimates of totals for the full population and for 
domains from a single-stage disproportionate stratified sample design when underlying assumptions, such as unbiasedness 
of the point estimate and item responses being randomly missing within hot deck cells, do not hold. The variance estimators 
for full population estimates produce confidence intervals with coverage rates near the nominal level even under modest 
departures from the assumptions, but this finding does not apply for the domain estimates. Coverage is most sensitive to bias 
in the point estimates. As the simulation demonstrates, even if an imputation method gives almost unbiased estimates for the 
full population, estimates for domains may be very biased. 

                                                           
1. J. Michael Brick, Michael E. Jones and Graham Kalton, Westat, 1650 Research Boulevard, Rockville, MD 20850; Richard Valliant, University of 

Michigan, 1218 Lefrak Hall, College Park, MD 20742. 

 
Key Words: Adjusted jackknife; Domain estimation; Model-assisted variance estimation; Multiple imputation; 

Nonresponse. 
 
 

 

1. Introduction 
  

Imputation is frequently used in survey research to assign 
values for missing item responses, thereby producing 
complete data sets for public use or general analysis. It is 
well-recognized that treating imputed values as observed 
values results in downwardly biased variance estimates for 
the survey estimates. As a result, confidence intervals have 
lower than nominal levels. The biases in the variance 
estimates tend to increase with the item nonresponse rate 
and can be substantial when that rate is high. 

Three methods of variance estimation that have been 
developed for use with imputed data are studied here: a 
model-assisted method (Särndal 1992), an adjusted jack-
knife method (Rao and Shao 1992), and multiple imputation 
(Rubin 1987). Each method has been evaluated theoretically 
and by simulation methods, primarily under conditions 
consistent with the assumptions of the methods. This paper 
uses simulation to compare the three methods under the 
same experimental conditions in which some of the assump-
tions required by the methods do not hold. The goal is to 
examine the relative performances of the methods in 
situations that are likely to occur in practice. Other simu-
lation studies of variance estimation methods with imputed 
data have generally been more limited. Even the more 
extensive simulation study by Lee, Rancourt, and Särndal 
(2001) was based on small populations and it did not 
include multiple imputation.  

A single-stage disproportionate stratified sample selected 
from a real population data set is used to evaluate these 
variance estimation methods in a realistic setting. The 
imputed values are assigned using a hot deck imputation 
method, one of the most popular methods of imputation in 
survey research. Since hot deck imputation is a form of 
regression imputation (Kalton and Kaspryzk 1986), re-
stricting the simulation study to the hot deck is not a crucial 
feature for examining the implications for variance estima-
tion. We study estimation for both full population and 
domain totals. For the domain estimates, the domain indi-
cator is assumed to be known for all sample members. 

Three different combinations of missing data mecha-
nisms and hot deck cell formation are used in the simula-
tions to assess the performance of the variance estimation 
methods under conditions that violate the assumptions of the 
methods to varying degrees. The three variance estimation 
methods we study all assume that data are randomly missing 
in each hot deck cell and the model-assisted (MA) and 
multiple imputation (MI) methods also assume that a simple 
model with common mean and variance holds in each cell. 
Studying the robustness of the variance estimation methods 
is an important feature of the simulation because in practice 
the assumptions underlying the methods will almost never 
be fully satisfied. 

The next section briefly describes three variance estima-
tion methods with hot deck imputed data. The third section 
outlines the study population, the sample design used in the 
simulations, and the methods used to generate the missing 
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data and implement the hot deck imputations. The fourth 
section gives the results of the simulations. The last section 
gives some conclusions about the methods and their applica-
bility. 

 
2. Description of the Variance 

        Estimation Methods  
We denote the full sample by A, the subset that responds 

to an item by ,RA  and the subset that does not respond by 
.MA  For the imputations the units are divided into hot deck 

cells indexed by ,,,1 Gg K=  where the subset of Rgn  
respondents in cell g is ,RgA  and the subset of non-
respondents is .MgA  For each unit with a missing value, the 
hot deck method consists of randomly selecting a 
respondent from within the same hot deck cell to be the 
donor of the imputed value. 

With hot deck imputation, donors are often selected 
within a cell by simple random sampling with replacement 
(srswr), by simple random sampling without replacement, or 
by sampling with probabilities proportional to the survey 
weights with replacement (ppswr). Since the simulation 
results obtained using the srswr and the ppswr methods are 
very similar, only the results for the ppswr method – termed 
the weighted hot deck – are presented here. The imputed 
estimator of a population total is ∑ ∈ +=θ

RAi iiI ywˆ  
∑ ∈

∗
MAi ii yw ,  where iw  is the survey weight, iy  is the 

reported value and ∗
iy  is the imputed value for unit i in the 

nonrespondent set.  
2.1 Model-Assisted Variance Estimation  

The model-assisted (MA) approach with hot deck 
imputation assumes that data are randomly missing within 
the hot deck cells and that a model for the generation of the 
y’s holds. A natural model for use with hot deck imputation 
is that the iy ’s are independently and identically generated 
within the hot deck cells, i.e., ),( 2iid

~ gggiy σμ  for cell g. 
Inferences from the model-assisted approach depend on the 
validity of the model assumptions. 

Särndal (1992) decomposed the total variance of the 
imputed estimator into three components denoted by 

,, IMPSAM VV  and .MIXV  The estimators used for these com-
ponents in the simulations are those given in Brick, Kalton, 
and Kim (2004). The MA variance estimator is the sum of 
the component estimates: ++= IMPSAMMA

ˆˆˆ VVV .ˆ2 MIXV  The 

IMPV̂  and MIXV̂  estimators require an estimator of the 
element variance in each hot deck cell. Since the simu-
lations showed little difference between weighted and un-
weighted estimators only the weighted estimator of  2

gσ   is 
discussed, that is ×−−=σ ∑− 212 )()1(ˆ

RgA RgiiRgRgg yywnn  
,)( 1−∑

RgA iw  with .)( 1−∑∑=
RgRg A iA iiRg wywy  

2.2 Adjusted Jackknife Variance Estimation  
The Rao and Shao (1992) adjusted jackknife (AJ) 

variance estimator for a stratified sample with imputations 
and ignorable finite population correction factors (    fpc’s) is 
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hiw is the weight for unit hi adjusted to account for the 

omission of unit k. The notation (hi) ∈ B denotes unit i in 
stratum h is part of set B. This procedure requires the 
computation of ∑ hn  replicate estimates, .ˆ )(k

Ihθ  A 
commonly used strategy to reduce the computations is to 
combine units into variance strata (e.g., see Rust and Rao 
1996). Let ∗h  denote a combined variance stratum and k a 
group of sample units within the combined stratum. All 
sampled units are assigned to one of the groups. Then, the 
grouped adjusted jackknife variance estimator is  
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where ∗h
n  is the number of sample units in combined 

variance stratum 
)(

,
kh

nh ∗
∗  is the number of units retained in 

stratum ∗h  when units in group k are deleted and, 
corresponding to )()( ˆ,ˆ k

Ih

k
Ih ∗θθ  is the adjusted imputed estimate 

for the full population when units in group k in stratum ∗h  
are deleted. The retained units from design stratum h that 
are in combined variance stratum ∗h  are assigned replicate 
weights of .)( 1

)(
)(

ihkhh
k

ih
wnnw ∗∗∗∗

−=   
The AJ method assumes a uniform response probability 

model within each hot deck cell but, unlike the MA method, 
it does not require distributional assumptions. Under the 
uniform response probability model without distributional 
assumptions, a weighted hot deck is needed to produce 
unbiased imputed estimates.  

In developing the theory for the AJ method, Rao and 
Shao (1992) assume that fpc’s are ignorable. However, the 
fpc’s are not negligible in some strata in the simulations, 
ranging from about 0.05 to 0.24. Shao and Steel (1999) and 
Lee, Rancourt, and Särndal (1995) provide methods for 
accounting for nonnegligible fpc’s. The Lee, Rancourt, and 
Särndal (1995) fpc adjustment was applied in the simu-
lations because of its ease of implementation. Without the 
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fpc adjustment, the AJ variance estimator substantially 
overestimated the variances in the simulations.  
2.3 Multiple Imputation  

Multiple imputation (MI) is described in detail in Rubin 
(1987) and Little and Rubin (2002). The summary here 
relates to its application with hot deck imputation. As with 
the model-assisted approach, within the hot deck cells re-
sponses are assumed to be missing randomly and the y’s are 
assumed to be independent random variables with a com-
mon mean and variance. For each unit that has a missing 
value, M values are imputed, creating M completed data 
sets.  

To avoid underestimation of variances with the MI 
method, the hot deck method needs to be modified. Rubin 
and Schenker (1986) proposed the approximate Bayesian 
bootstrap (ABB) for simple random sampling with hot deck 
imputation for use with the MI method. The ABB was 
modified for the simulations to accommodate sampling 
donors by ppswr. In the simulations a donor pool for the 
ABB was created in each cell by selecting respondents with 
replacement with probabilities proportional to .iw  (There is 
no literature that discusses the application of ABB methods 
with unequal weights. In hindsight, an unweighted ABB 
might have been preferable. The use of an unweighted ABB 
with a ppswr hot deck yields unbiased point estimates of 
population totals under the response probability model). 

 
3. Design of the Simulation Study  

3.1 Description of the Study Population and Sample 
 Design  

The sampling frame for the simulations is a subset of the 
file of public school districts extracted from the 1999 – 2000 
Common Core of Data (CCD) compiled by the U.S. 
National Center for Education Statistics. The final frame 
consists of 11,941 districts. 

The sample design used in the simulations is a stratified 
simple random sample of 1,020 school districts. Twelve 
strata were created by cross-classifying four categories of 
number of students (district size) by three categories of the 
percentage of students at or below the poverty level (poverty 
status). The strata and number of districts in the frame are 
given in Table 1. The table also gives the stratum sample 
sizes and sampling rates used in the simulations.  

The table also contains the stratum means and standard 
deviations for the two study variables, the number of 
students in the district and the number of districts that 
include pre-kindergarten as the lowest grade. These study 
variables were chosen because they are typical of many 
estimates computed from this type of design.  

In addition to the full population estimates we computed 
the two study estimates for two domains, defined as districts 
located in the Northeast region and those in nonmetropolitan 
areas. The means for these domains are substantially 
different from the full population means for both study 
variables.  
3.2 Missing Data Mechanisms and Imputation 
 Methods  

By construction, information on the two study variables 
is available for all districts in the sampling frame. To create 
missing values, response indicators were assigned to 
sampled units within “response cells”. In some cases the 
response cells are the sampling strata, termed STR cells, 
whereas in other cases they are what are termed HD cells. 
The HD cells were defined by the cross-classification of 
four geographic regions and a fourfold categorization of the 
number of full time equivalent teachers in the district. The 
HD cells are somewhat correlated with the sampling strata, 
but each cell contains units from more than one stratum. 

 

 
Table 1 

Stratum Definitions, Population Counts, Sample Sizes, Sampling Rates, Means and Standard Deviations of Number of Students  
and Proportions of Districts with Pre-Kindergarten 

 

Number of students  
Stratum 

District 
size 

Poverty 
status 

 
Nh 

 
nh 

Sampling 
rate Mean Std. dev. 

Proportion with 
pre-kindergarten 

1 1 1 615 32 0.0520 270.0 155.0 0.44 
2 1 2 1,147 59 0.0514 263.3 175.0 0.49 
3 1 3 1,292 66 0.0511 243.5 142.5 0.49 
4 2 1 1,720 111 0.0645 1,607.2 837.0 0.44 
5 2 2 2,305 149 0.0646 1,429.7 784.1 0.52 
6 2 3 1,893 122 0.0644 1,427.8 788.8 0.63 
7 3 1 692 75 0.1084 4,695.3 1,360.6 0.35 
8 3 2 579 63 0.1088 4,728.5 1,365.0 0.51 
9 3 3 527 57 0.1082 4,591.8 1,380.3 0.63 

10 4 1 342 83 0.2427 16,003.4 12,670.2 0.51 
11 4 2 449 110 0.2450 17,577.3 14,246.7 0.58 
12 4 3 380 93 0.2447 19,331.8 16,142.7 0.68 

Total   11,941 1,020  3,237.9 6,770.5 0.52 
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Within a given response cell, sampled units were 
assigned at random to be missing or nonmissing at a 
specified rate. For each type of response cell, three schemes 
for assigning rates of missingness were chosen. In two of 
the schemes, the rates of missingness varied across the 
response cells, whereas in the other scheme the rate was 
constant across the cells. 

The simulations were conducted by first drawing a 
stratified simple random sample using the stratum sample 
sizes in Table 1. Once the sample was selected, response 
status (respondent/nonrespondent) was randomly assigned 
to each sampled unit according to the given response 
scheme. For the MA and AJ methods, the weighted hot deck 
imputation procedures described earlier were used to impute 
for missing values. For the MI method, a donor pool was 
first created using the weighted ABB, and weighted hot 
decks were then used to impute for each of the M = 5 
imputed data sets. The estimated total numbers of students 
and districts with pre-kindergarten were computed for the 
simulated sample with imputed values, and variance 
estimates were computed for these estimates using the three 
variance estimation methods. (If the estimated variance 
could not be computed in a particular simulation run or the 
sample size in a cell was less than 2, then that sample was 
deleted. The maximum number of deleted samples across all 
the simulations of 10,000 runs each was 2 for the MA 
method and 28 for the AJ (only one run had 28 AJ samples 
deleted; the next largest number was 3). The AJ method was 
based on three combined variance strata and 40 groups of 
units per stratum for a total of 120 replicates. The three 
combined strata, formed from strata having about the same 
fpc, consisted of strata 1 – 6, 7 – 9, and 10 – 12. As a check of 
the grouping, we verified that the grouped jackknife 
variance procedure gave essentially the same average 
variance estimates and confidence interval coverage rates as 
the ungrouped jackknife in the case of complete response. 
The entire process was repeated 10,000 times for each 
response scheme. 

A feature of the design of the simulation is that the means 
for the two domains considered often differ substantially 
from the full population means by strata and HD cells. A 
key point for the domain estimates is that imputations were 
made by selecting donors from all the respondents in a hot 
deck cell, without specifically recognizing the domain as 
might be done in practice for some domains. After impu-
tations were made for the full sample, the estimated total for 
a domain was estimated by ∑ ∑∈ ∈+δ=θ

R MAi AjiiiI ywˆ  
∗δ jjj yw  where 1=δi  if unit i is in the domain and 0 if not.  

Three of the four possible combinations of response 
mechanism (STR or HD cells) and hot deck cell formation 
(STR or HD cells) were studied in the simulations. We refer 
to these combinations as STR/STR, HD/HD, and STR/HD, 

where the first set of letters identifies the response 
mechanism and the second set identifies the type of hot deck 
cell. The three sets of response rates were 0.2 to 0.6 spaced 
evenly across the response cells, a constant 0.7 in all cells, 
and 0.6 to 0.9 spread evenly across the cells. The three 
combinations of response/hot deck cells with the three sets 
of response rates generated nine separate simulation 
schemes for each estimate.   
3.3 Assumptions for Models of Response and 
 Population Structure  

There are two models involved in the simulations. The 
population model assumes that the y values within each hot 
deck cell are independent and have the same expected value. 
The response model assumes that there is a uniform 
response probability within each hot deck cell. If both 
models hold, then the use of either an unweighted or a 
weighted hot deck will lead to an unbiased estimate of the 
overall population total. However, if only the response 
model is assumed, then the use of a weighted hot deck is 
needed to produce an unbiased estimate of the overall 
population total. Since the weighted hot deck is used in the 
simulations, only the response probability model needs to be 
satisfied for unbiased point estimation of the overall popu-
lation total. The response probability model holds for all the 
STR/STR and HD/HD combinations and for the STR/HD 
combination with a constant response rate; however, it does 
not hold for the other two STR/HD combinations. The AJ 
theory for variance estimation of population totals was 
developed assuming only the response probability model. 
The MA and MI theories assume that both models hold.  

Reliance on only the response probability model and the 
weighted hot deck to produce unbiased estimates of 
population totals does not in general extend to estimates of 
domain totals. When domains cut across hot deck cells, it is 
necessary to invoke a population model that assumes that 
the expected value of the domain values is the same as that 
of the nondomain values in each hot deck cell. However, if 
the hot deck cells are defined such that each domain 
comprises the full population in a subset of the hot deck 
cells, then the situation for point and variance estimation is 
the same as stated above for overall population totals. 

The simulation schemes were generally constructed so 
that the hot deck cells do not incorporate the domains in 
order to reflect the practical consideration that it is 
essentially impossible to incorporate all domains in an 
imputation scheme. Specifically, in the simulations the 
districts in the Northeast (NE) region and districts in 
nonmetropolitan statistical areas (NMSA) are unrelated to 
the stratum definitions in Table 1 (which are used as hot 
deck cells in some cases). Also, districts in the NMSA 
domain can be found in all HD cells. However, the NE 
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domain is a subset of four of the HD cells. Thus, the 
definition of the HD cells is more consistent with estimating 
NE domain totals than NMSA domain totals.   
3.4 Summary Statistics  

The relative bias of a point estimate is estimated by 
,/)ˆ(bias)ˆ(relbias NII θθ=θ  where /)ˆ()ˆ(bias NIssI θ−θ=θ ∑  

Isθ̂,000,10  is the estimate from sample s, and Nθ  is the 
finite population parameter. The empirical variance of Iθ̂  
is ,000,10/)ˆ()ˆ(Var 2∑ θ−θ=θ s IIsI  where ∑ θ=θ s IsI /ˆ  
10,000. The average variance estimate for a particular 
method is ∑= s svv ,000,10/  where sv  is the estimated 
variance for simulation run s.  

The percentages of intervals that include Nθ  are based 
on the nominal 95 percent confidence intervals 

)ˆˆ( 2/1VtI ±θ  computed for each of the 10,000 simulations 
for each simulation scheme. An issue to consider here is the 
precision of the variance estimates from a disproportionate 
stratified sample design and its impact on whether normal 
approximation or t intervals should be used to calculate 
confidence intervals. We found that the use of the 

ondistributi−t did not have a substantial effect for most 
cases with the MA and AJ methods, and we have therefore 
used a multiplier of 1.96 for confidence intervals based on 
these methods. Rubin and Schenker (1986) suggest using a 
t – distribution with λ  degrees of freedom for confidence 
intervals with the MI method, where  

.
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Since using 1.96 with the MI method yielded intervals 
that had severe undercoverage, the t – distribution with λ  
degrees of freedom is used for the MI confidence intervals. 

 
4. Simulation Results  

This section presents the main results from the 
simulations, beginning with the performance of the three 
methods of variance estimation for estimates from the full 
population, followed by the results for the domain estimates. 
Key outcomes are summarized here graphically, but tables 
with full details are available in Brick, Jones, Kalton, and 
Valliant (2004).  
4.1 Full Population Estimates 
  

Figure 1 shows the results of the simulations for 
estimating the total number of students and the number of 
districts offering pre-kindergarten from the 10,000 samples 
for each of the nine simulation schemes. The figure gives 
the relative bias of the imputed estimator, the average 
variance estimate as a percentage of the empirical variance, 
and the confidence interval coverage rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Relative biases, variance ratios, and 95% confidence interval coverage for number of students (•) and number of districts  
 with pre-kindergarten (∆). 
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The point estimates are theoretically unbiased with 
weighted hot deck imputation if all units in a hot deck cell 
have the same response probability. As noted earlier, this 
condition holds for the STR/STR and HD/HD combinations 
and also for the STR/HD combination with a uniform 
overall response probability. The graph of relative biases in 
Figure 1 is consistent with this theoretical result within the 
bounds of simulation error. While the relative biases of the 
point estimates in the other two STR/HD schemes are small 
(always less than 3%), they still may be important if the 
standard errors of the estimates are also small. Cochran 
(1977, page 12) shows that when the ratio of the bias to the 
standard error is relatively large, then the coverage rate can 
be much lower than the nominal level. For the full 
population estimates with this sample size the ratios never 
exceed 0.4, but much larger ratios occur for domain 
estimates, as discussed later. 

The graph of the ratios of the average variance estimates 
to the empirical variances (v/Var in the figures) for the three 
methods shows that these estimates have relatively small 
biases in most cases, within a range of plus or minus 8 
percent around the simulated true variance. While the ratios 
for all the methods vary across the nine schemes, the MI 
ratios are slightly more variable than the other two. 

A primary reason for computing variances is to produce 
confidence intervals. The right-hand panel in Figure 1 
shows that the coverage rates for the confidence intervals 
for the estimates are generally close to the nominal 
95 percent level, especially for the pre-kindergarten statistic. 
The coverage rates for both statistics and all the methods 
and schemes are between 91% and 96%, with the exception 
of the number of students for the STR/HD 0.2 to 0.6 
scheme. The coverage rates of 88% or less for all three 
methods in this case, with its extremely high rate of 
nonresponse, are due to the relatively large bias in the point 
estimate. Overall, all three variance estimation methods 
produce confidence intervals with coverages that are vast 
improvements over those for intervals based on naïve 
variance estimates (Brick et al. 2004).  

The confidence interval coverage rates for the MA and 
AJ methods are essentially equivalent. The MI coverage 
rates are generally slightly greater than those for the MA 
and AJ methods. The MI coverage rates are slightly closer 
to the nominal level for the number of students. Most of the 
differences are small. 

For all three variance estimation methods, the upper and 
lower confidence interval coverage rates were similar. For 
the number of students, which is a highly skewed variable, 
the coverage rates in the two tails are unequal due to 
correlation between the estimated total and the standard 
error estimates. The asymmetric tail coverages are also 
associated with lower overall coverage rates. 

The MA and AJ methods yield confidence intervals that 
have nearly the same average length across the schemes and 
variables. Because the MI method uses t – distribution 
values, its intervals range from 10 to 20 percent longer than 
the MA and AJ intervals when the response rates are low. 
With the higher response rates, the MI intervals range from 
about the same to 5 percent longer than the intervals from 
the two other methods. The MI confidence intervals could, 
of course, be shortened by increasing M (Rubin 1987, 
Chapter 4), even though M = 5 is typical for applications. 
  
4.2 Domain Estimates  

Estimating characteristics for domains that are not 
explicitly incorporated in the imputation scheme can be 
problematic when the missing data rate is not trivial. Kalton 
and Kaspryzk (1986) and Rubin (1996) along with many 
others have discussed this point and urged the inclusion of 
as many variables as possible in the imputation process. 
However, given the many preplanned and ad hoc domain 
analyses that are carried out with survey data, it is 
unrealistic to assume that all domains can be accounted for 
in an imputation scheme. For this reason, the design of the 
simulations intentionally did not include the domains 
explicitly in the definition of the hot deck cells. In the case 
of multiple imputation, issues of variance estimation for 
domain estimates have received much attention (e.g., Fay 
1992; Meng 1994; Rubin 1996). 

In the simulations we estimate the totals for two 
domains: school districts in the NE and those in NMSA. 
Figures 2 and 3 present the results of the simulations for the 
NE domain and for the NMSA domain, respectively, in the 
same format as used before. Note that the scales for Figures 
2 and 3 differ from each other and are very different from 
those used for the full population estimates.  

For the NE domain, the point estimates have large 
positive biases for the STR/STR combinations. Hot deck 
cells based on STR are not related to region, and, as a result, 
NE districts with missing data have donors from other 
regions, which have different characteristics. In contrast, the 
inclusion of region in the construction of the HD imputation 
cells removes the bias of the point estimates in the HD/HD 
combinations and the STR/HD combination with uniform 
overall response probability, and reduces the bias in the 
other STR/HD combinations.  

All three methods of variance estimation require 
unbiased point estimates and theory for the methods does 
not provide guidance on how the methods will perform 
under the conditions we study. The variance estimates are 
approximately unbiased for all three variance estimation 
methods when the domain point estimates are unbiased or 
have only small biases. However, Figure 2 shows that for 
the STR/STR combination, where the point estimates are 
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seriously biased, the variance estimates usually overestimate 
the empirical variances.  

Figure 2 shows that the coverage rates for the HD/HD 
and STR/HD schemes – for which the point estimates have 
no or small relative biases – are between 92 percent and 
96 percent for all but one of these schemes and variance 
estimation methods. The exception is the STR/HD 
combination with response rates between 0.2 and 0.6, which 
has coverage rates as low as 86 percent for the number of 
students.  

For the STR/STR schemes, Figure 2 shows that all the 
methods tend to cover at greater than the nominal level for 
the number of students and less than the nominal level for 
the number of districts with pre-kindergarten. The 
difference in the coverage rates for the two variables is due 
to the sizes of the relative bias of the point estimates and of 
the variance estimates.  

Turning to the NMSA domain estimates in Figure 3, note 
that metropolitan status is not explicitly included in the 

definitions of either STR or HD, although it is clearly 
correlated with size and, thus, with STR. The point 
estimates for the number of students in the NMSA domain 
for all the schemes have substantial positive biases. The MA 
confidence intervals consistently cover at the nominal level 
or higher, primarily due to the extreme positive biases of the 
variance estimates. The AJ intervals cover at close to the 
nominal level for the HD/HD and STR/HD schemes, but 
undercover in the three STR/STR schemes. The patterns for 
the MI coverages are similar to those of the AJ, except that 
the MI intervals appreciably undercover in the HD/HD 
scheme with 0.2 to 0.6 response rates.   

The point estimates of the number of districts with pre-
kindergarten in the NMSA domain have moderate negative 
relative biases for all nine schemes. The confidence 
intervals for all three methods of variance estimation are 
close to the nominal level, without the overcoverage found 
in the NE domain estimates. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Relative biases, variance ratios, and 95% confidence interval coverage for number of students (•) and number of districts  
 with pre-kindergarten (∆) in the Northeast. 
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Figure 3.  Relative biases, variance ratios, and 95% confidence interval coverage for number of students (•) and number of districts  
 with pre-kindergarten (∆) in nonmetropolitan areas. 

 
 

5. Conclusions  
The simulations examined the performance of three 

variance estimators for imputed totals from a single-stage 
stratified sample design under different response 
mechanisms with weighted hot deck imputation. The 
circumstances reflected what can be expected in practice in 
the sense that the assumptions of the methods were violated 
in different ways. All three methods were substantial 
improvements over the naïve variance estimator. All three 
methods performed very well with unbiased point estimates. 
When the point estimates had large biases, none of the 
methods produced confidence intervals with the nominal 
coverage levels. Poor coverage rates for biased point 
estimates are not unexpected since the same result holds 
with no missing data. When the point estimates had 
relatively small biases, the actual coverage rates for the 
three variance estimation methods sometimes exceeded and 
sometimes fell short of the nominal levels. In this case the 
tendency of all three methods to overestimate the variance 
often resulted in coverage rates close to the nominal level. 
Low response rates were associated with undercoverage, 
largely due to the greater biases in the point estimates. 

The differences in the coverage rates of the three 
methods were generally too small and inconsistent to 
support claims that any one method is superior in general. 
With very low response rates, the average lengths of the 
confidence intervals for the MI method were appreciably 
longer than those for the MA and AJ methods, but using a 
larger number of sets of imputations with the MI method 
would rectify that problem. It should, however, be noted 
that these simulations only address single stage sampling. 
Differences in confidence interval lengths between methods 
may exist in cluster samples. This possibility awaits further 
investigation. 

The results of this study give practitioners of hot deck 
imputation empirical evidence that all of the variance 
estimation methods perform well in single stage samples 
provided that the point estimate is unbiased, even when 
other assumptions are violated. Estimates for domains that 
are not taken into account in the imputation scheme are 
susceptible to large biases. When the point estimates are 
seriously biased, the methods may produce confidence 
intervals that cover at far less than the nominal rate. 
Analysts of imputed data sets should examine whether the 
imputation method that has been used is likely to give 
approximately unbiased estimates, especially for domain 
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estimates. If not, they may need to re-impute the missing 
items to give less biased point estimates. Advice to imputers 
to take advantage of as many explanatory variables as 
feasible in the imputation process is not new, but the 
evidence from the simulations demonstrates its importance.  

 
Acknowledgements  

The authors would like to thank the National Center for 
Education Statistics, Institute for Education Sciences for 
supporting this research, and in particular Marilyn Seastrom. 
We also would like to thank the referees for their 
constructive comments. 

 
References  

Brick, J.M., Kalton, G. and Kim, J.K. (2004). Variance estimation 
with hot deck imputation using a model. Survey Methodology, 30, 
57-66.  

Brick, J.M., Jones, M., Kalton, G. and Valliant, R. (2004). A 
simulation study of three methods of variance estimation with hot 
deck imputation for stratified samples. Prepared under contract 
No. RN95127001 to the National Center for Education Statistics. 
Rockville, MD: Westat, Inc.  

Cochran, W.G. (1977). Sampling Techniques. New York: John Wiley 
& Sons Inc.  

Fay, R.E. (1992). When are imputations from multiple imputation 
valid. Proceedings of the Survey Research Methods Section, 
American Statistical Association, 227-232.  

Kalton, G., and Kasprzyk, D. (1986). The treatment of missing survey 
data. Survey Methodology, 12, 1-16.  

Lee, H., Rancourt, E. and Särndal, C.-E. (1995). Jackknife variance 
estimation for data with imputed values. Proceedings of the 
Statistical Society of Canada Survey Methods Section, 111-115.  

Lee, H., Rancourt, E. and Särndal, C.-E. (2001). Variance estimation 
from survey data under single imputation. In Survey Nonresponse 
(Eds. R.M. Groves, D.A. Dillman, J.L. Eltinge and R.J.A Little), 
Chapter 21, New York: John Wiley & Sons Inc.  

Little, R.J.A., and Rubin, D.B. (2002). Statistical Analysis with 
Missing Data. New York: John Wiley & Sons Inc.  

Meng, X.-L. (1994). Multiple imputation inferences with uncongenial 
sources of input. (With discussion). Statistical Science, 9, 538-
573.  

Rao, J.N.K., and Shao, J. (1992). Jackknife variance estimation with 
survey data under hot deck imputation. Biometrika, 79, 811-822.  

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. 
New York: John Wiley & Sons Inc.  

Rubin, D.B. (1996). Multiple imputation after 18+ years (with 
discussion). Journal of the American Statistical Association, 91, 
473-489.  

Rubin, D.B., and Schenker, N. (1986). Multiple imputation for 
interval estimation from simple random samples with 
nonignorable nonresponse. Journal of the American Statistical 
Association, 81, 361-374.  

Rust, K., and Rao, J.N.K. (1996). Variance estimation for complex 
estimators in sample surveys. Statistics in Medicine, 5, 381-397.  

Särndal, C.-E. (1992). Methods for estimating the precision of survey 
estimates when imputation has been used. Survey Methodology, 
18, 241-252.  

Shao, J., and Steel, P. (1999). Variance estimation for survey data 
with composite estimation and nonnegligible sampling fractions. 
Journal of the American Statistical Association, 94, 254-265. 

 
 

 





Survey Methodology, December 2005  161 
Vol. 31, No. 2, pp. 161-168 
Statistics Canada, Catalogue No. 12-001-XPB 

 

Does Weighting for Nonresponse Increase the  
Variance of Survey Means? 

Roderick J. Little and Sonya Vartivarian 1 

Abstract 

Nonresponse weighting is a common method for handling unit nonresponse in surveys. The method is aimed at reducing 
nonresponse bias, and it is often accompanied by an increase in variance. Hence, the efficacy of weighting adjustments is 
often seen as a bias-variance trade-off. This view is an oversimplification  –  nonresponse weighting can in fact lead to a 
reduction in variance as well as bias. A covariate for a weighting adjustment must have two characteristics to reduce 
nonresponse bias – it needs to be related to the probability of response, and it needs to be related to the survey outcome. If 
the latter is true, then weighting can reduce, not increase, sampling variance. A detailed analysis of bias and variance is 
provided in the setting of weighting for an estimate of a survey mean based on adjustment cells. The analysis suggests that 
the most important feature of variables for inclusion in weighting adjustments is that they are predictive of survey outcomes; 
prediction of the propensity to respond is a secondary, though useful, goal. Empirical estimates of root mean squared error 
for assessing when weighting is effective are proposed and evaluated in a simulation study. A simple composite estimator 
based on the empirical root mean squared error yields some gains over the weighted estimator in the simulations. 
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1. Introduction  
In most surveys, some individuals provide no infor-

mation because of noncontact or refusal to respond (unit 
nonresponse). The most common method of adjustment for 
unit nonresponse is weighting, where respondents and 
nonrespondents are classified into adjustment cells based on 
covariate information known for all units in the sample, and 
a nonresponse weight is computed for cases in a cell 
proportional to the inverse of the response rate in the cell. 
These weights often multiply the sample weight, and the 
overall weight is normalized to sum to the number of 
respondents in the sample. A good overview of nonresponse 
weighting is Oh and Scheuren (1983). A related approach to 
nonresponse weighting is post-stratification (Holt and Smith 
1979), which applies when the distribution of the population 
over adjustment cells is available from external sources, 
such as a Census. The weight is then proportional to the 
ratio of the population count in a cell to the number of 
respondents in that cell.  

Nonresponse weighting is primarily viewed as a device 
for reducing bias from unit nonresponse. This role of 
weighting is analogous to the role of sampling weights, and 
is related to the design unbiasedness property of the 
Horvitz-Thompson estimator of the total (Horvitz and 
Thompson 1952), which weights units by the inverse of 
their selection probabilities. Nonresponse weighting can be 
viewed as a natural extension of this idea, where included 
units are weighted by the inverse of their inclusion 

probabilities, estimated as the product of the probability of 
selection and the probability of response given selection; the 
inverse of the latter probability is the nonresponse weight. 
Modelers have argued that weighting for bias adjustment is 
not necessary for models where the weights are not 
associated with the survey outcomes, but in practice few are 
willing to make such a strong assumption. 

Sampling weights reduce bias at the expense of increased 
variance, if the outcome has a constant variance. Given the 
analogy of nonresponse weights with sampling weights, it 
seems plausible that nonresponse weighting also reduces 
bias at the expense of an increase in the variance of survey 
estimates. The idea of a bias-variance trade-off arises in 
discussions of nonresponse weighting adjustments (Kalton 
and Kasprzyk 1986, Kish 1992, Little, Lewitzky, Heeringa, 
Lepkowski and Kessler 1997). Kish (1992) presents a 
simple formula for the proportional increase in variance 
from weighting, say L, under the assumption that the 
variance of the observations is approximately constant: 

,2cvL =  (1) 

where cv is the coefficient of variation of the respondent 
weights. 

Equation (1) is a good approximation when the 
adjustment cell variable is weakly associated with the 
survey outcome. However, since it approximates variance 
rather than mean squared error, it does not measure the 
potential nonresponse bias reduction that is the main 
objective of weighting, and it does not apply to outcomes 
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that are associated with the adjustment cell variable, where 
nonresponse weighting can in fact reduce the variance. The 
fact that nonresponse weighting can reduce variance is 
implicit in the formulae in Oh and Scheuren (1983), and is 
noted in Little (1986) when adjustment cells are created 
using predictive mean stratification. It is also seen in the 
related method of post-stratification for nonresponse 
adjustment (Holt and Smith 1979).  

Variability of the weights per se does not necessarily 
translate into estimates with high variance: an estimate with 
a high value of L can have a smaller variance than an 
estimate with a small value of L, as is shown in the 
simulations in section 3. Also, the situations where 
nonresponse weighting is most effective in reducing bias are 
precisely the situations where the weighting tends to reduce, 
not increase, variance, and Equation (1) does not apply. This 
differs from the case of sampling weights, and is related to 
“super-efficiency” that can result when weights are 
estimated from the sample rather than fixed constants; see, 
for example, Robins, Rotnitsky and Zhao (1994).  

We propose a simple refinement of Equation (1), namely 
Equation (14) below, that captures both bias and variance 
components whether or not the adjustment cell variable is 
associated with the outcome, and hence is a more accurate 
gauge of the value of weighting the estimates, and of 
alternative adjustment cell variables. In multipurpose 
surveys with many outcomes, the standard approach is to 
apply the same nonresponse weighting adjustment to all the 
variables, with the implicit assumption that the value of 
nonresponse bias reduction for some variables outweighs 
the potential variance increase for others. Our empirical 
estimate of mean squared error allows a simple refinement 
of this strategy, namely to restrict nonresponse weighting to 
the subset of variables for which nonresponse weighting 
reduces the estimated mean squared error. This composite 
strategy is assessed in the simulation study in section 3, and 
shows some gains over weighting all the outcomes. As 
noted in section 4, there are alternative approaches that have 
even better statistical properties, but these lead to different 
weights for each variable and hence are more cumbersome 
to implement and explain to survey users. 

 
2. Nonresponse Weighting Adjustments  

for a Mean  
Suppose a sample of n units is selected. We consider 

inference for the population mean of a survey variable Y 
subject to nonresponse. To keep things simple and focused 
on the nonresponse adjustment question, we assume that 
units are selected by simple random sampling. The points 
made here about nonresponse adjustments also apply in 

general to complex designs, although the technical details 
become more complicated. 

We assume that respondents and nonrespondents can be 
classified into C adjustment cells based on a covariate X. Let 
M be a missing-data indicator taking the value 0 for 
respondents and 1 for nonrespondents. Let mcn  be the 
number of sampled individuals with ,, cXmM ==  

ccc nnnCcm 10,,,1;1,0 +=== +K  denote the number of 
sampled individuals in cell ∑ == C

c cnnc 1 00,  and =1n  
∑ =

C
c cn1 1  the total number of respondents and non-

respondents, and 000 /,/ nnpnnp cccc == +  the proportions 
of sampled and responding cases in cell c. We compare two 
estimates of the population mean μ  of Y, the unweighted 
mean  

∑
=

=
C

c
cc ypy

1
000 ,  (2) 

where cy0  is the respondent mean in cell c, and the 
weighted mean  

∑∑
==

==
C

c
ccc

C

c
ccw ypwypy

1
00

1
0 ,  (3) 

which weights respondents in cell c by the inverse of the 
response rate ./ 0ccc ppw =  The estimator (3) can be 
viewed as a special case of a regression estimator, where 
missing values are imputed by the regression of Y on 
indicators for the adjustment cells. We compare the bias and 
mean squared error of (2) and (3) under the following 
model, which captures the important features of the 
problem. We suppose that conditional on the sample size n, 
the sampled cases have a multinomial distribution over the 

)2( ×C  contingency table based on the classification of M 
and X, with cell probabilities 

,)1(),1Pr(;),0Pr( 10 cc cXMcXM πφ−===φπ===  

where )0Pr( ==φ M  is the marginal probability of 
response. The conditional distribution of X given 0=M  
and 0n  is multinomial with cell probabilities =XPr(  

,)0| 0 cMc π==  and the marginal distribution of X given 
n is multinomial with index n and cell probabilities 

,)1()Pr( 10 ccccX π=πφ−+φπ==  

say. We assume that the conditional distribution of Y given 
cXmM == ,  has mean mcμ  and constant variance .2σ  

The mean of Y for respondents and nonrespondents are  

∑∑
==

μπ=μμπ=μ
C

c
cc

C

c
cc

1
11

1
1000 ,,  

respectively, and the overall mean of Y is +φμ=μ 0  
.)1( 1μφ−  

Under this model, the conditional mean and variance of 

wy  given }{ cp  are respectively ∑ = μC
c ccp1 0  and ∑ =σ C

c 1
2  

./ 0
2

cc np  Hence the bias of wy  is 
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∑
=

μ−μπ=
C

c
cccwyb

1
0 ),()(  

where cπ  and cμ  are the population proportion and mean 
of Y in cell c. This can be written as  

,~)( 0 μ−μ=wyb  (4) 

where cc
C
c 010

~ μπ=μ ∑ =  is the respondent mean “adjusted” 
for the covariates, and cc

C
c μπ=μ ∑ =1  is the true population 

mean of Y. The variance of wy  is the sum of the expected 
value of the conditional variance and the variance of its 
conditional expectation, and is approximately 

∑
=

μ−μπ+σλ+=
C

c
ccw nnyV

1

2
000

2 ,/)~(/)1()(  (5) 

where ∑ = −πππ=λ C
c ccc1

2
00 ))1/((  is the population analog 

of the variance of the nonresponse weights },{ cw  which is 
the same as L in Equation (1) since the weights are scaled to 
average to one. The formula for the variance of the weighted 
mean in Oh and Scheuren (1983), derived under the quasi-
randomization perspective, reduces to (5) when the within-
cell variance is assumed constant, and finite population 
corrections and terms of order 2/1 n  are ignored. The mean 
squared error of wy  is thus 

).()()(mse 2
www yVyby +=  (6) 

The mean squared error of the unweighted mean (2) is  

),()()(mse 00
2

0 yVyby +=  (7) 

where: 

,~)()( 000 μ−μ+= wybyb  (8) 

is the bias and  

∑
=

μ−μπ+σ=
C

c
cc nnyV

1
0

2
0000

2
0 ,/)(/)(  (9) 

is the variance. Hence the difference (say Δ ) in mean 
squared errors is  

0
2

2

2
00

11
0

2
0001

000
2

00

210

/

,/)~(/)(

),~()~(2)~(

where,)(mse)(mse
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VVByy

c

C

c
c

C

c
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w

λσ=

μ−μπ−μ−μπ=

μ−μμ−μ+μ−μ=

−+=−=Δ

∑∑
==

 

(10)

 

Equation (10) and its detailed interpretation provide the 
main results of the paper; note that positive terms in (10) 
favor the weighted estimator .wy   
(a) The first term B represents the impact on MSE of bias 

reduction from adjustment on the covariates. It is order 
one and increasingly dominates the MSE as the sample 
size increases. If 00

~ μ<μ≤μ  or ,~
00 μ≤μ<μ  then 

weighting has reduced the bias of the respondent 

mean, and both of the components of B are positive. In 
particular, if the missing data are missing at random 
(Rubin 1976, Little and Rubin 2002), in the sense that 
respondents are a random sample of the sampled cases 
in each cell c, then μ=μ0

~  and weighting eliminates 
the bias of the unweighted mean. The bias adjustment 
is  

,))(1(~~
1

00000 ∑
=

μ−μ−π−μ−μ
C

c
ccc w  

ignoring differences between the weights and their 
expectations. This is zero to )1(O  if either non-
response is unrelated to the adjustment cells (in which 
case 1≈cw  for all ,c  or the outcome is unrelated to 
the adjustment cells (in which case  00 μ≈μ c  for all c). 
Thus a substantial bias reduction requires adjustment 
cell variables that are related both to nonresponse and 
to the outcome of interest, a fact that has been noted by 
several authors. It is often believed that conditioning 
on observed characteristics of nonrespondents will 
reduce bias, but note that this is not guaranteed; it is 
possible for the adjusted mean to be further on average 
from the true mean than the unadjusted mean, in which 
case weighting makes the bias worse.   

(b) The effect of weighting on the variance is represented 
by .21 VV −    

(c) For outcomes Y that are unrelated to the adjustment 
cells, 00 μ=μ c  for all c, ,01 =V  and weighting 
increases the variance, since 2V  is positive. The 
variance part of equation (10) then reduces to the 
population version of Kish’s formula (1). Adjustment 
cell variables that are good predictors of nonresponse 
hurt rather than help in this situation, since they 
increase the variance of the weights without any 
reduction in bias; but there is no bias-variance trade-off 
for these outcomes, since there is no bias reduction.   

(d) If the adjustment cell variable X is unrelated to non-
response, then λ  is )/1( nO  and hence 2V  has a lower 
order of variability than .1V  The term 1V  tends to be 
positive, since ∑ ∑= = −μπ−μ−μπC

c
C
c cccc1 1 00

2
000 (~)(  

,)~ 2
0μ  and the divisor n in the second term is larger 

than the divisor 0n  in the first term. Thus weighting in 
this case tends to have no impact on the bias, but 
reduces variance to the extent that X is a good predictor 
of the outcome. This contradicts the notion that 
weighting increases variance. The above-mentioned 
“super-efficiency” that results from estimating non-
response weights from the sample is seen by the fact 
that if the data are missing completely at random, then 
the “true” nonresponse weight is a constant for all 
responding units. Hence weighting by “true” weights 
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leads to (2), which is less efficient than weighting by 
the “estimated” weights, which leads to (3).  

(e) If the adjustment cell variable is a good predictor of the 
outcome and also predictive of nonresponse, then 2V  
is again small because of the reduced residual variance 

,2σ  and 1V  is generally positive by a similar argument 
to (d). The term ∑ = μ−μπC

c cc1
2

000 )(  may deviate 
more from ∑ = μ−μπC

c cc1
2

00 )~(  because the weights 
are less alike, but this difference could be positive or 
negative, and the different divisors seem more likely to 
determine the sign and size of 1V . Thus, weighting 
tends to reduce both bias and variance in this case.  

(f) Equation (9) can be applied to the case of post-
stratification on population counts, by letting n 
represent the population size rather than the sample 
size. Assuming a large population, the second term in 

1V  essentially vanishes, increasing the potential for 
variance reduction when the variables forming the 
post-strata are predictive of the outcome. This finding 
replicates previous results on post-stratification (Holt 
and Smith 1979; Little 1993).  

A simple qualitative summary of the results (a) – (f) of 
section 2 is shown in Table 1, which indicates the direction 
of bias and variance when the associations between the 
adjustment cells and the outcome and missing indicator are 
high or low. Clearly, weighting is only effective for 
outcomes that are associated with the adjustment cell 
variable, since otherwise it increases the variance with no 
compensating reduction in bias. For outcomes that are 
associated with the adjustment cell variable, weighting 
increases precision, and also reduces bias if the adjustment 
cell variable is related to nonresponse.  

Table 1 
Effect of Weighting Adjustments on Bias and Variance of 
a Mean, by Strength of Association of the Adjustment Cell  

Variables with Nonresponse and Outcome 
 

 Association with outcome 
Association with nonresponse Low High 

Cell 1 Cell 3 
Bias: --- Bias: --- Low 
Var: --- Var: ↓ 

Cell 2 Cell 4 
Bias: --- Bias: ↓ High 
Var: ↑ Var: ↓  

It is useful to have estimates of the MSE of 0y  and wy  
that can be computed from the observed data. Let =2

0cs  
∑ ∈ −−ci cci nyy )1/()( 0

2
0  denote the sample variance of 

respondents in cell c, )/()1( 0
2
01 0

2 Cnsns cc
C
c c −−= ∑ =  the 

pooled within-cell variance, and /)(0
1

2
0

2
0 ∑ = −= n

i i yys  
),1( 0 −n  the total sample variance of the respondent 

values. We use the following approximately unbiased 
expressions, under the assumption that the data are MAR: 
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where ∑ == C
c cc ypy 1 01

)1(
0 ,  and dV  estimates the variance of 
)( 0yyw −  and is included in (12) as a bias adjustment for 

2
0 )( yyw −  as an estimate of ),( 0

2 yB  similar to that in 
Little et al. (1997). Also 
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2 nyypnsLyVy
C

c
wccww ∑
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Subtracting (11) from (13), the difference in MSE’s of wy  
and 0y  is then estimated by 

∑
=
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1
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00
2
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(14)
 

This is our proposed refinement of (1), which is represented 
by the leading term on the right side of (14). 

 
3. Simulation Study  

We include simulations to illustrate the bias and variance 
of the weighted and unweighted mean for sets of parameters 
representing each cell in Table 1. We also compare the 
analytic MSE approximations in Equations (6) and (7) and 
their sample-based estimates (11) and (13) with the 
empirical MSE over repeated samples.  
3.1 Superpopulation Parameters   

The simulation set-up for the joint distribution of X and 
M is described in Table 2. The sample is approximately 
uniformly distributed across the adjustment cell variable X, 
which has 10=C  cells. Two marginal response rates are 
chosen, 70%, corresponding to a typical survey value, and 
52%, a more extreme value to accentuate differences in 
methods. Three distributions of M given X are simulated to 
model high, medium and low association.  

The simulated distributions of the outcome Y given 
cXmM == ,  are shown in Table 3. These all have the 

form  

).,(~],|[ 2
10 σβ+β== XNcXmMY  
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Table 2 
Percent of Sample Cases in Adjustment Cell X and Missingness Cell M 

 

a. Overall Response Rate = 52% 

 Association 
Between 
M and X 

X 1 2 3 4 5 6 7 8 9 10 

1. High M = 0 0.55 1.00 4.01 4.52 5.04 5.55 6.06 6.58 9.14 9.96 
  M = 1 8.69 9.00 6.01 5.53 5.04 4.54 4.04 3.54 1.02 0.20 
2. Medium M = 0 2.77 3.50 4.01 4.52 5.04 5.55 6.06 6.58 7.11 7.62 
  M = 1 6.47 6.50 6.01 5.53 5.04 4.54 4.04 3.54 3.05 2.54 
3. Low M = 0 4.62 5.15 5.21 5.28 5.34 5.40 5.45 5.52 5.58 5.64 
  M = 1 4.62 4.85 4.81 4.77 4.73 4.69 4.65 4.60 4.57 4.52 

b. Overall Response Rate = 70% 

 Association 
Between 
M and X 

X 1 2 3 4 5 6 7 8 9 10 

1. High M = 0 0.55 3.00 6.51 7.04 7.55 8.07 8.59 9.11 9.64 9.96 
  M = 1 8.69 7.00 3.51 3.02 2.52 2.02 1.52 1.01 0.51 0.20 
2. Medium M = 0 4.44 5.30 5.81 6.33 6.85 7.37 7.88 8.40 8.93 9.45 
  M = 1 4.80 4.70 4.21 3.72 3.22 2.72 2.22 1.72 1.22 0.71 
3. Low M = 0 6.19 6.85 6.91 6.98 7.05 7.11 7.17 7.24 7.31 7.37 
  M = 1 3.05 3.15 3.11 3.07 3.02 2.98 2.93 2.88 2.84 2.79 

 
 

Table 3 
Parameters for ),(~],|[ 2

10 σβ+β== cNcXmMY  
 

Association Between 
Y and X 

1β  2σ  2ρ  

1. High 4.75 46 ≈ 0.80 
2. Medium 3.70 122 ≈ 0.48 
3. Low 0.00 234 0.00 

 
Three sets of values of ),( 2

1 σβ  are simulated to model 
high, medium and low associations between Y and X. The 
intercept 0β  is chosen so that the overall mean of Y is 

3625.26=μ  for each scenario. 
A thousand replicate samples of size n = 400 and n = 

2,000 were simulated for each combination of parameters in 
Tables 2 and 3. Samples where 00 =cn  for any c were 
excluded, since the weighted estimate cannot be computed; 
in practice some cells would probably be pooled in such 
cases. The numbers of excluded simulations are shown in 
Table 4.   

Table 4 
Numbers of Replicates Excluded Because of Cell  

with no Respondents 
 

  Response Rate 
Association of 
M and X 

Association of 
Y and X 

52% 70% 

High High 134 113 
 Medium 120 117 
 Low 131 104 

Medium Low 1 0 

 

 
3.2 Comparisons of Bias, Variance and Root Mean 
 Squared Error, and their Estimates  

Summaries of empirical bias and root MSE’s (RMSE’s) 
are reported in Table 5. The empirical RMSE’s of the 
weighted mean can be compared with the following esti-
mates, which are displayed in Table 5, averaged over the 
1,000 replicates: The estimated RMSE based on Kish’s rule 
of thumb Equation (1), namely:  
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The analytical RMSE from Equations (6) and (7); and the 
estimated RMSE from Equations (11) and (13).  

Following the suggestion of Oh and Scheuren (1983), we 
include in the last two columns of Table 5 the average 
empirical bias and RMSE of a composite mean that chooses 
between wy  and ,0y  picking the estimate with a lower 
sample-based estimate of the MSE. The empirical bias 
relative to the population parameter is reported for all 
estimators. We also include the bias and RMSE of the mean 
before deletion of cases due to nonresponse. 

Table 5a shows results for simulations with a response 
rate of 52%. Rows are labeled according to the four cells in 
Table 1, with medium and high associations combined. For 
each row, the lower of the RMSE’s for the unweighted and 
weighted respondent means is bolded, indicating superiority 
for the corresponding method. 

The first four rows of Table 5a correspond to cell 4 in 
Table 1, with medium/high association between Y and X and 
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medium/high association between M and X. In these cases 

wy  has much lower RMSE than ,0y  reflecting substantial 
bias of 0y  that is removed by the weighting.  

The next two rows of Table 5a corresponding to cell 3 of 
Table 1, with medium/high association between Y and X and 
low association between M and X. In these cases 0y  is no 
longer seriously biased, but wy  has improved precision, 
particularly when the association of Y and X is high. These 
are cases where the variance is reduced, not increased, by 
weighting. The analytic estimates of RMSE and sample-
based estimates are close to the empirical RMSE estimates, 
while Kish’s rule of thumb overestimates the RMSE, as 
predicted by the theory in section 2. 

The next two rows of Table 5a correspond to cell 2 of 
Table 1, where the association between Y and X is low and 
the association between M and X is medium or high. In 
these cases, wy  has higher MSE than .0y  These cases 
illustrate situations where the weighting increases variance, 
with no compensating reduction in bias. The last row 
corresponds to cell 1 of Table 1, with low associations 
between M and X and between Y and X. The unweighted 
mean has lower RMSE in these cases, but the increase in 
RMSE from weighting is negligible. For the last three rows 
of Table 5a, RMSE’s from Kish’s rule of thumb are similar 

to those from the analytical formula in section 2 and 
empirical estimates based on this formulae, and all these 
estimates are close to the empirical RMSE. 

The last two columns of Table 5a show empirical bias 
and RMSE of the composite method that chooses wy  or 0y  
based on the estimated RMSE. For the  simulations in the 
first 6 rows, the composite estimator is the same as ,wy  and 
hence detects and removes the bias of the unweighted mean. 
For simulations in cell 1 (the last row) the composite 
estimator performs like wy  or ,0y  as expected since wy  
and 0y  perform similarly in this case.  For simulations in 
cell 2 that are not favorable to weighting, the composite 
estimator has lower RMSE than ,wy  but considerably 
higher than that of ,0y  suggesting that for the conditions of 
this simulation the empirical MSE affords limited ability to 
pick the better estimator in individual samples.  

Nevertheless, the composite estimator is the best overall 
estimator of the three considered in this simulation. 

Table 5b shows results for the 70% response rate. The 
pattern of results is very similar to that of Table 5a. As 
expected, differences between the methods are smaller, 
although they remain substantial in many rows of the table.  

 

 
Table 5a 

Summaries of Estimators Based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample 
Replicates with 00 >cn  for all c. Response Rate of 52%. Values are Multiplied by 1,000 

 

Association with Adjustment 
Cells Based on X 

 Unweighted 
Mean 

 Weighted 
Mean 

 Before Deletion 
Mean 

 Composite 
Mean 

Cell (M, X) (Y, X) n  emp. 
bias 

emp. 
rmse 

analytical
rmse1 

est. 
rmse2 

 emp. 
bias 

emp. 
rmse 

Kish 
rmse3 

analytical 
rmse4 

est. 
rmse5 

 emp. 
bias 

emp. 
rmse 

 emp. 
bias 

emp. 
rmse 

4 High High 400 6,955 7,024 7,055 6,974 0 1,057 1,410 956 988   – 38 795  0 1,057 
   2,000 7,008 7,020 7,006 7,015  – 2 424 608 427 434  12 342   – 2 424 
4 High Medium 400 5,376 5,471 5,536 5,404  – 33 1,264 1,510 1,216 1,297   – 21 776   – 33 1,264 
   2,000 5,424 5,441 5,466 5,466  – 41 561 650 545 559   – 30 338   – 41 561 
4 Medium High 400 3,664 3,794 3,809 3,754  – 4 816 1,071 835 842  6 741   – 4 816 
   2,000 3,703 3,731 3,700 3,712 7 369 473 373 374  4 337  7 369 
4 Medium Medium 400 2,838 3,006 3,042 2,991  – 18 938 1,095 954 970   – 9 747   – 18 938 
   2,000 2,864 2,900 2,898 2,893  – 2 426 483 426 428  6 335   – 2 426 
3 Low High 400 476 1,148 1,113 1,178 40 823 1,050 823 828  30 764  40 823 
   2,000 376 587 614 595  – 11 361 465 368 368   – 3 333   – 11 361 
3 Low Medium 400 350 1,106 1,095 1,134 13 927 1,063 925 939   – 16 762  13 927 
   2,000 287 565 563 559  – 20 429 470 413 414   – 22 353   – 20 429 
2 High Low(0) 400 56 1,070 1,056 1,275 96 1,658 1,613 1,518 1,631  28 793  83 1,410 
   2,000  – 11 464 473 567  – 26 698 698 679 699   – 19 337   – 25 620 
2 Medium Low(0) 400 9 1,042 1,053 1,077  – 27 1,122 1,112 1,097 1,125  21 772   – 12 1,074 
   2,000  – 4 474 471 480  – 11 491 491 491 493  11 340   – 9 481 
1 Low Low(0) 400  – 30 1,038 1,050 1,055  – 30 1,053 1,064 1,050 1,076   – 30 752   – 30 1,040 
   2,000  – 2 472 469 469  – 1 474 470 469 471   – 8 343   – 1 472 

 

1 Computed using Equation (7) 
2 Computed using Equation (11) 
3 Computed using Equation (15) 
4 Computed using Equation (6) 
5 Computed using Equation (13) 
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Table 5b 
Summaries of Estimators based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample 

Replicates with 00 >cn  for all c. Response Rate of 70%. Values are Multiplied by 1,000 
 

Association with Adjustment 
Cells based on X 

 Unweighted 
Mean 

 Weighted 
Mean 

 Before Deletion 
Mean 

 Composite 
Mean 

Cell (M, X) (Y, X) n  emp. 
bias 

emp. 
rmse 

analytical
rmse6 

est. 
rmse7 

 emp. 
bias 

emp. 
rmse 

Kish 
rmse8 

analytical 
rmse9 

est. 
rmse10 

 emp. 
bias 

emp. 
rmse 

 emp. 
bias 

emp. 
rmse 

4 High High 400 4,692 4,810 4,893 4,860  – 133 1,129 1,192 889 894   – 129 998   – 133 1,129 
   2,000 4,827 4,841 4,839 4,854  – 20 400 529 398 405   – 5 334   – 20 400 
4 High Medium 400 3,581 3,716 3,855 3,733  – 133 1,266 1,250 1,075 1,097   – 128 917   – 127 1,284 
   2,000 3,763 3,784 3,778 3,777  – 9 501 554 481 490  11 343   – 9 501 
4 Medium High 400 2,666 2,812 2,878 2,837  – 58 803 910 794 796   – 49 772   – 58 803 
   2,000 2,732 2,760 2,767 2,761  – 6 353 406 355 355   – 9 333   – 6 353 
4 Medium Medium 400 2,104 2,282 2,315 2,291  – 28 833 924 854 861   – 43 751   – 28 833 
   2,000 2,146 2,180 2,170 2,165 13 370 411 382 382  10 334  13 370 
3 Low High 400 217 906 954 980  – 81 797 911 790 793   – 77 771   – 81 797 
   2,000 312 513 506 502 2 365 405 353 353  4 349  2 365 
3 Low Medium 400 251 922 942 960 15 804 916 845 852  26 727  15 804 
   2,000 224 454 472 471  – 14 370 408 378 379   – 15 327   – 14 370 
2 High Low(0) 400 0 952 915 1,131 35 1,445 1,349 1,298 1,358  1 807  26 1,292 
   2,000  – 11 416 409 485  – 41 608 598 580 599   – 4 347   – 31 535 
2 Medium Low(0) 400 22 911 910 920 24 942 936 930 946  2 757  21 925 
   2,000 23 418 407 411 20 425 416 416 417  15 344  19 420 
1 Low Low(0) 400 1 914 914 912 2 917 916 914 926   – 5 751  1 914 
   2,000 4 402 408 408 4 403 409 408 410  6 331  4 402 

 
6 Computed using Equation (7) 
7 Computed using Equation (11) 
8 Computed using Equation (15) 
9 Computed using Equation (6) 
10 Computed using Equation (13)  

 
4. Discussion 

  
The results in sections 2 and 3 have important 

implications for the use of weighting as an adjustment tool 
for unit nonresponse. Surveys often have many outcome 
variables, and the same weights are usually applied to all 
these outcomes. The analysis of section 2 and simulations in 
section 3 suggests that improved results might be obtained 
by estimating the MSE of the weighted and unweighted 
mean and confining weighting to cases where this 
relationship is substantial. A more sophisticated approach is 
to apply random-effects models to shrink the weights, with 
more shrinkage for outcomes that are not strongly related to 
the covariates (e.g., Elliott and Little 2000). A flexible 
alternative to this approach is imputation based on 
prediction models, since these models allow for interval-
scaled as well as categorical predictors, and allow 
interactions to be dropped to incorporate more main effects. 
Multiple imputation (Rubin 1987) can be used to propagate 
uncertainty.  

When there is substantial covariate information, one 
attractive approach to generalizing weighting class adjust-
ments is to create a propensity score for each respondent 
based on a logistic regression of the nonresponse indicator 
on the covariates, and then create adjustment cells based on 
this score. Propensity score methods were originally 

developed in the context of matching cases and controls in 
observational studies (Rosenbaum and Rubin 1983), but are 
now quite commonly applied in the setting of unit 
nonresponse (Little 1986; Czajka, Hirabayashi, Little and 
Rubin 1987; Ezzati and Khare 1992). The analysis here 
suggests that for this approach to be productive, the 
propensity score has to be predictive of the outcomes. 
Vartivarian and Little (2002) consider adjustment cells 
based on joint classification by the response propensity and 
summary predictors of the outcomes, to exploit residual 
associations between the covariates and the outcome after 
adjusting for the propensity score. The requirement that 
adjustment cell variables predict the outcomes lends support 
to this approach. 

The analysis presented here might be extended in a 
number of ways. Second order terms in the variance are 
ignored here, which if included would penalize weighting 
adjustments based on a large number of small adjustment 
cells. Finite population corrections could be included, 
although it seems unlikely that they would affect the main 
conclusions. It would be of interest to see to what extent the 
results can be generalized to complex sample designs 
involving clustering and stratification. Also, careful analysis 
of the bias and variance implications of nonresponse 
weighting on statistics other than means, such as subclass 
means or regression coefficients, would be worthwhile. We 
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expect it to be important that adjustment cell variables 
predict the outcome in many of these analyses too, but other 
points of interest may emerge. 
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Variance-Covariance Functions for Domain Means of  
Ordinal Survey Items  

Alistair James O’Malley and Alan Mark Zaslavsky 1 

Abstract 
Estimates of a sampling variance-covariance matrix are required in many statistical analyses, particularly for multilevel 
analysis. In univariate problems, functions relating the variance to the mean have been used to obtain variance estimates, 
pooling information across units or variables. We present variance and correlation functions for multivariate means of 
ordinal survey items, both for complete data and for data with structured non-response. Methods are also developed for 
assessing model fit, and for computing composite estimators that combine direct and model-based predictions. Survey data 
from the Consumer Assessments of Health Plans Study (CAHPS®) illustrate the application of the methodology. 
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1. Introduction  
Survey data are often used to obtain measures for 

comparisons across estimation domains. In our motivating 
example, surveys are conducted to elicit reports on 
experiences with health plans (entities administering health 
care) from enrolled members; similarly a survey might 
assess schools by administering tests to a sample of 
students. 

An essential part of the analysis of survey data is the 
calculation of sampling variances, or the sampling-
covariance matrix of a multivariate estimator. The standard 
survey sampling approach is to compute variances directly 
for each estimator in each domain. Direct variance estimates 
may be unstable when the number of respondents to an item 
is small because the sample size for a domain is small, 
because the item is applicable to only a fraction of 
respondents (such as users of specialized equipment in 
health surveys), or because we are interested in means for a 
small subgroup (such as those with chronic illnesses). 

By modeling variance estimates as functions of the unit 
(domain) means, we can pool information across units to 
obtain more stable estimates. Although modeling may 
introduce bias, for small units this is offset by the reduction 
in sampling variation. One may also consider generalizing 
variance estimates across items in addition to or instead of 
domains. This will be appropriate when there are groups of 
items for which the same mean-variance relationship is 
likely to hold. However, when there are many more 
domains than items, the greatest potential gain is from 
generalizing across domains rather than across items. 

A Generalized Variance Function (GVF) is a 
mathematical model describing the relationship between the 

variance or relative variance of a survey estimator and its 
expectation. When multiple estimates are produced from the 
same sample, Wolter (1985, chapter 5) proposes the model 

,// 10
2 MMV θ+θ=  

where M and V denote the expected value and variance of 
the estimator respectively. Such a form might be suitable for 
variables such as income or wealth for which a nearly 
constant coefficient of variation might be plausible because 
the mean and standard deviation are proportional to the 
length of the reference period. Modeling the coefficient of 
variation is thus most suited to situations where the 
variables are similar in content but have different scales 
with unrestricted ranges (e.g., income collected monthly and 
yearly). In our problem the items are ordinal and so a model 
of the coefficient of variation is not a natural choice. Other 
proposed GVFs also have simple forms (Woodruff 1992; 
Otto and Bell 1995). 

If a suitable GVF can be found, it can simplify 
calculations and make variance estimates more stable. 
Furthermore, summarizing sampling variance estimates in 
the form of a function also facilitates presentation of large 
volumes of statistics (Wolter 1985, pages 201-202). Finally, 
modeling variances as functions of means facilitates 
iterative re-estimation of sampling variances in hierarchical 
modeling. In practice the decision to use variance functions 
in a hierarchical modeling context depends on the goodness 
of the fit of the GVF; only with a sufficiently good fit is use 
of the GVF worthwhile. 

Past work on GVFs is relatively sparse. Wolter (1985, 
chapter 5) gave an overview but provided only a few 
references, as did Valliant, Dorfman and Royall (2000, 
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pages 344 – 348). Valliant (1992a, 1992b) used GVFs to 
smooth time-dependent indices in time series analysis. 
Woodruff (1992) used GVFs for variance estimation of 
employment change in the Current Employment Survey, 
and Wolter (1985, pages 208 – 217) illustrates the use of 
GVFs on data from the Current Population Survey. GVFs 
are also used in the National Health Interview Survey 
(Valliant et al. 2000, page 344).  

Huff, Eltinge, and Gershunskaya (2002) and Cho, 
Eltinge, Gershunskaya and Huff (2002) considered GVFs 
for the United States Current Employment Survey and 
Consumer Expenditure Survey. Eltinge (2002) uses GVFs 
to estimate a full sampling covariance matrix when samples 
are too small to produce stable estimates for all areas, 
estimating the components of the mean squared error (MSE) 
of the GVF model. Otto and Bell (1995) fit GVFs to median 
income, per capita income, and age-group poverty rates in 
the Current Population Survey, assuming an autoregressive 
dependence between rates over time and a Wishart 
distribution for the sampling covariance matrices. 

Our research extends previous research on GVFs in four 
directions. First, we use the GVF to generalize across 
domains rather than items. Thus, we do not assume that 
different items have the same GVF, although it might be 
reasonable to fit models of the same form for items with 
similar response categories. Second, we develop GVFs for 
the full covariance matrix, which must be estimated for joint 
inference on multiple outcomes. Thirdly, we focus on the 
relationship between means and variances of items with the 
ordinal response formats often used in survey question-
naires, rather than on homoscedastic continuous responses. 
Finally, we explicitly allow for patterns of nonresponse due 
to structured skip patterns. While structured item non-
response can be ignored (except for its effect on sample 
size) in univariate estimation, it must be considered 
explicitly to model bivariate relationships because it affects 
the sampling covariance of item means. Furthermore, 
because the number of responses varies across items, we 
cannot model the sampling covariances using a Wishart 
distribution, which has only a single parameter for sample 
size.  

We first describe direct estimation of variances and 
covariances, including the case when data are missing due 
to skip patterns. In section 3 we introduce models for 
generalized variance and covariance functions (GVCFs) and 
lay out our strategies for model fitting and evaluation and 
for combining direct estimates and model predictions. In 
section 4, we apply our methods to a major health care 
survey. In section 5, we conclude by describing applications 
and extensions of our methods. 

 

2. Direct Estimates of Sampling Variances of 
         Domain Means  

We index observations by domain h, items (indices i and 
j ), and respondents (indices k and l ); ikhy ,  and ikhr ,  denote 
the outcome and response indicator of subject k in domain h 
on item i. We suppress the index for item when referring to 
all items for a respondent or domain, and have no need for 
the subscript for respondent when discussing the means, 
variances, and correlations of items.  

Direct estimation of the sampling covariance matrix of 
domain means (henceforth, “variance estimation”) begins 
by expressing the means as functions of totals of the 
outcomes and response indicators. We replace ikhy ,  with 0 
for missing observations so that totals are defined in the 
presence of skip patterns. Following the notation of Särndal, 
Swenson and Wretman (1992, pages 24 – 28; 36 – 42), let hU  
and hS  describe the population and sample respectively for 
the thh  domain, === ∑∑ ihikhUihikhUih YrRyY

hh ,,,,,
ˆ,,  

,, ikhS y
h

(
∑  and ,ˆ

,, ikhSih rR
h

(
∑=  where ,/ ,,, khikhikh yy π=(  

,/ ,,, khikhikh rr π=(  and ).(pr, hkh Sk ∈=π  
The vector of mean outcomes for the population of 

elements within domain h is 

,,,),(
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where ),,( ,1, Ihhh YYY K=  and ).,,( ,1, Ihhh RRR K=  An 
estimator is 
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A first order Taylor series expansion of )ˆ,ˆ( hh RYf  about 
),( hh RYf  produces the approximation  

,),()ˆ,ˆvar(),())ˆ,ˆ(var( T
hhhhhhhhh RYfRYRYfVRYf ′′=≈  

where ),( hh RYf ′  is the Jacobian of ).,( hh RYf  Often it is 
computationally easier to first calculate =khu ,  

,),( , khhh zRYf ′  where ),,( ,,, khkhkh ryz =  and then evaluate 
the variance as 
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where 1, =khI  if hSk ∈  (indicating that the thk  member of 
domain h is sampled) and 0 otherwise, =Δ lkh,  

,,,, lhkhlkh ππ−π  and ).,(pr, hklh Slk ∈=π  An estimator 
for hV  is 
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To describe evaluation of hV̂  one need only consider one 

diagonal (i.e., variance) element and one off-diagonal (i.e., 
covariance) element. The sub-matrix of the Jacobian formed 
by the thi  and thj  items is given by 
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where ihihih RYM ,,, /=  is the mean outcome of the thi  item 
in domain h. Hence,  
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To evaluate (2) and (3), we make a further approximation 
by substituting ikhSih rR

h ,,
ˆ (

∑=  and /ˆ
,, ikhSih yM

h

(
∑=  

)( , ikhS r
h

(
∑  for ihR ,  and ., ihM  

When sampling rates are small, or if we wish to make 
predictions for a large super-population (e.g., all potential 
enrollees in a health plan, not just those currently enrolled), 

11 ,, ≈π−=Δ khklh

(
 if 0, , ≈Δ= klhlk

(
 if ,1≠k  and the 

sampling design approaches sampling with replacement. 
Under the sampling with replacement design, approximately 
unbiased estimators are 
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These estimators can be generalized to accommodate 
clustering. 

With equal-probability sampling within domains, (4) and 
(5) reduce to 
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where 
ihSR

,

ˆ  is the number of respondents to item i in 
domain h. 

 
3. Models for Variance Functions  

In this section we propose specifications for models for 
variances and for sample correlations with complete 
responses or with structured skipped responses. We then 
discuss model fitting and evaluation strategies. We assume 
that these domains are nonoverlapping strata, so the 
sampling errors for different domains are independent. 

We transform the ordinal ratings to the 1][0,  interval by 
the transformation ),/()( ,,,,, ihihihihih ABMBp −−=  where 

ihA ,  and ihB ,  are the minimum and maximum response 
categories for item i in domain h respectively. We focus on 
modeling variances for large values of ihM ,  (small values 
of ihp , ) because in our motivating example mean outcomes 
are typically near the high end of the scale.  
3.1 Variance Functions  

To account for the variable number of respondents over 
domains and items, and differing scales, we normalize the 
variance estimators in (6) for sample size and re-scale: 
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=  

With unequal probability sampling within domains, a 
normalization factor could be used that accounts for the 
weights. One possible normalization is to multiply iihV ,

ˆ  by 
),/()(ˆ 2

,
2

,
*

, ikhikhS rrR
ih

((
∑∑=  where ikhr ,

(  is the response 
indicator for item i for the thk  subject in the thh  domain, in 
place of .ˆ

, ihSR  This approximation, proposed in Kish 
(1965), has a model based justification (Gabler, Haeder and 
Lahiri 1999). It works well if the sampling probabilities 
vary modestly in the sample, but can lead to inefficiency if 
the variation is excessive (Korn and Graubard 1999, page 
173; Spencer 2000). 

Because the items in our example have ordinal scales, the 
variance must go to 0 as 0, →ihp  or .1, →ihp  An obvious 
predictor with this property is the variance function of the 
Bernoulli distribution, ).1( ,, ihih pp −  This holds exactly for 
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dichotomous items, and might be a useful approximation for 
items with three or more categories. 

As alternatives to the Bernoulli variance model we 
considered models with a variety of polynomial and other 
functions of the means as predictors. Of all the models 
considered, the quadratic family of models were found to fit 
as well as any. We focused on the following quadratic 
models. 

,
~

:1VModel ,1, ihiiih pV β=  (8) 

,)1(
~

:V2Model ,,2, ihihiiih ppV −β=  (9) 

.)1(
~

:V3Model ,,2,1, ihihiihiiih pppV −β+β=  (10) 

Thus we consider a linear variance model V1, a binomial-
like model V2, and a general quadratic variance model V3. 
All models correctly ensure 0

~
, =iihV  when ,0, =ihp  but 

only V2 ensures that 0
~

, =iihV  when .1, =ihp  The rationale 
behind V1 is that relationships are often approximately 
linear over small intervals. Both V1 and V2 are submodels 
of the two-parameter quadratic V3. We also considered 
models for ),

~
log( , iihV  but these models did not fit as well.  

The model V3 is equivalent to the model suggested by 
Wolter (1985, chapter 5); the equivalence is seen by 
expressing the right-hand side of V3 in terms of ihp ,  and 

,2
, ihp  and then dividing both sides by 2

, ihp  to obtain the 
relative variance. However, parameter estimates obtained by 
fitting the two forms of the model may be different 
depending on the modeling assumptions used.  
3.2 Correlation Functions with Complete Data  

Because correlations are independent of the scale of the 
data, we model the correlations and derive the sampling 
covariances, rather than modeling the covariances directly. 
We model the sample correlations 

,
)ˆˆ(

ˆ
ˆ

2/1
,,

,
,

jjhiih

ijh
ijh

VV

V
=ρ  

via the unrestricted transformed values =ijhZ ,  
)}.ˆ1/()ˆ1log{( ,, ijhijh ρ−ρ+  Unlike the variance models, 

models for correlations may include an unrestricted 
intercept, since there is no natural restriction on the 
correlation when ihp ,  or jhp ,  approaches 0 or 1. 

Because ijh,ρ̂  is a function of the first and second 
moments of items i and j, it seemed reasonable to first focus 
on linear and quadratic models for ., ijhZ  As with variance 
functions, we found that a more extensive range of models 
(e.g., models with logarithms of the means as predictors) did 
not substantially improve model fit. We ultimately focused 
on the following nested series of models. 

 

,:C1Model 0, ijijhZ α=  (11) 

,:C2Model ,,30, jhihijijijh ppZ α+α=  (12) 

,
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Model C3 is model C4 with the constraint .21 ijij α=α   
3.3 Predicting Covariances with Structured  
 Missing Data  

When the data have skip patterns, the sample correlations 
of the ratings for the set of respondents who answered both 
items can be modeled by (11) – (15), as in the complete 
response case. The corresponding sample covariances can 
be easily estimated by using the fitted variance functions to 
re-scale the predicted correlations. However, because the 
sampling covariance reflects the variability in the whole 
sampling process, not just the variability within the sub-
population of respondents who answered both items, the 
relationship between sample covariance and sampling 
covariance is more complicated than if the data were 
complete. In this section we derive the relationship between 
the sample covariance for the set of respondents who 
answered both items and the sampling covariance. This 
allows correlation models such as (11) – (15) to be applied to 
data with skip patterns. 

There are four distinct data patterns for any pair of items: 
response to both items, one response and one skipped item 
(two patterns), and both items skipped. We extend our 
notation by introducing a superscript representing the 
response status of a second item. Let =1

,
ˆ
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In the equal probability sampling case, substitution of the 
above expression for ihM ,

ˆ  into (7) yields 
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where .ˆˆˆ 0
,

1
,, ijhijhijh MMD −=  Here =1

,
ˆ

ijhC −∑ ikhS y ,( (  
1

,,
1

,,,
1

,
ˆ/)ˆ)(ˆ

ijhjkhjihikhikhijh RrMyrM ((( − is the normalized 
sample covariance of the ratings for the set of respondents 
who answered both items (which can be predicted using 
correlation and variance functions, and in the case of 
unequal probability sampling applying a normalization 
factor). When the sampling probabilities are not equal, 
Equation (16) holds exactly only if jkhS r ,

(
∑  

.0)ˆ( ,
1

,, =− ikhikhikh rMy (( Therefore, (16) may be expected to 
provide a good approximation if the sampling probabilities 
for one item are not highly correlated with the residuals for 
another item. In general, the appropriateness of using (16) 
for unequal probability sampling designs should be 
checked. 

The estimated mean differences ijhD ,
ˆ  determine the 

contribution of the response pattern to the sampling 
covariance. Either ijhD ,

ˆ  or jihijh DD ,,
ˆˆ  may be modeled in 

the process of obtaining smoothed estimates of .
~

, ijhV  In our 
application, the ijhD ,

ˆ  were typically small. Because the 
second term of (16) is a product of two factors of small 
magnitude ijhD ,

ˆ(  and ),ˆ
, jihD  the contribution of ijhD ,

ˆ  to 
(16) was small and it sufficed to use a simple model for 

,ˆ
, ijhD  such as a constant for each item pair. However, 

unique constants should be estimated for each pair of items.  
3.4 Model Fitting and Evaluation  

We estimate the parameters of the variance or correlation 
function using iteratively reweighted least squares 
regression. Weighting is important when the number of 
responses varies greatly across domains, as in our 
motivating example. 

In this section we index domains (h) and respondents (k) 
but not items as the same methodology applies to each 
variance and correlation model. Exact computations are 
derived for the equal probability sampling case, and 
approximations are noted for the unequal probability 
sampling case. Generically, the direct estimators ,

~
hf  true 

values ,hf  and model predictions hf̂  are related through 
the hierarchical model 

,
~

:ILevel hhh ff ∈+=  (17) 

,ˆ:IILevel hhh eff +=  (18) 

where ,],0[~,]ˆ/,0[~ 22 τσ∈ hShh eR
h

 and ],[ 2σμ  indicates 
a distribution with expectation μ  and variance 2σ  but un-
specified form. In the unequal probability sampling case we 
replace 

hSR̂  with .ˆ*
hSR  Here h∈  represents sampling error 

and he  represents model error. Marginally, += hh ff ˆ~
 

hhe ∈+  so in the regression we weight the observation for 
domain h by ,)ˆ/( 122 −σ+τ=

hShh Rw  the inverse of the 
marginal variance. With equal-probability sampling, the 

variance of the direct estimate of 22 ]
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In the equal probability sampling case Equation (19) is exact 
and does not depend on parametric assumptions (Seber 
1977, page 14). The asymptotic approximation (20) to the 
variance of the transformed correlation hZ  (Freund and 
Walpole 1987, page 477) deteriorates as sample sizes 
decrease, and fails altogether for .3ˆ ≤

hSR  However, 
domains with small sample sizes have little impact on the 
fitted models; we exclude domains with 3ˆ ≤

hSR  from 
correlation modeling.  

When the sampling probabilities are not equal, the large 
sample counterpart to (19), given by 
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where ,ˆ)/)( 2
,,, hlhSlhlhSh Mrryw −= ∑∑
(((  may be used. In 

the equal probability sampling case, 0=hw  and the above 
expression reduces to a non-bias corrected version of (19). 
If the sampling probabilities are not equal, we suggest 
replacing (20) with the design-effect-corrected estimator 
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The model error variance 2τ  is estimated as: 
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where ,ˆ/ˆ,)ˆ~
(EŜM 2

hh ShShhhhh RRNqfVq ∑∑ =−=  and 
).0ˆ( >= ∑

hSh RIN  The weights are then re-estimated as 
,)ˆ/)

~
(ˆ(ˆ 122 −σ+τ=

hShhh Rfw  and the GVCF models are refit, 
iterating to convergence. We again suggest replacing 

hSR̂  
with *ˆ

hSR  if the sampling probabilities are not equal. 
We compared the predictive accuracy of models using 

,VŜM/EŜM12 −=R  where EŜM  is the mean squared 
error of the regression, and VŜM  is the sample size 
weighted average of the sampling variances of the direct 
estimators (variances or transformed correlations) for each 
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domain. Note that we could have 02 <R  for a very poorly 
fitting model.  
3.5 Combined Estimators  

For domains with small samples, direct survey variance 
estimates often are too imprecise to be useful, while 
estimates for larger domains in the same study may be quite 
reliable. Fay and Herriot (1979) and Ghosh and Rao (1994) 
demonstrated that shrinking direct estimates towards a 
model-based smoothed value can lead to substantial gains in 
precision. They proposed composite or empirical Bayes 
estimators that are weighted averages of direct and model-
based estimators. That is, instead of either using the direct 
estimates or estimates obtained from generalized variance/ 
covariance modeling, we use a weighted average of the two 
estimators to potentially obtain even better estimates. 

Such weighted estimators can be constructed for domain 
variances using the model specified in (17) and (18). A 
natural approach is to weight the direct model-based 
estimators inversely proportional to the corresponding 
sampling and model error variances respectively (denoted 

2
hσ  and 2τ  respectively for domain h). The resulting 

estimator for domain h (for variances and transformed 
correlations) is: 
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h
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hhh
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where dir~
hf  and mod~

hf  denote the direct and model-based 
estimators. This generic formula applies to the variance 
estimates for all items, and correlation estimates for all pairs 
of items. The right-most expression has the form of an 
empirical Bayes estimator. 

If the direct and model-based variance estimators are 
independent, the variance of the resulting combined 
estimator is }.,min{)/( 222222

hhh στ≤σ+τστ  Thus the 
composite is as least as precise as either of its two 
component estimators, improving on ad hoc selection 
between direct and model-based predictions. This is a useful 
strategy especially when model-based predictions improve 
on direct estimates for some, but not all domains. 

 
4. Example: CAHPS® Data Set  

The Consumer Assessments of Health Plans Study 
(CAHPS®) survey (Goldstein, Cleary, Langwell, Zaslavsky 
and Heller 2001) was designed primarily to elicit consumer 
ratings and reports on health plans. Plan mean scores 
(perhaps after recoding) on the various survey items are 
calculated and reported to consumers, health plans, and 
purchasers. Each analytic domain consists of the enrollees 
of a health plan (or geographically defined portion of one) 

in a year; most of the plans are sampled in multiple years. 
The stratum is the reporting unit (plan or portion thereof) in 
a given year; reporting units corresponded to plans with the 
exception of a few large plans that had multiple reporting 
units. Therefore, there are many units for variance and 
covariance function estimation.  

We illustrate our methods with a CAHPS data set for 
beneficiaries of U.S. Medicare managed care plans, a 
system of private but government-funded entities serving 
from 5.7 to 6.9 million elderly or disabled beneficiaries in 
each year during our study period (1997 to 2001). Our data 
represent 381 reporting domains each sampled in 1 to 5 
years for a total of 932 distinct reporting unit by year 
domains with 705,848 responses. Because samples are 
drawn independently each year, patients may be sampled in 
multiple years. However, repeated sampling is rare and can 
be overlooked for our analysis. Therefore, the domains are 
strata with equal probability element sampling performed 
within each. Note that in CAHPS analyses no corrections 
are made for finite-population sampling since the data are 
collected to guide choices for future years rather than to 
record experiences of the specific population in a particular 
year.  

CAHPS items use a variety of ordinal response formats 
with either 11, 4, 3, or 2 response options. Overall ratings of 
doctor, specialist, care, and plan are measured on a 0 to 10 
scale from “worst possible” to “best possible”. Other items 
use a 4 – point ordinal “frequency” scale (never/sometimes/ 
usually/always), or a 3 – point ordinal “problem” scale (not a 
problem/somewhat a problem/a big problem), or are 
dichotomous (no/yes). Many items are answered only by 
respondents who used particular services or had particular 
needs, as determined by screener items. For example, an 
item about whether advice was obtained successfully by 
telephone is only answered by those who first reported that 
they attempted to obtain advice in that way.  
4.1 Descriptive Statistics  

Table 1 presents response distributions and domain mean 
distributions by item type. Missing observations due to 
structured skip patterns often occurred in blocks, with as 
many as 11 items skipped on the basis of a single screening 
question. Very little nonresponse (less than 2% on almost all 
items) was not due to a structured skip pattern. In this 
analysis we treat all types of nonresponse identically.  

Item response rates were lowest (as low as 4%) for 
problem items, several of which dealt with specialty 
services such as therapy or home health care needed by 
relatively few respondents. Some of the frequency and 
yes/no items also had low response rates. The greatest 
variation in the proportions of skipped items was evident 
among the yes/no items: 96.7% for a “complaint or problem 
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with plan” to 12.5% for “get prescription through plan”. 
Domain mean outcomes are in general concentrated towards 
the higher end of their scales, indicating that most responses 
were favorable.  

Table 1 
Distribution of Responses and Ratings Evaluated over Items  

of the Same Type (n = 705,848 Respondents) 
 

Statistic Numerical How Often Problem Yes/No 
 Number of items 4 11 11 9 

Percentage responding     
 Mean 74.97 62.56 30.32 57.26 
 Minimum 50.90 27.70 4.00 12.50 
 Maximum 95.00 74.50 64.40 96.70 

Item means     
 Mean 8.76 3.57 2.70 1.78 
 Minimum 8.57 3.09 2.49 1.62 
 Maximum 8.88 3.84 2.86 1.97 

Distribution of ratings (across items in group) 
0 0.5    
1 0.4 2.0 5.7 19.5 
2 0.4 6.3 12.1 80.5 
3 0.7 23.9 82.2  
4 0.9 67.8   
5 4.6    
6 3.0    
7 6.2    
8 16.1    
9 17.8    
10 49.5    

Items are on a 0 – 10 numerical scale from “worse possible” to “best 
possible”, a 4 – point 1 – 4 ordinal “frequency” scale (never/sometimes/ 
usually/always), a 3 – point 1 – 3 ordinal “problem” scale (not a 
problem/somewhat a problem/a big problem), or are dichotomous 1 – 2 
items (no/yes).  

The domain mean, minimum, and maximum values 
across all items of the same type are also presented in Table 
1. These illustrate that the 0 – 10 items have the smallest total 
variation (after rescaling to the common 0 – 1 range), while 
the 1 – 2 items have the largest total variation across domains 
and items. This is also illustrated in Figure 1, where we 
observe that the distribution of the 1 – 2 items varies sub-
stantially across items whereas the distributions of the 0 – 10 
items are more homogeneous.  

Table 2 presents statistical summary measures for the 
means and standard deviations of the domain mean ratings, 
evaluated across items of the same type. This complements 
Figure 1 by summarizing the difference in distributions of 
items within a given scale. Items with more response 
categories are concentrated towards the top of the scale and 
hence have smaller variance. For example, the mean 
standard deviation of the 1 – 2 items (0.36) is twice that of 
the rescaled 0 – 10 items (0.172). With the exception of the 
0 – 10 items, the distributions of domain mean ratings vary 
greatly across items of the same type. For instance, the 
standard deviation of the means of 1 – 2 items across items is 
0.30 compared to a rescaled standard deviation of 0.03 for 
the 0 – 10 items. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Five-point Summary of the Domain Sample Means 
for Each Item. The five-point summary consists of 
the minimum, 10th percentile, mean, 90th percentile, 
and the maximum.   

Table 2 
Summary Statistics of Domain Means and Standard Deviations 

Evaluated Over Domains and Items 
 

Type Summary Statistics for: 
 Item Means  Item SDs 
 Min Max Mean SD  Mean SD 
Numerical 0 –10 6.82 9.52 8.76 0.30  1.72 0.26 
Frequency 1– 4 2.86 3.90 3.57 0.12  0.66 0.09 
Problem 1–3 1.88 2.99 2.70 0.14  0.57 0.13 
Yes/No 1–2 1.34 1.96 1.78 0.08  0.36 0.06 

 

Note: Columns 2 through 5 give the minimum, maximum, mean, 
and standard deviation of the domain item means across items 
of a given type. Columns 6 and 7 give the mean and standard 
deviation of the domain item standard deviations across items 
of a given type. 

 

  
Sample correlations also varied greatly across the pairs of 

items (Figure 2), although most were positive. Correlations 
between items of the same type most often were higher than 
those between items of different types. The numerical 0 – 10 
ratings had the largest correlations (mean = 0.49), and 
generally ratings with more categories tended to have higher 
correlations than ratings with fewer categories. Although 
most of the pairs of 1 – 4 items had mean correlations near to 
0.5, one item was negatively correlated with the others 
(revealed by the cluster of mean correlations below 0); this 
arose from reverse coding an item whose overall sample 
mean was not in the top half of the scale. The distributions 
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of the correlations of pairs of 1 – 2 items were centered near 
0, indicating that pairs of items of this type often have 
negative correlations. Complete item wordings and 
additional summary statistics appear in Zaslavsky, Beaulieu, 
Landon and Cleary (2000) and Zaslavsky and Cleary 
(2002). 

Models fitted to the variances and correlations are 
presented in the remainder of this section. Extensive 
checking of the best-fitting models indicated that the 
residuals did not follow any discernible pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Five-point summary of the domain sample correlations 
between items with the same type. The five-point summary 
consists of the minimum, 10th percentile, mean, 90th 
percentile, and the maximum.  

4.2 Variance Functions  
In preliminary investigations not reported here, we fit 

two models within groups of items with the same response 
scale, one with common and one with different regression 
parameters for each item, to the data set comprising all of 
the items. Comparisons of the overall fits of the models 
(using criteria such as Mallow’s ,, 2RCp  adjusted 2R ) and 
tests of the significance of effect-item interactions demon-
strated that allowing parameters to vary across items signi-
ficantly improved model fit. For instance, for the rescaled 
numerical ratings, weighted by domain sample size, the two 
models’ root mean squared errors were 0.446 versus 0.402, 
and values of 2R  were 0.783 versus 0.825. Based on this 
we decided to fit separate models for each item.  

The variance functions (8 – 10) were fitted to each item 
except the yes/no items, which follow the binomial variance 
function in the equal-probability sampling case. The 
iterative procedure described in section 3.4 converged 
almost precisely in exactly two iterations. This is because 
the weights for the observations change only with the 
estimate of ,2τ  and so very little change in the weights 
occurs after the first iteration.  

Table 3 presents the average sampling variation, average 
model error variation, and ,2R  for each model averaged 
over items of each response scale. Sampling variation, 
computed using (19), does not depend on the model.  

Table 3 
Goodness-of-fit Statistics for Variance Functions 

 

Rating Scale 0 – 10 1 – 4 1 – 3 
Sampling Variation 0.1460 0.3511 3.1703 
 ModErr 2R ModErr 2R ModErr 2R
Model V1 0.020 0.741 0.066 0.824 0.069 0.916
Model V2 0.043 0.710 0.036 0.835 0.000 0.940
Model V3 0.016 0.750 0.024 0.847 0.000 0.947

Prob(ModErr < Sampling Variation) 

Model V1 0.968 0.916 0.996 
Model V2 0.858 0.967 0.996 
Model V3 0.981 0.983 0.996 
 

ModErr is the variance component for lack of fit, 2R  is as defined in 
section 3.4, Prob(ModErr < Sampling Variation) is the proportion of 
domains for which model error is smaller than sampling variation. All 
ratings are rescaled to a 0 – 1 scale, and model errors are multiplied by 
104.  

For items with few categories (more closely resembling 
the binomial), the quadratic component of the variance 
function tends to dominate the linear component, making 
models V2 and V3 fit better than V1. Because V2 imposes a 
constraint at a point far outside the range of the domain 
means, it does not fit the data as well when there are more 
categories and the data are consequently further from 
binomial. The 0 – 10 items are less dispersed than the 1 – 4 
and 1 – 3 ratings, enabling the linear model to fit better. The 

2R  values for model V3 were close to 0.75 for numerical 
(0 – 10) items, 0.85 for the frequency (1 – 4) items, and 0.95 
for the problem (1 – 3) items.  

The lower portion of Table 3 displays for each item the 
proportion of domains (of those with at least 2 responses to 
the given item) for which sampling variation is larger than 
model error variation. For over 90% of domains, model 
error variation was less than the sampling variation of the 
direct variance estimate. 

Figure 3 illustrates the fit of V3 for two each of the 0 – 10, 
1 – 4, and 1 – 3 items. Illustrations for the remaining items are 
similar, but are not provided due to space limitations. The 
fitted curves are constrained to 0 at the maximum ratings. 
To assess the impact this constraint has on the fitted 
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variance function, we also fit an unrestricted (three para-
meter) quadratic variance function; these attained values 
very close to 0 at the maximum rating, and closely approxi-
mated the fitted curve from the constrained models, further 
supporting V3.  

Average parameter estimates and their standard 
deviations over items of the same type are shown in Table 4. 
The parameters differed substantially across items, sup-
porting the decision to estimate separate regression 
coefficients. In most cases the coefficients for both the ihp ,  
and )1( ,, ihih pp −  terms in V3 were significant, indicating 
that these are needed for generalized variance modeling. In 
some cases (particularly with the 0 – 10 items) the coefficient 
of the )1( ,, ihih pp −  term was negative, resulting in an 
estimated variance function that is convex rather than 
concave (the shape of the binomial variance function). This 
can happen when the sample means for the ratings are 
concentrated on a small proportion of the response scale, 
over which the linear term explains much of the variation in 
the data. As mentioned earlier, adding higher-order poly-
nomial or logarithmic functions of ihp ,  did not significantly 
improve model fit. 

 
 

 

Table 4 
Average Variance Function Parameter Estimates for Each Type of 

Item and Standard Deviations Across Items (in Parentheses) 
 

Model Item Type 
 0 – 10 1 – 4 1 – 3 
 1β̂  2β̂  1β̂  2β̂  1β̂  2β̂  

V1 0.236 – 0.354 – 0.569 – 
 (0.016) – (0.039) – (0.068) – 
V2 – 0.271 – 0.421 – 0.711 
 – (0.020) – (0.034) – (0.069) 
V3 0.334 – 0.114 0.151 0.241 0.239 0.420 
 (0.143) (0.155) (0.104) (0.132) (0.112) (0.110) 

 

See Table 1 for a description of the 0 – 10, 1 – 4, and 1 – 3 items.  
4.3 Correlation Functions 
 

Models are ordered from simplest (C1, the constant 
model) to most complex (C5, containing all linear and 
quadratic terms). As for the variance models, statistical tests 
found highly significant item interaction effects, implying 
that separate models should be fit for each pair. We did not 
expect all pairs of items to have similar correlations, since 
by intention the items are divided into internally consistent 
groups, each of which measures a distinct aspect of patient 
experiences such as interactions with doctor or dealings 
with customer service agents (Hays, Shaul, Williams, 
Lubalin, Harris-Kojetin, Sweeny and Cleary 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3. Quadratic Variance Function (V3) of Two Items for each Rating Type. 
Each point is the average of 60 domains. Vertical lines join the 10th and 
90th percentiles of the distribution of the variances. For this and 
following displays the direction of the transformed horizontal axis has 
been reversed to agree with that of the original variables.  
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The fits of the correlation models for pairs of items of the 
same type are summarized in Table 5. Over the range of 
models considered, the biggest improvements in model 
performance (as measured by 2R ) occur between model C1 
and model C2, and between model C3 and model C4. For 
example, the average 2R  for the numerical ratings in 
models C3 – C5 are 0.0391, 0.1494, and 0.1508 respectively, 
and the average 2R  for the 1 – 4 ratings over C1 – C3 are 0, 
0.0700, and 0.0789 respectively. This suggests that C2 and 
C4 are the best models for different pairs of items, a claim 
that is supported by the hypothesis tests on the significance 
of the incremental improvements in model fit.  

Sampling variation was highest for the 1 – 3 ratings, at 
least in part because high rates of non-response due to 
skipped responses diminished the sample sizes. Model error 
and 2R  of correlation models for items of different types 
were similar to those for models for items having the same 
type. 

The 2R  values for the correlation models were between 
0.029 and 0.15 for all pairs of items. Although there was no 
evidence to suggest that C4 was an inappropriate model for 
the correlations, these results indicate that substantial 
variation in the correlations is not explained by the item 
means. 

The sampling variances of the direct estimates were often 
less than the corresponding model error variances (lower 
part of Tables 5 and 6 especially for the 0 – 10 items. Under 
C4, model error variances were smaller for only 13% of 
domains for the 0 – 10 ratings, 45% of domains for the 1 – 4 
ratings, and approximately 81% of domains for the 1 – 3 and 
1 – 2 ratings. 

Figure 4 presents the observed correlations and fitted 
function C4 for an illustrative pair of items from each of the 
10 combinations of item types, representing the 595 distinct 
pairs of items. To illustrate the fitted correlation models, we 
adjust the observed and fitted correlations to the mean of 
one item and plot the resulting values in two-dimensional 
space. This process is repeated for the other item, yielding 
two plots for each correlation. 

Figure 4 illustrates the generally weak relationship of the 
correlation to the means of the items seen in Tables 5 and 6. 
Analysis of Tables 5 and 6 reveals that the relationship 
between the correlation and the mean outcome is weaker for 
items with fewer categories and with correlations of items of 
different types. In particular, the 0 –10 numerical ratings are 
the only group for which there is a clear correlation-mean 
relationship. 

 

 

Table 5 
Model Fitting Diagnostics for Correlation Functions for Items of the Same Type, Averaged over Pairs of Items of the Same Type 

 

Rating Type 0 – 10 1 – 4 1 – 3 1 – 2 
Sampling Variation 0.0124 0.0178 0.1482 0.0325 
 ModErr 2R ModErr 2R ModErr 2R ModErr 2R
Model C1 0.060 0.000 0.028 0.000 0.112 0.000 0.018 0.000 
Model C2 0.060 0.013 0.025 0.070 0.103 0.048 0.017 0.014 
Model C3 0.057 0.039 0.024 0.079 0.102 0.054 0.017 0.018 
Model C4 0.047 0.150 0.023 0.100 0.100 0.068 0.016 0.029 
Model C5 0.044 0.151 0.023 0.105 0.096 0.080 0.015 0.034 

Prob(ModErr < Sampling Variation) 
Model C1 0.033 0.339 0.461 0.788 
Model C2 0.033 0.400 0.498 0.795 
Model C3 0.034 0.411 0.502 0.796 
Model C4 0.038 0.435 0.516 0.799 
Model C5 0.065 0.440 0.530 0.802 

See Table 1 for a description of the 0 – 10, 1 – 4, 1 – 3 and 1 – 2 items, and Table 3 for an explanation of the column headings. 
 

Table 6 
Model Fitting Diagnostics for Correlation Functions for C4 by Type of Item.  

Averaged over Items of the Same Type 
 

Types 0 – 10 1 – 4 1 – 3 1 – 2 

 ModErr 2R  ModErr 2R  ModErr 2R  ModErr 2R
0 – 10 0.047 0.149 0.021 0.104 0.040 0.094 0.013 0.059
1 – 4   0.023 0.100 0.038 0.076 0.013 0.039
1 – 3     0.100 0.068 0.028 0.031
1 – 2      0.016 0.029
Prob(ModErr < Sampling Variation) 
0 – 10 0.038 0.358 0.523 0.784 
1 – 4   0.435 0.605 0.790 
1 – 3   0.516 0.827 
1 – 2    0.799 
See Table 1 for a description of the 0 – 10, 1 – 4, 1 – 3 and 1 – 2 items, and Table 3 for an explanation 
of the column headings. 
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Figure 4. Correlation Functions for One Pair of Items for Each Combination of Rating Types. 
 

Note: The plots for each items involved in the correlation are side by side. Refer to 
Figure 3 for a description of the contents and axes of the plot. 

 

 

 

 

 

 

 

 

Although the fitted curves for the correlation functions 
are nearly flat, the variation in the parameter estimates under 
model C4 for 4α  are large and were suggestive of 
instability. The wildly varying parameter estimates are a 
consequence of collinearity among the predictors in model 
C4. In many cases the estimated value of 4α  offsets the 
parameter estimates for the linear predictors, resulting in a 
fitted curve that is nearly flat.  
4.4 Mean Difference Functions  

The difference ijhD ,
ˆ  appeared to depend on both the 

marginal mean and its square, implying a model analogous 
to V3 could be appropriate. However, because ijhD ,

ˆ  
typically is small enough that jihijh DD ,,

ˆˆ  has minimal 
impact on (16), we fit a constant model.  
4.5 Composite Estimator  

Table 7 presents the quantiles of the distribution of 
weights )/( 222

hh σ+τσ  for the model-based estimate, used in 
the composite estimator of section 3.5, averaged over items 
(or pairs of items) of the same type. The proportion of 

domains for which the standard error of the model-based 
predictions was smaller than that of the direct estimates is 
also presented. As noted previously, the model-based pre-
dictions have more weight in the composite variance 
estimates than in the composite correlation estimates. The 
average (across items or pairs) median of the weights of the 
model-based estimator ranged from 0.892 to 1.000 for 
variances, 0.256 to 0.709 for correlations of items of the 
same type, and from 0.468 to 0.738 for correlations of items 
of different types. Also, for both variances and correlations, 
the weight of the model-based predictions was larger for 
items with fewer response categories. For example, the 
model-based estimator had median weights of 0.256, 0.468, 
0.540, and 0.647 on the composite estimates of correlations 
when the numerical 0 – 10 ratings were paired with the 0 – 10, 
1 – 4, 1 – 3, and 1 – 2 ratings, respectively. However, even for 
pairs of 0 – 10 numerical ratings, for which sampling error of 
the direct estimator exceeded the model error in only 3.81% 
of domains, these results indicate that the median weight of 
the model-based estimator was 0.256, a nontrivial amount. 

 

0-10 and 0-10 items       0-10 and 0-10 items               0-10 and 1-4 items                0-10 and 1-4 items 

0-10 and 1-3 items        0-10 and 1-3 items                 0-10 and 1-2 items               0-10 and 1-2 items 

1-4 and 1-4 items             1-4 and 1-4 items                1-4 and 1-3 items                   1-4 and 1-3 items 

1-4 and 1-2 items             1-4 and 1-2 items                1-3 and 1-3 items                   1-3 and 1-3 items 

1-3 and 1-2 items             1-3 and 1-2 items                1-2 and 1-2 items                   1-2 and 1-2 items 
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Table 7 
Distribution of Weights for the Model-Based Component of the Composite Estimator, Averaged Over  

Items of Same Type 
 

Model Item Type Prob(ModErr < Quantiles 
 1 2 Sampling Variation) 10% Median 90% 
Variance 0 – 10 – 0.981 0.778 0.892 0.948 
 1 – 4 – 0.983 0.948 0.966 0.974 
 1 – 3 – 0.996 1.000 1.000 1.000 
Correlation 0 – 10 0 – 10 0.038 0.141 0.256 0.335 
 0 – 10 1 – 4 0.358 0.301 0.468 0.562 
 0 – 10 1 – 3 0.523 0.357 0.540 0.654 
 0 – 10 1 – 2 0.784 0.531 0.695 0.767 
 1 – 4 1 – 4 0.435 0.324 0.497 0.591 
 1 – 4 1 – 3 0.605 0.404 0.587 0.699 
 1 – 4 1 – 2 0.853 0.584 0.738 0.805 
 1 – 3 1 – 3 0.516 0.349 0.540 0.675 
 1 – 3 1 – 2 0.827 0.584 0.737 0.817 
 1 – 2 1 – 2 0.799 0.541 0.709 0.780 

 

 The distribution of weights is summarized by the 10th, 50th, and 90th percentiles. See Table 3 for definition of ModErr.  
 

 

4.6 Joint Predictions  
Because we modeled the correlations independently for 

each item, our fitted correlation matrices do not necessarily 
satisfy the constraint of positive definiteness, which can be 
important for multivariate inference. In additional work, we 
have determined that as long as the multivariate analysis is 
restricted to items of the same type, the fitted correlations 
from the C2 and C4 models yield positive definite estimates 
of correlation matrices for almost all domains. However, for 
analyses including items of different types (e.g., the 0 – 10 
numerical items, and the 1 – 2 yes/no items), predictions 
based on C4 predict correlation matrices that are indefinite 
for many domains, while predictions based on C2 are more 
stable and almost always yield positive definite predictions. 
This suggests that while C4 may be slightly superior in 
terms of univariate model fit, C2 may be more appropriate 
for multivariate inference.  

One way of overcoming the problem of indefinite 
predicted correlation matrices is to use a weighted average 
of the predicted correlation matrix for a domain and the 
estimated average correlation matrix (EACM) across 
domains. The EACM may be constructed by weighting the 
direct estimates (each of which is at least positive semi-
definite) by the total sample size for each domain. Then any 
indefinite predicted correlation matrices are replaced with 
the weighted average of the predicted correlation matrix and 
the EACM, where the weight used for each domain is 
increased until a positive definite matrix results. Like an 
empirical Bayes estimator, this process stabilizes estimates 
by effectively shrinking the model coefficients toward those 
of a simpler (constant) model. 

When analyzing all 35 CAHPS items simultaneously the 
EACM had an average weight across domains of 0.65 with 

model C4, whereas with model C2 the average weight was 
only 0.01 since the predicted correlations under C2 were 
usually positive definite. In analyzing only the 0 – 10, 1 – 4, 
and 1 – 3 items the EACM had average weights of 0.28 and 
0.00 with C4 and C2 respectively, while in analyzing just 
the 0 – 10 and 1 – 4 items the corresponding average weights 
were 0.06 and 0.00. When analyzing the different types of 
items separately, the average weight of the EACM with C4 
was 0.00 for the 0 – 10 and 1 – 4 items, 0.01 for the 1 – 3 
items, and 0.17 for the 1 – 2 items. The EACM is thus not 
needed when analyzing the 0 – 10 and 1 – 4 items because the 
predicted correlation matrices were positive definite for 
every domain. 

 
5. Conclusion  

We have presented methodology for estimating variance 
and covariance functions for domain means of ordinal 
survey items. Our methodology can also be applied to 
survey items measured on continuous scales. We introduced 
a decomposition of the model error that allows the variation 
due to sampling to be separated from that due to model fit. 
The decomposition also helps to avoid over-fitting because 
it estimates the proportion of variation in the data that can be 
modeled and thus when the current predictors suffice. 

The procedure for fitting the variance and correlation 
models is the same regardless of whether or not the data 
contain skip patterns. The analytic derivation in section 3.3 
shows that if skip patterns are present, mean differences of 
items by response status of other items are required in order 
to compute the sampling covariance estimates. However, 
we argued that these quantities are likely to have minimal 
impact on the results and that therefore a constant model 
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could be used, which was supported by our empirical 
findings. 

A quadratic variance function constrained to 0 at the 
maximum rating, and a model for transformed correlations 
involving the product but not the squares of the means, best 
predicted the direct estimates in our applied example. The 
modeled variance estimates generally had much smaller 
standard errors than the direct estimates; the same was, 
however, not true of the correlation estimates. It is 
interesting and reassuring that our quadratic variance 
function can be expressed as the widely-used relative 
variance model of Wolter (1985). 

For our ordinal data, the estimates of the domain mean 
ratings contain minimal information about the correlation 
between the ratings. Hence, the mean-covariance relation-
ship is principally an artifact of the mean-variance relation-
ship. However, for items with many response categories, the 
association between correlations and mean outcomes for 
items of the same type was stronger most notably for pairs 
of 0 – 10 items. With the exception of the 0 – 10 and possibly 
the 1 – 4 ratings, the correlations might as well be modeled 
as constants, which also makes it easier to guarantee 
positive definiteness of the predicted correlation matrix. 
However, it is important that the parameters of the 
correlation model be allowed to vary across pairs of items. 

A composite estimator that weights the direct and model-
based estimators proportional to their precisions has smaller 
variance than either estimator alone, especially when the 
components have close to equal weight. The model-based 
estimator had the greatest influence on estimates for small 
domains, for which little information is available. The 
model-based estimator had the greatest influence on 
estimates for variances, followed by correlations of items of 
the same type, and lastly correlations of items of different 
types. Both model-based and composite estimators can be 
benchmarked (ratio adjusted) to agree on the average across 
domains with direct estimates, although this proved to be 
unnecessary in our example. 

GVCFs find several applications in our continuing 
research. We are developing quasi likelihood-based 
methods for estimating covariance matrices for the domain 
means of ordinal survey items, representing the second-level 
(structural) covariance in a hierarchical model (O’Malley 
and Zaslavsky 2004). GVCF models are needed to provide 
estimates of sampling variances and covariances and to 
modify those estimates as the means are re-estimated during 
the fitting procedure. If the sampling variability of the 
GVCF estimates is minimal because the number of domains 
is large, the GVCF predicted variances and covariances can 
be treated as known. However, if the sampling error of the 
GVCF-based estimates is large a model that allows these 
errors to propagate through the analysis should be used. In 

related work, Fay and Train (1997) used a binomial model 
with a design effect for each domain in empirical Bayes 
estimation of binomial rates. Our research extends this 
approach to multivariate estimation and more general 
response formats.  

Another application of GVCFs is the computation of 
variance estimates for linear combinations of item means, 
facilitating variance estimation for composite scores, like 
those used in CAHPS reporting. The methods described in 
section 2 are applicable to variance estimation for any 
functions of totals, including functions of means, other 
ratios, or regression coefficients. 

There are several ways of extending the GVCF 
methodology. In addition to summary measures of 
outcomes, generalized variance and covariance functions 
(GVCFs) may also depend on other independent variables, 
in particular those that would better predict correlations. We 
considered variables summarizing response patterns, such as 
the proportion of respondents in a domain, but these did not 
improve the model. GVCFs could also be extended to multi-
stage sampling. 
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Spatio-Temporal Models in Small Area Estimation 

Bharat Bhushan Singh, Girja Kant Shukla and Debasis Kundu 1 

Abstract 
A spatial regression model in a general mixed effects model framework has been proposed for the small area estimation 
problem. A common autocorrelation parameter across the small areas has resulted in the improvement of the small area 
estimates. It has been found to be very useful in the cases where there is little improvement in the small area estimates due to 
the exogenous variables. A second order approximation to the mean squared error (MSE) of the empirical best linear 
unbiased predictor (EBLUP) has also been worked out. Using the Kalman filtering approach, a spatial temporal model has 
been proposed. In this case also, a second order approximation to the MSE of the EBLUP has been obtained. As a case 
study, the time series monthly per capita consumption expenditure (MPCE) data from the National Sample Survey 
Organisation (NSSO) of the Ministry of Statistics and Programme Implementation, Government of India, have been used 
for the validation of the models. 
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1. Introduction  
Local level planning requires reliable data at the appro-

priate level. The complete enumeration or large sample 
surveys with adequate sample size is expensive and time 
consuming. The censuses are usually carried out once in a 
decade, while the sample surveys are often planned to 
provide estimates at much higher level. One such large 
sample survey is socio-economic survey of National Sample 
Survey Organisation (NSSO). Here the direct survey 
estimates are available at small area (district) level as most 
of the districts are stratum in the sampling procedure 
adopted by the NSSO. However, the estimates are exceed-
ingly unreliable due to unacceptably large standard errors. 
This requires strengthening of such estimates with the use of 
information from similar small areas or with the help of 
some relatable exogenous variables, easily available and 
related to the variable under study. 

Various model based approaches have been suggested to 
improve the direct estimators. The model-based approach 
facilitates its validation through the sample data. The simple 
area specific model suggested is two stage model of Fay and 
Herriot (1979). 

,)|(Var,0)|(, 2
iiiiiiii Ey σ=θε=θεε+θ=  (1.1) 

.,,2,1,)(Var,0)(, 2 mivvEzvX viiii
T
ii K=σ==+β=θ  (1.2) 

Here iy ’s are direct survey estimators of iθ ’s, the 
characteristic under study. iθ ’s may be population small 
area means. T

ipii XXX ),,( 1 K= ’s are exogenous variables 
which are available and assumed to be closely related to 

iθ ’s and iz ’s are known positive constants. )1( ×β p  is the 
vector of regression parameters. 

The first equation (1.1) is the design model while the 
second (1.2) is the linking model. The iε ’s are sampling 
errors. Estimators iy ’s are design unbiased and the 
sampling variances 2

iσ ’s are known. Further the iε ’s and 

iv ’s are identically and independently distributed random 
variables. Normality of the random errors and random 
effects are often assumed. For this model, best linear 
unbiased predictor (BLUP) on the line of the best linear 
unbiased estimator (BLUE) has been suggested. The 
estimate is design consistent and model unbiased (Ghosh 
and Rao 1994). It is typically the weighted average of the 
direct survey estimator iy  and the regression synthetic 
estimator .βT

iX  The BLUP estimator depends on variance 
component 2

vσ  which is unknown in pratical applications. 
Various methods of estimating variance components in 
general mixed effects linear model are available (Cressie 
1992). By replacing 2

vσ  with an asymptotically consistent 
estimator ,ˆ 2

vσ  an empirical best linear unbiased predictor 
(EBLUP) has also been obtained. 

The main problem associated with the data in the Indian 
context is the non-availability of administrative or civic 
registration data at small area level. Often, it is difficult to 
find out the exogenous variables closely related (multiple 
correlation coefficient )5.02 >R  to the variable under 
study. 

In the present paper, the exploitation of spatial auto-
correlation amongst the small area units in the form of 
spatial model, has been considered for improving the small 
area estimators. Besides this, for the time series data, a 
spatial temporal model on the line of Kalman filtering has 
been utilised to further improve the estimators. Time series 
data on monthly per capital consumption expenditure 
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(MPCE) as estimated from a large sample survey carried out 
by the National Sample Survey Organisation (NSSO) has 
been studied. In the present paper, we propose suitable 
models in the framework of mixed effects linear model to 
provide better estimators of the MPCE at small area level. 

Rest of the paper has been organized as follows. In 
Section 2, we consider a Spatial Model on the line of 
general mixed effects linear model with the introduction of 
spatial autocorrelation among the small area units. The 
BLUP and EBLUP of the mixed effects have been 
presented. A second order approximation to the MSE of the 
EBLUP and to the estimator of the MSE has also been 
obtained. Section 3 deals with the time series extension of 
Spatial Model in form of Spatial Temporal Model, using the 
Kalman filtering approach. The BLUP and the EBLUP of 
the mixed effects along with a second order approximation 
to the MSE of the EBLUP and to the estimator of the MSE 
have been discussed. Section 4 presents and analyses 
estimates of the MPCE from a large sample survey carried 
out periodically in India. The conclusions of the data 
analysis are reported in Section 5. All the proofs have been 
provided in the Appendix. 

 
2. Spatial Model  

The small area characteristics usually have the spatial 
dependence in terms of neighbourhood similarities. Cressie 
(1990) used conditional spatial dependence among random 
effects, in the context of adjustment for census undercounts. 
Here, we use simultaneous spatial dependence (Cliff and 
Ord 1981) among the random effects which has certain 
advantage over conditional dependence (Ripley 1981). We 
have thus tried to explain a portion of the random error 
unaccounted for and left over by explanatory variables 
which makes it possible to improve the direct survey 
estimators. The proposed model is a three stage area specific 
model (Ghosh and Rao 1994). 

),,0(~, RNy mεε+θ=  (2.1) 

,uX +β=θ  (2.2) 

),,0(~, 2INvvuWu vm σ+ρ=  (2.3) 

where θ  is a m – component vector (corresponding to 
number of small areas) for the characteristic under study and 
y is its direct surevy estimator obtained through small 
sample data. In the above model, the first equation (2.1) 
shows the design (sampling) model, the second equation 
(2.2) shows regression model and the third one (2.3) shows 
spatial model on the residuals, the later two are linked in the 
first equation. The above model can be expressed as  

,)(, 1−ρ−=ε++β= WIZvZXy  (2.4) 

where )( pmX ×  is the design matrix of full column rank p, 
)1( ×β p  is a column vector of regression parameters and 

)( mmZ ×  represents the coefficients of random effects v. 
)( mmW ×  is a known spatial weight matrix which shows 

the amount of interaction between any pair of small areas. 
The elements of ][ ijWW ≡  with iWii ∀= 0  may depend 
on the distance between the centers of small areas or on the 
length of common boundary between them. As a simple 
alternative, it may have binary values 1=ijW  (unscaled) if 

thj area is physically contiguous to thi  area and ,0=ijW  
otherwise. The matrix has been standardised so as to satisfy 

11 =∑ = ij
m
j W  for .,,2,1 mi K=  The constant ρ  is a measure 

of the overall level of spatial autocorrelation and its 
magnitude reflects the suitability of W for given y and X. 
Further v and ε  are assumed to be independent of each 
other. R is a diagonal matrix of order m which may be 
expressed as ),,,(diag 22

2
2

mlR σσσ= K  where 2
iσ ’s are 

known sampling variances corresponding to the thi  area. 
The parameter vector T

v ],[ 2σρ=ψ  has two elements. 
In this model the strength is borrowed from the similar 

small areas through two common parameters viz. regression 
parameter β  and autocorrelation parameter .ρ  Note that the 
present model is a more general model and the model of Fay 
and Herriot (1979) can be obtained from this by taking 

.0=ρ  
By adopting the mixed effects linear model approach 

(Henderson 1975), the best linear unbiased predictor 
(BLUP) of ZvX +β=θ  and the mean squared error 
(MSE) of the BLUP may be obtained as  

),(ˆ)()()(

)](ˆ[)()(ˆ)(ˆ

1112 ψβψΣ+ψΣψσ=
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Here Σβ,ˆ  and A, all are the functions of ψ  and usually 
have been expressed as )(),(ˆ ψΣψβ  and )(ψA  respect-
ively. However, sometimes due to brevity, the suffix ψ  has 
been omitted. The first term, )(1 ψg  in the expression for 
the MSE, shows the variability of θ̂  when all the 
parameters are known and is of order ).1(O  The second 
term, ),(2 ψg  due to estimating the fixed effects ,β  is of 
order )( 1−mO  for large m. Further, with ,0=ρ  the above 
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model reduces to the standard mixed effects linear 
regression model while for ,μ=βX  we obtain a purely 
spatial scheme with only intercept term. 

In practice parameter ψ  is unknown and is estimated 
from the data. The maximum likelihood estimator (MLE) of 
the parameter, ψ  is obtained by maximizing the following 
log likelihood function of ψ  

])(ˆ[)(])(ˆ[ 
2

1

]|)([|log 
2

1
const

1 ψβ−ψΣψβ−−

ψΣ−=

− XyXy

l

T

 
(2.9)

 

with respect to the parameter .ψ  The empirical best linear 
unbiased predictor (EBLUP), )(ˆ ψθ  and the naive estimator 
of  the MSE are obtained from the equations (2.5) and (2.6) 
respectively, by replacing the parameter vector ψ  by its 
estimator .ψ̂  

),ˆ(ˆ)ˆ()ˆ()ˆ(ˆ)ˆ(ˆ 1112 ψβψΣ+ψΣψσ=ψθ −−− XRyAv  (2.10) 

).ˆ()ˆ()ˆ(and
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T
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+ψσ=ψΣ

ψ+ψ=ψθ
−  

(2.11)

 

This expression for the MSE of the EBLUP severely 
underestimates the true MSE as the variability due to the 
estimation of the parameters through the data has been 
ignored. We obtain a second order approximation to the 

 ])ˆ(ˆMSE[ ψθ  in case ψ̂  is the maximum likelihood esti-
mator (MLE) or the restricted maximum likelihood 
estimator (REMLE) of ,ψ  with the assumption of large m 
and by neglecting all the terms of the order ),( 1−mo  under 
the following regularity conditions. The approximation has 
been worked out along the lines of Prasad and Rao (1990) 
and Datta and Lahiri (2000) which are heuristic in nature.  
Regularity Conditions 1  
(a) The elements of X are uniformly bounded such that 

,])([)(1
pp

T mOXX ×
− =ψΣ  where =ψΣ )( +ψσ − )([ 12 Av  

];R   
(b) m is finite;  
(c) ,])1([)( pmOX ×=ψΛ  ,])1([)])/()([( pmd OX ×=ψ∂ψΛ∂  

mmed O ×=ψ∂ψ∂ψΛ∂ ])1([)])/()([( 2  for ;2,1, =ed   
(d) ψ̂  is the estimator of ψ  which satisfies =ψ−ψ̂  

p
p RhyxhyyymO ∈∀ψ=+ψψ=−ψ− )(ˆ)(ˆ),(ˆ)(ˆ),( 2/1  

and .y∀   
These regularity conditions are satisfied in this case. The 

special standardised form of the weight matrix W satisfies 
the condition (c) for 1|| <ρ  as it has only a finite number of 
nonzero elements and its row sum is equal to 1. It may be 
mentioned here that the matrix 112 −− Σσ Av  has finite number 

of nonzero elements and the order of ),(, WIW ρ−  
1,),( −ΣΣρ− WIW  or any sum or product combination of 

these and their derivatives mentioned in condition (c) do not 
increase. The MLE and the REMLE, in addition satisfy the 
condition (d). A second order approximation to the MSE of 
the EBLUP has been shown in Theorem A.1 of the 
Appendix as 

).()( )()(
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Here the third term )(3 ψg  comes from estimating the 
unknown parameter vector from the sample data and it is of 
the same order )( 1−mO  as that of ).(2 ψg  Further )(3 ψg  
may be expressed as 
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is the information matrix and ⊗  represents Kronecker 
product. Further )(3 ψg  may also be written as  
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It is common practice to estimate the MSE of the EBLUP 
by replacing the unknown parameters including components 
of the variance by their respective estimators. This proce-
dure can lead to severe underestimation of the true MSE 
(Prasad and Rao 1990, Singh, Stukel and Pfeffermann 
1998). We obtain the estimator of the MSE of the EBLUP 
in Theorem A.2 of the Appendix for large m neglecting all 
terms of order ).( 1−mo  As a result we have the expressions 

),()()]ˆ()ˆ()ˆ()ˆ([ 1
15431

−+ψ=ψ−ψ−ψ+ψ mogggggE  (2.15) 
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and finally the estimator of the MSE of )ˆ(ˆ ψθ  as 

).()]ˆ(ˆMSE[))]ˆ(ˆ[mse(where

),(])ˆ()ˆ()ˆ(2)ˆ()ˆ([

)]ˆ(ˆmse[

1

1
54321

−

−

+ψθ=ψθ

+ψ−ψ−ψ+ψ+ψ

=ψθ

moE
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Obviously the additional terms, )ˆ(),ˆ( 43 ψψ gg  and 
)ˆ(5 ψg  are the contributions, due to estimation of unknown 

parameter vector ψ  by .ψ̂  The expressions for )(4 ψg  and 
)(5 ψg  up to order )( 1−mo  are given by 
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Here )(ψ̂ ψb  is the bias of ψ̂  i.e., ψ−ψ)ˆ(E  up to order 
)( 1−mo  and )/())(( 1 ψ∂ψ∂g  is a partitioned matrix 

T
vg ])/())((,)))/((g[( 2

11 σ∂ψ∂ρ∂ψ∂  of order )2( mm×  
having 2 matrices of order mm ×  in a column. In the same 
way )/())(( 2 Tψ∂ψ∂ψΣ∂  is a partitioned matrix of order 

)22( mm ×  having 2 partitions, row and column wise with 
)/())(( 2

ed ψ∂ψ∂ψΣ∂  being a general sub matrix of order 
mm ×  therein. ,)(Trace 2

1 ddd BB =∑= where B is a square 
partitioned matrix with square sub matrices of similar order. 
In addition )(4 ψg  and )(5 ψg  may also be written as 
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The expression (2.17) gives the matrix of the estimator of 
the MSE of EBLUP, )ˆ(ˆ ψθ  and the MSE of the individual 
small area estimators may be obtained as the respective 
diagonal element. In case of simple model without the 
spatial autocorrelation, similar expressions can be obtained. 
In this case ),(5 ψg  however, becomes zero. 

 
3. Spatial Temporal Model  

In this section, State Space Models via Kalman filtering 
have been used to take the advantage of the time series data 
along with the common regression parameter and common 
autocorrelation parameter to strengthen the direct survey 
estimators at any point of time. This is especially 
advantageous in the case where the past survey estimates are 
more reliable. The models used in this category are the 
following 

,)(),,0(, 1
ind

~ −ρ−=εε++β= WIZRNZvXy tmttttt  (3.1) 

.othereachoftindependenareand
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Here the parameters have usual meaning as explained in 

the previous section. Weight matrix )( mmW ×  and design 
matrices )( pmX t ×  are known, )( mmZ ×  is a matrix of 
coefficients of random effects and ρ  is an unknown 
autocorrelation coefficient. tR  is a diagonal matrix of order 
m which may be expressed as ),,,(diag 22

2
2
1 mttttR σσσ= K  

where 2
itσ ’s are known sampling variances corresponding 

to the thi  small area and tht  time point. β  is unknown 
vector of fixed effects and T

v k],,[ 2σρ=ψ  is a vector of 
three unknown parameters. These parameters are 
independent of time t. It may be noted that the random 
effects tv  have been allowed to change in accordance with 
(3.2) and k is temporal autoregressive parameter. For 
stationarity .1|| <k  

The estimators of fixed and random effects and the MSE 
of these estimators are obtained in stages, starting with 
assumption of mixed effects linear model approach at time 

,1=t  and by taking ),0(~ 2
1 INv vm σ  (Sallas and Harville 

1994). In the standard form we write the model as  
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Here mI  and m0  are the unit and zero matrices of order 
m and by ],[diag mp kII  we mean the matrix  

.
0

0
⎥
⎦

⎤
⎢
⎣

⎡

××

××

mmpm

mppp

kI

I
 

In case β  is assumed fixed but dependent on time, there is 
no change in the model except that ].,0[diag mp kIT =  

The initial estimates of the effects tα  and their variances 
(based on 1=t ) are obtained as 
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The recurring Kalman filtering equations for updation of 
the estimators at subsequent stages are 
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where 1|ˆ −α tt  are the estimators of the effects tα  given the 
observations ],,,[ 121 −tyyy K  and the 1| −Σ tt  are the mean 
squared errors of .ˆ 1| −α tt  tH  are the conditional variance 
covariance matrix of ty  given ].,,,[ 121 −tyyy K  With the 
help of the above recurring filtering equations, the best 
linear unbiased predictor (BLUP) of ,ttt vZX +β=θ  and 
the mean squared error (MSE) of the BLUP may be 
obtained as  
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It may be noted that )(12 ψtg  is the spatial counterpart of 
).()( 21 ψ+ψ gg  As usual in practice, the parameter vector 

ψ  is unknown and its restricted maximum likelihood 
estimators (REMLE) can be obtained by maximizing the 
following log likelihood function, based on the sample data 
covering all time points 
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with respect to the parameter .ψ  With the help of the above, 
the estimator, ψ̂  is obtained and the EBLUP of tθ  and the 
naive estimator of the MSE of the EBLUP are given by 
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As explained earlier in section 2, the MSE of the EBLUP 
underestimates the true MSE as it does not take care of the 
variability due to replacing parameters by their estimates. A 
second order approximation to the ])ˆ(ˆMSE[ ψθt  for large 
m and neglecting all the terms of order ),( 1−mo  has been 
obtained in Theorem A.3 of the Appendix, under the 

following regularity conditions satisfied by our model. 
These conditions are analogous to the regularity conditions 
1.  
Regularity Conditions 2  
(a) The elements of TtX t ,,2,1, K=  are uniformally 
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The second order approximation to the MSE of the 
EBLUP is 
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Here )(3 ψtg  is the bias due to the estimation of the 
parameters from the sample data and is of the order )( 1−mO  
and it is given by 
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In a proper form, we may write )(3 ψtg  as 
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The expression for the information matrix involved here, 
may be given as 
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Estimator of the MSE of the EBLUP has also been obtained 
with the assumption of large m and neglecting all terms of 
order )( 1−mo  in Theorem A.4 of the Appendix as 

),(])ˆ()ˆ(

)ˆ()ˆ()ˆ([])ˆ(ˆ[mse
1

54

31312

−+ψ−ψ−

ψ+ψ+ψ=ψθ

mogg

ggg

tt

tttt  
(3.13)

 

where )(),( 431 ψψ tt gg  and )(5 ψtg  are given as 

),()]()ˆ([)()( 1
31 ψψ⊗ψψ=ψ −

ψ tt
T
tt LHILg  (3.14) 

,
)(

)(TraceCol)(
2

1

,
)(

)(
])([)(

1

31

1
ψ̂

12
ψ̂4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ψ∂

ψ∂
ψψ=

ψ∂
ψ∂⊗ψ=ψ

β−
β≤≤

−
ψ

d
d

t
m

T
t

I
IIb

g
Ibg

 

(3.15)

 

.
])()([

])([

Trace
2
1

)(

11
2

1
3

5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊗ψ
ψ∂ψ∂

∂

⊗

=ψ

−−
ψ

−

ttT
t

tt

m

t

RHI
H

HRI

g

 

(3.16)

 

 
4. Analysis of the NSSO Data  

National Sample Survey Organisation (NSSO) of the 
Ministry of Statistics and Programme Implementation (Gov-
ernment of India) conducts quinquennial large sample 
surveys (QS) on household consumption expenditure and 
employment, almost every five years in India. The surveys 
cover more than hundred thousand households spread over a 
number of villages and urban blocks. In order to fill the gaps 
in data between the successive QSs, the NSSO conducts 
annual consumer expenditure survey (CES) in almost every 
round (equivalent to six months or one year duration). The 
annual series covers only 10 – 30 thousand households 
depending on the number of villages and urban blocks 
surveyed all over the country. Each round of NSS normally 

has more than one subject of enquiry. The annual series has 
a different principal subject of enquiry. However schedule 
1.0 of the annual surveys is designed to collect data on 
household consumption expenditure among other character-
istics on employment. 

The NSSO adopts two stage stratified sampling design, 
the first stage units being census villages in the rural sector 
selected through circular systematic sampling with proba-
bility proportional to size (PPS) and the ultimate-stage units 
being the households selected circular systematically with 
independent random starts. India has been divided into 
States and the Districts are the second level administrative 
units in the States. There is not much difference between the 
annual and quinquennial surveys excepting that normally in 
annual series, a small sample of four households per first 
stage units are surveyed while in the case of quinquennial 
survey, ten to twelve households per first stage units are 
surveyed. Besides this, in NSSO surveys, we have two 
samples viz, the first one as central sample surveyed by the 
investigators of the NSSO, and the second one as state 
sample surveyed by the State authorities. Regarding the 
estimation procedure, the first stage units are selected in the 
form of two independent sub-samples. The estimate of the 
population mean and its variance based on the two sub-
samples are separately obtained. The pooled mean =iy  

2/)ˆˆ( 21 ii yy +  and 4/)ˆˆ( 2
21 iii yyR −=  for ,,,2,1 mi K=  

where ii yy 21 ˆ,ˆ  are the sub-sample means, estimate respect-
ively the population mean and its variance for a particular 
district (small area). In case of round 55, first stage units are 
selected in the form of eight independent sub-samples and 
the estimate of the population mean and its variance are 
based on these sub-samples. In view of the problems related 
to the estimates of iR ’s with 1 d.f., the iR  for each small 
area were analysed and compared over time. In case of any 
abnormal ,iR  it was smoothed out by taking the average of 

iR ’s over neighboring time points and in some cases, over 
neighboring small areas also. The survey estimates iy ’s are 
the direct estimates, and the smoothed iR ’s are the diagonal 
elements of the sampling variance covariance matrix R, in 
our model equations (2.1), (2.4) and (3.1), referred in this 
paper.  

In this paper, we have used data from central sample 
only. The estimates of monthly per capita consumption 
expenditure (MPCE) and of the standard errors(SE) of the 
estimators have been obtained under various mixed effects 
models for the rural 63 districts (small areas) of a large state 
in India, namely, Uttar Pradesh. We have used data from the 
six rounds of the NSSO viz round 50 (July 1993 – June 
1994), round 51 (July 1994 – June 1995), round 52 (July 
1995 – June 1996), round 53 (January – December 1997), 
round 54 (January – June 1998) and round 55 (July 1999 –

 June 2000). Out of these rounds 50 and 55 are based on 
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quinquennial surveys. The selected exogenous variables 
used in the models are i) number of households, ii) gross 
area sown and iii) per capita net area sown in the districts. 
The agricultural data are available on annual basis while the 
estimates of the households and the population were 
obtained  through the interpolation techniques based on the 
1971, 1981 and 1991 decennial census data. These 
exogenous variables have been selected from a host of 
variables ranging from 1991 census to annual agricultural 
data through the covariate analysis. Different weight 
matrices such as length of common boundary between a pair 
of districts, distance between centres of two districts and the 
binary weights were considered. Binary weights give larger 
estimate of spatial autocorrelation coefficient, therefore they 
(standardised by making row sum of the weight matrix as 
one) have been used for further analysis in this paper. In the 
whole exercise, maximization of log likelihood function and 
the estimation of the parameters have been carried out by 
using the Nelder and Mead simplex method on the software 
MATLAB. 

Various mixed effects models, used for finding out 
improved estimates of MPCE are given in Table 1. The 
parameters in the models have usual meaning as shown in 
sections 2 and 3. Further, in case of each model, sampling 
variance R or tR  (in case of temporal model) are assumed 
to be known.  

Table 1 
Mixed Effects Models 

 

Model – 1 Direct Estimates  
Model – 2 Regression Model ε++β= vXy  
Model – 3 Spatial Model ε++β= vZXy  
Model – 3A Spatial Model (intercept) ε++μ= vZy  
Model – 4 Regression Temporal ttttttt kvvvXy η+=ε++β= −1,  
Model – 5 Spatial Temporal ttttttt kvvZvXy η+=ε++β= −1, 

Table 2 presents the round wise estimates of the para-
meters for the simple mixed effects regression and spatial 
models. The value of the multiple correlation coefficients 

2R  between MPCE estimates and the auxiliary variables, in 
case of each round has also been shown here. The figures in 
bracket show the Standard Errors (SE) of the parameter 
estimates. Note that ),( 21 λλ=λ  is the likelihood ratio test 
(LRT) statistics defined as ,~log2 2

kL χ−  where L is the 
ratio of nested likelihoods at the hypothesised parameter 
values for two competing models under different hypotheses 
and k is the difference between the number of parameters 
under two models. Here 1λ  compares regression model and 
spatial model, under 0:0 =ρH  against 0:1 ≠ρH  and is 
distributed as 2

1χ  under ,0H  and 2λ  compares spatial 
model and spatial (intercept) model, under 0:0 =βH  
against β≠β [0:1H  does not include intercept term ]0β  
and is distributed as 2

3χ  under .0H  
On comparison of the simple regression model (Model 2) 

and spatial model (Model 3) through LRT, we find that 
under ),0(0 =ρH  the spatial autocorrelation ρ  for Model 3 
has been found highly significant for the two rounds 52 and 
55, obviously for these rounds, use of spatial model results 
in much improvement in the estimates of MPCE. On the 
other hand, in case of rounds 50 and 53, and for these only, 
the regression coefficients β  have been found nearly 
significant for the Model 3 in comparison to Model 3A 
which shows that the spatial model with intercept term may 
improve the estimates for these rounds without any help of 
the exogenous variables. 

Table 3 presents the parameter estimates and their SE in 
case of regression temporal model and spatial temporal 
model. 

For Model 4, unconstrained iterative maximisation 
process converged the value of k greater than 1, which is 
inadmissible  under the assumption  of stationarity.  For this   

Table 2 
Estimates of Parameters for Small Area Estimates of MPCE Under Regression and Spatial Models 

 

 Round 2R  Model 2 Model 3 LRT Model 3A LRT 

  2
vσ  ρ  2

vσ  1λ  ρ  2
vσ  2λ  

 Rd. 50 0.27 1,724.48 0.30 1,635.70 1.80 0.59 1,724.68 6.64 
  (356.19) (0.18) (346.45)  (0.13) (378.66)  
 Rd. 51 0.27 3,424.21 0.48 3,156.90 0.66 0.67 3,022.32 4.54 
  (820.89) (0.19) (815.24)  (0.13) (824.54)  
 Rd. 52 0.17 2,150.54 0.87 714.96 13.46 0.86 768.11 0.90 
  (540.23) (0.07) (257.15)  (0.07) (272.27)  
 Rd. 53 0.13 6,312.99  – 0.39 5,822.99 1.56 0.09 7,141.60 7.66 
  (1,397.92) (0.27) (1,374.70)  (0.23) (1,561.72)  
 Rd. 54 0.22 3,437.67 0.61 2,793.24 1.30 0.66 2,888.66 3.00 
  (806.87) (0.14) (742.35)  (0.13) (768.84)  
 Rd. 55 0.31 2,989.73 0.87 1,060.21 20.30 0.86 1,186.58 1.56 
  (712.28) (0.06) (362.40)  (0.07) (394.27)  

1λ  and 2λ  compare models 2,3 and models 3,3A respectively. 841.32
05,.1 =χ  for 1λ  and 815.72

05,.3 =χ  for .2λ  
 

 

 

 

 

 

 

 

 

 

 



190 Singh, Shukla and Kundu: Spatio-temporal Models in Small Area Estimation 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

 

case, estimates were obtained by taking 1=k  and Model 4 
was accordingly modified. Table 3 reports the results for 

1=k  in case of regression temporal model. The spatial 
temporal model shows higher value of common auto-
correlation coefficient and far lower value of the estimate of  

.2
vσ  A summary of the round  wise average estimates of 

MPCE (based on all the 63 districts), their estimated 
standard errors (SE) and the coefficient of variation (CV) 
under each model has been presented in Table 4. 

The results of Table 4 have been summarized below. 
The Direct survey estimates are less precise and all the 

models involving mixed effects improve it. The estimates 
for the rounds 50 and 55 (based on large samples) are more 
precise than the estimates based on other rounds. Spatial 
model, depending on the value of ρ  improves the estimates 
considerably. In case of rounds 52 and 55, where the 
autocorrelation have been found significant, the reduction in 
the average SE of the estimates in comparison to the model 
without spatial autocorrelation, is considerable. Model 3A 
with  spatial effect and without auxiliary variables is equally 

good. The spatial temporal model further improves the 
estimates taking into advantage of the state space consider-
ations. It may be noted that for the round 52 (very high 
spatial autocorrelation), the estimates based on temporal 
models are worse than the estimates based on models 
without temporal considerations. Perhaps due to fixed 
regression and autocorrelation parameters, the estimates 
tend towards the average of the five rounds. 

In order to judge the performances of the estimators 
under various models vis-a-vis under the most general 
model (spatial temporal model), data have been simulated 
under the spatial temporal model and true MSEs of the 
replicated estimates under each of the assumed models have 
been obtained. For this, we have conducted the simulation 
by taking the estimated parameters from the spatial temporal 
model, given in Table 2 and obtained the true replicated 
small area mean )(bθ  for thb  replication ),,2,1( Bb K=  
along with simulated observations )(by  for a large number 
of replications. On this simulated dataset, for each repli-
cation, different models including spatial temporal model  

 
Table 3 

Estimates of Parameters for Small Area Estimation of MPCE Under Regression Temporal and  
Spatial Temporal Models 

 

 ρ  2
vσ  k 

Models Estimate S.E. Estimate S.E. Estimate S.E. 
Model 4 – – 4,715.64 431.00 – – 
Model 5 0.79 0.04 2,163.50 245.50 0.53 0.07 

  
Table 4 

Average EBLUP for MPCE (Rs.), their Estimated SE and CV Under Regression, 
Spatial, Regression Temporal and Spatial Temporal Models 

 

NSSO Rounds 
Models 50 51 52 53 54 55 

 Average Small Area Estimates 
Model 1 276.10 321.26 373.07 408.52 411.25 482.00 
Model 2 272.87 312.53 354.45 397.52 400.87 471.99 
Model 3 272.98 313.14 351.51 398.21 400.78 471.09 
Model 3A 273.56 314.19 352.01 396.40 399.91 471.91 
Model 4 274.13 305.62 345.54 383.53 399.56 463.32 
Model 5 273.75 312.21 351.79 391.61 399.50 473.57 
 Average Standard Errors (SE) 
Model 1 25.09 66.06 64.18 74.19 53.87 45.45 
Model 2 17.10 33.65 29.09 39.85 32.68 30.59 
Model 3 16.88 32.84 21.51 39.98 30.87 24.84 
Model 3A 16.56 31.29 20.79 40.03 30.23 24.37 
Model 4 19.51 34.91 35.19 37.79 35.14 33.15 
Model 5 17.18 28.99 28.33 30.02 28.76 28.10 
 Average Coefficient of Variation (CV) (%) 
Model 1 9.09 20.56 17.20 18.16 13.10 9.43 
Model 2 6.27 10.79 8.21 10.01 8.15 6.48 
Model 3 6.18 10.49 6.12 10.04 7.70 5.27 
Model 3A 6.05 9.96 5.91 10.10 7.56 5.17 
Model 4 7.12 11.42 10.18 9.85 8.79 7.15 
Model 5 6.28 9.29 8.05 7.67 7.20 5.93 
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Table 5 
Percentage Relative Efficiency [RMSE] of the Temporal Models in Comparison  

to other Models for MPCE 
 

NSSO Rounds 
  50 51 52 53 54 55 

 Spatial Temporal Model [Model 5] 
Model 2 123.63 170.54 193.68 203.55 204.72 169.76 
Model 3 100.24 133.82 149.70 165.46 165.85 154.23 
Model 4 125.81 141.50 141.93 137.55 139.11 129.88 
 Regression Temporal Model [Model 4] 
Model 2 100.71 134.50 156.35 165.30 163.13 152.56 

 
 

 

have been applied and the small area mean estimators under 
each of them are obtained. While fitting the regression and 
spatial temporal models on the simulated datasets, the 
iterative maximisation process have the constrained value of 

.1<=k  Here we have taken 000,5=B  replications. The 
true MSEs of the estimators for thi  small area under a 
particular model )42( −=k  may be defined as 

.,,2,1,])()(ˆ[
1

)(MSE 2

1

mibb
B i

k
i

B

k

k
i K=θ−θ=θ ∑

=
 

The relative efficiency of the estimators under spatial 
temporal model (Model 5) against the estimators under 
models 2 – 4 have been judged by the ratio of their mean 
squared errors (RMSE) as 
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where ‘Temp’ denotes the spatial temporal model and k 
denotes models 2, 3 and 4. Likewise the relative efficiency 
of the regression temporal model (Model 4) against the 
simple regression model (Model 2) has been found by 
simulating data with the estimated parameters given in 
Table 3, under the regression temporal model. The results 
have been shown in Table 5. 

The results confirm the superiority of the spatial temporal 
model in comparison to other models for these parameters. 
The regression temporal model has also been found better 
than the simple regression model. 

 
5. Conclusions  

The Direct survey estimates based on the small sample 
can be considerably improved by using the area specific 
small area models. The spatial autocorrelation amongst the 
neighboring areas may be exploited for improving the direct 
survey estimates. However, the model must be applied after  
studying the significant correlation amongst the small areas 
by virtue of their neighborhood effects. In case of poor 
relation between the dependent and exogenous variables, the 
simple spatial model with intercept only, may equally 

improve the estimates. This model uses only the spatial 
autocorrelation to strengthen the small area estimates and do 
not require the use of exogenous variables. The spatial 
models, by using the appropriate weight matrix W, or a 
combination of W matrices, can considerably improve the 
estimates. Weight matrix should be based on logical 
considerations and it may be used effectively for the cases, 
where due to some reasons, reliable exogenous variables are 
not available. This aspect can be further exploited to find out 
the small area estimates for the areas which have been 
recently created/demarcated. 

One has to be careful about the increase in the MSE due 
to the variability caused by replacing the parameters by their 
estimates. This gets reflected through the second order 
approximation to the MSE dealt in the paper. That is why 
many times the simple spatial model (with intercept) 
performs better than the spatial model involving more 
parameters. Use of time series data with fixed regression 
parameters across the time, further improves the small area 
estimates especially for the time points where the direct 
survey estimates have larger MSE. Spatial temporal models 
have advantage over temporal models without spatial 
consideration due to the inclusion of fixed spatial auto-
correlation across the small areas. However, for some time 
points for which ρ  may be very different than the rest, this 
may not hold due to estimates tending towards the average 
of five rounds. Here the temporal consideration can be 
started from a suitable initial time point. Finally the 
exogenous variables X and the weight matrix W supplement 
each other through the regression parameter β  and the 
autocorrelation parameter ρ  and a judicious use of them 
may result in considerable improvement in the small area 
estimates. 
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Appendix  

Theorem A.1: Under Regularity Conditions 1 
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For proof of the Theorem, we use the following well known 
results (Srivastawa and Tiwari 1976). Let ),0(~ ΣNU  
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Proof of Theorem A.1  
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Now we can write the likelihood and its derivative as 
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The expectation of a typical element of the inner most terms 
in the expression (5.4) becomes 
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and by applying the results of Srivastawa and Tiwari (1976), 
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Substituting these in the expression (5.4) and also the 
second expression being of order ),( 1−mO  we can get the 
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Using the fact that )(ψΣ  and its derivatives are symmetric, 
we have the second term of the expression as 
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where )(Var)(1 ψ=ψ−
ψI  is information matrix, the 
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Using the fact that )(ψΣ  and its derivatives are symmetric, 
we have the second term of the expression as 
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Modeling and Estimation Methods for Household Size in the Presence of 
Nonignorable Nonresponse Applied to the Norwegian Consumer 

Expenditure Survey 

Liv Belsby, Jan Bjørnstad and Li-Chun Zhang 1 

Abstract 

This paper considers the problem of estimating, in the presence of considerable nonignorable nonresponse, the number of 
private households of various sizes and the total number of households in Norway. The approach is model-based with a 
population model for household size given registered family size. We account for possible nonresponse biases by modeling 
the response mechanism conditional on household size. Various models are evaluated together with a maximum likelihood 
estimator and imputation-based poststratification. Comparisons are made with pure poststratification using registered family 
size as stratifier and estimation methods used in official statistics for The Norwegian Consumer Expenditure Survey. The 
study indicates that a modeling approach, including response modeling, poststratification and imputation are important 
ingredients for a satisfactory approach. 
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1. Introduction  
This work is motivated by the considerable nonresponse 

rate in the Norwegian Consumer Expenditure Surveys 
(CES) for private households, for example 32% in the 1992 
survey. Nonresponse involves both noncontact and refusal. 
We focus on the problem of nonignorable nonresponse that 
occurs when estimating the number of households of 
various sizes and the total number of households.  

We shall consider a completely model-based approach; 
modeling and estimating the distribution of household size 
given registered family size and the response mechanism 
conditional on the household size. This model takes into 
account that the nonresponse mechanism may be nonigno-
rable, in the sense that the probability of response is allowed 
to depend on the size of the household. The response model 
is used to correct for nonresponse. Model-based approaches 
with nonresponse included, sometimes called the prediction 
approach, have been considered by, among others, Little 
(1982), Greenlees, Reece and Zieschang (1982), Baker and 
Laird (1988), Bjørnstad and Walsøe (1991), Bjørnstad and 
Skjold (1992) and Forster and Smith (1998).  

For various models of household size and response we 
consider mainly two model-based approaches, a maximum 
likelihood estimator and imputation-based poststratification 
after registered family size. These methods are compared to 
pure poststratification and the methods in current use in 
CES. 
  

The main issue here is a comparison of models and 
methods with estimation bias as the basic problem. In 
addition, standard errors of the estimates and differences of 
the estimates, conditional on the sizes of post-strata 
determined by family size, are estimated using a bootstrap 
approach. In addition to assessing the statistical uncertainty 
of the estimators, this is done to help evaluate the extent to 
which differences between the proposed estimators are 
attributable to sampling error, nonresponse bias or both. 
However, in this evaluation we keep in mind the following 
quote from Little and Rubin (1987, page 67): “It is impor-
tant to emphasize that in many applications the issue of 
nonresponse bias is often more crucial than that of variance. 
In fact, it has been argued that providing a valid estimate of 
sampling variance is worse than providing no estimate if the 
estimator has a large bias, which dominates the mean 
squared error.” 

Section 2 describes the data-structure and the sample 
design of CES, and Section 3 considers modeling issues. 
Section 3.1 presents the various models for household size 
and response to be considered for the 1992 CES, Section 3.2 
describes the maximum likelihood method for parameter 
estimation, and in Section 3.3 the models are evaluated. A 
family size group model for household size and a logistic 
link for the response probability using household size as a 
categorical variable give the best fit of the models under 
consideration. Section 3.4 gives the estimated household 
size distributions for different family sizes and estimated 
response probabilities for different household sizes. 
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Section 4 considers model-based estimation, the impu-
tation method, imputation-based estimators and the variance 
estimation method. It is shown that for the chosen model for 
household size from Section 3.3, the maximum likelihood 
estimator and the imputation-based poststratified estimator 
are identical. 

Section 5 deals with the main goal of estimating the total 
number of household of various sizes based on the 1992 
CES, using the estimators in Section 4. The model that gave 
the best fit seems to work well for our estimation problem. 
We conclude that poststratification, response modeling and 
imputation are key ingredients for a satisfactory approach.  

 
2. Norwegian Consumer Expenditure Survey  
The population totals within household-size categories 

provide a more correct number of dwellings than the totals 
within family-size categories from the Norwegian Family 
Register. Furthermore, the authorities for evaluating even-
tual policy intervention aimed at housing construction use 
the estimated number of households. Estimating household-
size totals is therefore an important issue in social planning. 
It is invariably affected by nonignorable nonresponse, no 
matter what kind of survey one uses. Hence, it is a good 
illustration for how to handle nonresponse bias. We shall 
base our estimation on the Norwegian Consumer Expen-
diture Surveys (CES), where it is important to gain infor-
mation about the composition of households, since house-
hold size influences consumption. 

The actual CES, the survey for expenditure variables, is a 
sample of private households from all private households in 
Norway. This is done by selecting a sample of persons and 
including the whole households these persons belong to. 
Persons older than 80 years old are excluded since they 
often live in institutions. For our purpose, the units of inter-
est in the survey are persons between the ages of 16 and 80 
living in private households, and the variable of interest is 
the size of the household the person belongs to, which is 
observed only in the response sample of the persons 
selected.  

The sample design is a three-stage self-weighting sample 
of persons. That is, every person in the population has the 
same inclusion probability to the total sample. The first two 
stages select geographical areas in a stratified way, while at 
the third stage persons are selected randomly from the 
chosen geographical areas. The primary sampling units 
(PSU) at stage 1 consists of the municipalities in Norway. 
Municipalities with less than 3,000 inhabitants are grouped 
together such that each PSU consists of at least 3,000 
persons. The PSUs are first grouped into 10 regions and 
within each region stratified according to size (number of 
inhabitants) and type of municipality (i.e., industrial 

structure and centrality). Totally, we have 102 strata. Towns 
of more than 30,000 inhabitants are their own strata and 
therefore selected with certainty at stage 1. For the other 
strata, one PSU is selected with probability proportional to 
size. At the second stage, the selected PSUs are divided into 
three smaller areas (secondary sampling units, SSU) and 
one of these is selected at random. Finally, at the third stage, 
for each of the selected SSU, a random sample of persons is 
selected. The sample sizes for each selected SSU are 
determined such that the resulting total sample of persons is 
self-weighting. 

Our application is based on the data from the 1992 CES. 
CES is a yearly survey and since 1992 a modified Horvitz-
Thompson estimator, including a correction for nonresponse 
by estimating response probabilities given household size, 
has been employed (see Belsby 1995). The weights equal 
the inverse of the probability of being selected multiplied 
with the conditional probability of response given selected. 
Since 1993 the probability of response is estimated with a 
logistic model with auxiliary variables being place of 
residence (rural/urban), and household size. For most of the 
nonrespondents the family size is used as a substitute for the 
household size. 

A household is defined as persons having a common 
dwelling and sharing at least one meal each day (having 
common board). For a complete description of CES we 
refer to Statistics Norway (1996). In CES, the auxiliary 
variables known for the total sample, including the 
nonrespondents, are the family size, the time of the survey 
(summer/not summer), and the place of residence (urban/ 
rural). Families are registered in Norwegian Family Reg-
ister, (NFR), and may differ from the household the persons 
in the family belong to, both by definition and because of 
changes not yet registered. Hence, the registered family size 
from NFR differs to some extent from the household size. 
Initially, based on experience from previous surveys, all the 
auxiliary variables and household size are assumed to affect 
the response rate. 

Table 1 shows the data for the 1992 CES with a total 
sample of 1,698 persons. The households with size five and 
greater are collapsed due to the low frequency in the sample 
of households. We base our modeling and estimation on two 
corresponding tables, one for the persons in rural areas and 
one for the persons in urban areas. These data are given in 
table A1 in appendix A1. 

For example, the number 48 in cell (1,2) means that of 
the 162 persons registered to live alone in the response 
sample, 48 are actually living in a two-persons household. 
This is explained mostly by young people’s tendency to 
cohabitate without being married; see Keilman and 
Brunborg (1995). 
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Table 1 
Family and household sizes for the 1992 Norwegian Consumer Expenditure Survey 

 

Household size 

Family size 
 

 
1 

 
2 

 
3 

 
4 

 
≥ 5 

 
Total 

 
Nonresponse 

 
Response rate 

1 83 48 20 9 2 162 153 0.514 
2 9 177 37 4 3 230 160 0.590 
3 10 25 131 40 6 212 91 0.700 
4 2 13 37 231 17 300 123 0.709 
≥  5 1 4 4 17 181 207 60 0.775 

Total 105 267 229 301 209 1,111 587 0.654 

 

 

3. Modeling of Household Size and Nonresponse  
We shall assume a population model for the household 

size, given auxiliary variables, i.e., we model the conditional 
probability. To take nonresponse into account in the statis-
tical analysis, we must model the response mechanism, i.e., 
the distribution of response conditional on the household 
size and auxiliary variables. The sampling mechanism for 
persons is ignorable for the survey we consider, i.e., is 
independent of the population vector of household sizes. 
The statistical analysis is therefore done conditional on the 
total sample, following the likelihood principle (see 
Bjørnstad 1996). Hence, probability considerations based on 
the sampling design is irrelevant in the statistical analysis. 
This is the so-called prediction approach. However, when 
evaluating the estimation methods with regard to statistical 
uncertainty, we do this from a common randomization per-
spective as described in Section 4.3. 

For CES, the auxiliary vector consists of the family size, 
place of residence divided into rural and urban areas, and 
time of the data collection.  
3.1 The Models  

Let us first consider a simple model for the household 
size, denoted by Y. Let x  denote all auxiliary variables. The 
household size is assumed to depend only on the family size 
x, and as such is a model with a restricted parametric link 
function, but with no additional assumptions,   

,)|()|( , ixyiii pxyYPyYP ==== ix
 

(3.1) 

where 

 . of  valuepossibleeach for  , 1 , i
y

xy xp
i

=∑  

The model (3.1) is flexible in the sense that it does not 
include any restrictions on the assumed model function of 

.ix  The drawback is the high number of parameters 
compared with a model using a logistic type model with a 
linear, in ,x  link function (the function linking =YP(  

).with) xy  If nonresponse is ignored the estimates in this 
model would simply be the observed rates.  

Household size defines ordered categories. Thus a natural 
choice for a model is the cumulative logit model, known as 
the proportional-odds model (see McCullagh and Nelder 
1991), assuming (with yθ  increasing in )y  
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However, a goodness of fit test, with x  consisting of 
family size and place of residence, indicated that this model 
fits the data badly. Thus we choose to reject it. 

It is assumed that the probability of nonresponse may 
depend on the household size. For example, one-person 
households are less likely to respond than households of 
larger size since larger households are easier to “find at 
home”. Nonresponse is indicated by the variable ,R  where 

1=iR  if person i  responds and 0 otherwise. Let sR  be the 
vector of these indicators in the total sample. From 
Bjørnstad (1996), the response mechanism (RM), i.e., the 
conditional distribution of sR  given the x – values in the 
population and the y – values in the total sample, is defined 
to be ignorable if it can be discarded in a likelihood-based 
analysis. This means that RM is ignorable if this conditional 
distribution of sR  does not depend on the unobserved 

,values−y  coinciding with the definition used by Little and 
Rubin (1987, pages 90, 218). For our case it is assumed that 
all pairs ),( ii RY  are independent. Then RM is ignorable if 

iY  and iR  are independent. Hence, nonignorable response 
mechanism is equivalent to 

).|(  fromdifferent  areboth  then and

)1,|()0,|(

iii

iiiiiiii

yYP

ryYPryYP

x

xx
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==≠==
 

Thus estimating the parameters in the model for =YP(  
)| xy  using only the response sample, ignoring that the 

probability of response depends on the household size, would 
most likely give biased estimates for the unknown para-
meters. Also the poststratification estimator would give 
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biased estimates because it assumes that the distribution of R  
only depends on the auxiliary .x  E.g., the observed lower 
response rate among one-person families indicates that the 
same may hold for one-person households. If so, the esti-
mated probability of household size 1, based on respondents 
only, would be too small. Poststratification with respect to 
family size will most likely correct only some of this bias. 

The model for the probability of response, given 
auxiliary variables and household size ,iy  is assumed to be 
logistic. It depends on the auxiliary variables ,iz  which 
includes part of ,ix  expressed by  

.
)exp(1

1
),|1(

 : ),RM1(

i
i

z
z

z

t
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ii
y

yRP

y

ψ−γ−α−+
==

 
(3.2)

 

Here, α  and γ  are scalar parameters and ψ  is a vector. 
The variable iy  has an order. Motivated by this fact, and to 
avoid introducing many parameters, iy  is used in (3.2) as 
an ordinal variable rather than a class variable. Thus the 
logit function, 

,
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is linear in .iy  To avoid the assumption of linear logit in 
,iy  we also consider a model with iy  as a categorical 

variable, i.e., 
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where the indicator variable )( iy yI  equals 1 if yyi =  and 
0 otherwise. The drawback with this model is that it 
includes three parameters more than model (3.2).  
3.2 Maximum Likelihood Parameter Estimation  

All the selected persons in the sample are from different 
households (duplicates have been removed), The population 
model then assumes that the household sizes iY  are 
statistically independent. For this variable, interviewer- or 
cluster- effect plays no role. 

Let us consider the likelihood function for estimating the 
unknown parameters, assuming that all pairs ),( ii RY  are 
independent and response model RM1 given by (3.2). To 
simplify notation we relabel the observations such that 
observations 1 to rn  are the respondents and observations 

1+rn  to n  are the nonrespondents. With response model 
RM2 the expression for the likelihood is of the same form 
with (3.3) replacing (3.2).  

For the respondents let ).|1( ix=∩== iiii RyYPL  
Then, for model (3.1)  

rxyt
i

i nip
y

L
ii
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 (3.4) 

For the nonrespondents let ).|0( iii RPL x==  Then 
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The likelihood function for the entire sample of persons 
from different households is given by  

.),,,,(
1∏ =

=ψγαβθ n

i iLL  (3.6) 

For ir Lni ,...,,1=  is according to (3.4) and for =i  

ir Lnn ,...,,1+  is given by (3.5). 
Estimates are found by maximizing the likelihood 

function (3.6). The maximization was done numerically 
using the software TSP (1991) see Hall, Cummins and 
Schnake (1991). The optimizing algorithm is a standard 
gradient method, using the analytical first and second 
derivatives. These are obtained by the program, saving us a 
substantial piece of programming. The model fitting is 
based on the chi-square statistic and on the ,values−t  
provided by TSP, where the standard errors are derived 
from the analytical second derivatives. The values−t  have 
to be interpreted with some care, since the unbiasedness of 
the estimated standard errors depends on how well the 
model is specified as well as the number of observations 
compared with the number of parameters.  
 
3.3 Evaluation of the Models for Household Size and 

Response  
We present the fit of the models with the Pearson 

goodness-of-fit statistics. The model study is based on the 
1992 CES. The parameters are considered to be significant 
when the absolute values−t  are greater than 2. However, 
we do not want a model that is too restrictive, and therefore 
some variables are kept even though their absolute  

values−t  are less than 2. 
In the response models RM1 and RM2 we use the 

variable ,z=z  place of residence. We let 0=z  if rural area 
and 1=z  if urban area. It was observed in the CES 

881986 −  and CES 1992 – 94, see Statistics Norway (1990, 
1996), that there is more nonresponse during the summer. 
Therefore, the time of the survey was also included in the 
model, that is whether or not the data were collected in the 
period May 21 – August 12. However, the time of the 
survey was found to be nonsignificant, with value−t  
clearly less than 2. Also the family size was found to be 
nonsignificant. But if the household size is omitted in the 
response model then the family size turns out to be 
significant. 
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Ideally, we want to take a look at the empirical logit 
function for response with respect to the household size. 
However, household size is unavailable for the non-
respondents. As a replacement we plot the logit-function 
against the family size; see figure 1. From family size one to 
two the two functions for rural and urban families increase 
in a fairly parallel way . However, for family size three and 
four the logit functions depart from being linear and parallel. 
Thus we suspect that coding the household size as a 
categorial variable, as in model RM2, will give better fit 
than restricting the logit functions to be parallel for rural and 
urban and linear with respect to the household size, as in 
model RM1.  

In order to test the goodness of fit of the models, we 
consider the Pearson chi-square statistic, conditional on the 
auxiliary variables ., zx  Given rural or urban type of 
residence and registered family size, there are six possible 
outcomes; household sizes 5...,,1  and nonresponse. 
Altogether there are ten multinomial trials and sixty cells. 
For family sizes (1,2) and (4,5), the extreme household sizes 
(4,5) and (1,2), respectively, are combined because the 
expected sizes under the models are too small. This reduces 
the number of cells to 52. The degrees of freedom (d.f.) is 

calculated as: number of cells – number of trials – number 
of parameters. For model (3.1) & RM1 ),,( zy  d.f. = −52  

−10 (20 + 3) = 19, and for (3.1) & RM2 ),,( zy  d.f. = 
−52 −10 (20 + 6) = 16. For model (3.1) & RM1 ),( zy  

the Pearson statistic 2χ  is 26.35 and the value−p  is 0.121. 
And for model (3.1) & RM2 ),( zy 2χ  is 21.77 and the 

−p value is 0.151.  
By studying the standardized residuals, (observed- 

expected) / ,)observedar(V̂  we find that the main reason 
for the better fit is that model (3.1) & RM2 ),( zy  does a 
better job of predicting the observed counts for the urban 
area where the response rate is lowest (see appendix A1). 
Thus the data indicates that coding the household size as a 
categorial variable, as in RM2, improves the fit compared to 
using it as an ordinal variable. The model (3.1), with the 
restricted parametric link function, combined with RM2 is 
the best of the models we have considered so far.  
3.4 Estimated Household Size Distribution and 

Response Probabilities  
Table 2 displays the estimates for the population model 

(3.1) together with the logistic response model RM2 in 
(3.3).

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1.  The logit function for the empirical response rate with respect to family size 1, ..., 5 in urban and rural areas, 
respectively. The computation is based on respondents and nonrespondents from Table 1 in Appendix A1. 

 
Table 2 

1992 CES. Parameter Estimates, in Percentages, for the Population Model with a Restricted Parametric  
Link Function, ,, xyp  Combined with the Logistic Response Model RM2 ).,( zy  In Parentheses  

are the Estimates for the Population Model, Ignoring the Response Mechanism 
 

Household size 
Family size, x 1 2 3 4 5 or more 
1 60.01 (51.23) 26.75 (29.63) 8.35 (12.35) 4.09 (5.56) 0.80 (1.23) 
2 5.27 (3.91) 79.80 (76.98) 12.48 (16.09) 1.47 (1.74) 0.98 (1.30) 
3 7.53 (4.72) 14.45 (11.79) 56.67 (61.79) 18.85 (18.87) 2.50 (2.83) 
4 1.06 (0.67) 5.31 (4.33) 11.38 (12.33) 77.20 (77.00) 5.05 (5.67) 
5 or more 0.84 (0.48) 2.60 (1.93) 1.96 (1.93) 9.05 (8.21) 85.55 (87.44) 
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Let us interpret some of the values in the household 
model. Taking the response mechanism into account has 
largest effect on the estimated household distribution for 
one-person families. The probability that a household size 
equals one, given that the family size is one, is estimated as 
60.01%. The estimate based on the traditional approach, 
ignoring the nonresponse, is 51.23%. The response model 
“adjusts” the observed rate among the respondents to a 
higher value. This seems reasonable since the rate of non-
respondents is higher for small households. The estimated 
probability of household size five or more, given family size 
of five or more is 85.55%, which differs little from the 
observed rate among the respondents, 87.44%. This 
indicates that, given family size five or more, the household 
size distribution is about the same among respondents and 
nonrespondents. 

Table 3 presents the estimated response probabilities 
based on RM2 in combination with the population model 
(3.1). Furthermore, we present estimated response proba-
bilities based on a saturated model, with perfect fit,  
presented in Section 4.2. The model, defined by (4.9), 
assumes that the response probability for persons with the 
same household size within rural/urban area, respectively, is 
identical for different family sizes. Moreover, the model for 
household size depends on place of residence and family 
size, but with no restriction on the link function. We note 
that RM2 ),( zy  satisfies (4.9b), but is more restrictive. 
Model (4.9) allows for more freedom than model (3.1) with 
RM2 ).,( zy   
 

Table 3 
Estimated Probability of Response Based on the Logistic  
Model RM2 in Combination with (3.1), and the Saturated 

Model (4.9). The Estimates are Given in Percentages 
 

Household size 
Place of residence 1 2 3 4 5 or more 
 Estimated response probabilities for 

model RM2 
Rural 47.77 60.90 79.16 73.26 81.52 
Urban 38.92 52.04 72.44 65.62 75.46 
 Estimated response probabilities for 

the saturated model 
Rural 50.79 62.37 76.90 70.57 83.07 
Urban 35.17 50.85 74.79 70.68 72.89  
The estimated response probabilities reflect the lower 

response rate among one-person households, and the lower 
response rate in urban areas. Households of size five and 
higher have the highest response rate. The models estimate, 
surprisingly maybe, that the the probability of response is 
higher for households of size three than for households of 
size four. This may be explained by the fact that women 
often choose to have two children, and that three-person-
households mostly consist of mother, father and a small 
child. Such a family will tend to stay at home and thus be 

more accessible than a typical four-persons-family with two 
older children.   

The higher estimated response rate for households of size 
three compared to size four is equivalent to the ratio 

)0|3(/)1|3( ==== RYPRYP  being greater than the ratio 
).0|4(/)1|4( ==== RYPRYP  This is consistent with 

the household distribution in table 2, where we estimate that 
),1|4()4( ==≈= RYPYP  i.e., ≈== )0|4( RYP =YP(  

)1|4 =R . On the other hand, the estimates in table 2 indicate 
that )3()1|3( =>== YPRYP  which means that =YP(  

)0|3()1|3 ==>= RYPR . 
We see that the logistic model RM2 combined with the 

population model with the restricted parametric link xyp ,  
acts as a smoother of the estimates based on the saturated 
model in (4.9), because of the added assumption of parallel 
logits of the response probabilities for urban and rural areas. 

 
4. Estimators for Household Size Totals  

In this section we present the estimators for household 
size totals and the method for variance estimation. We use a 
maximum likelihood estimator with the restricted para-
metric link function in (3.1) as population model. It is 
shown that this estimator is identical to an imputation-based 
poststratified estimator, which again turns out as a standard 
poststratification when the response mechanism is ignored. 
Furthermore, we present an imputed poststratified estimator, 
based on a saturated model for household size and response 
probability.   
4.1 Estimators Based on a Restricted Parametric 

Link Function as Population Model  
With yN  denoting the total number of persons living in 

households of size ,y  the number of households of size y  
equals ./yNH yy =  The total number of households is 
denoted by ∑= y yHHH .,   

The statistical problem is to estimate yH  for 
Jy ...,,1=  and .H  The largest size J is chosen such that 

there are few households of size greater than .J   Strictly 
speaking, JH  is the number of households of size J  or 
more, and likewise for .JN  In our application we choose 

5=J  due to the low frequency in the sample of households 
of size greater than five. We can write ,)(1∑ = == N

i iy yYIN  
where the indicator function =iYI ( 1) =y  if ,yYi =  and 0 
otherwise. Hence, with ),...,,( 1 Nxxx =  

.)|(
1

)|(
1
∑

=
==

N

i
iiy yYP

y
HE xx  

A maximum likelihood based estimator for yH  can be 
obtained by estimating ),|( xyHE  i.e., replacing 

=iYP( )| iy x  by the maximum likelihood estimator 
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).|(ˆ
ii yYP x=  The data is stratified according to family 

sizes ,...,,1 K  where the last category contains persons 
belonging to families of sizes .K≥  Using the model with 
the restricted parametric link function, defined in (3.1), Y  is 
assumed to depend only on the family size ,x  and the 
estimator takes the form 

∑ = == K

x xy xyYPM
y

H
1

)|(ˆ1ˆ  (4.1) 

where )( Kx MM  denotes the number of persons in the 
population with registered family size ).( Kx ≥  The xM ’s 
are known auxiliary information from the Norwegian 
Family Register.   

A common approach to correct for nonresponse is by 
imputation of the missing values in the sample.  Based on 
the estimated distribution for Y  for a given family size and 
place of residence for the nonrespondents, ,|(ˆ xyYP =  

),0, =rz  we assign the nonrespondents to the values 
5...,,1  in proportions given by )0,,|(ˆ == rzxyYP  for 

.5...,,1=y  Let )0(*
xyn ))1(( *

xyn  be the number of 
imputed values with family size x  and household size ,y  
for rural (urban) areas and let )0(xum ))1(( xum  be the 
number of missing observations for persons in rural (urban) 
areas with family size .x  Then 

1.0,   ,)0,,|(ˆ)()(* ===⋅= zrzxyYPzmzn xuxy  (4.2) 

and 
)1()0( ∗∗∗ += xyxyxy nnn  

is the total number of imputed values with family size x  
and household size ,y  i.e., ∗

xyn  is the estimated expected 
number of households of size ,y  given family size x  and 

.0=r  
The following general result holds, showing that with 

population model (3.1), the maximum likelihood estimator  
(4.1) is identical to an imputation-based poststratified 
estimator.   
Theorem. Assume model (3.1) for .Y  That is, =YP(  

=),| zxy xyp ,  is independent of ,z  but otherwise the 

xyp , ’s are completely unknown with the only restriction 
,1, =∑ y xyp  for all values of .x  The response mechanism 

is arbitrarily parametrized, i.e., no assumption is made about 
).,,|1( zxyYRP ==  Then the maximum likelihood 

estimates for xyp ,  
are given by, for ,...,,1 Kx =  

xux

xyxy
xy mm

nn
p

+
+

=
∗

,ˆ , 

where xyn  is the number of respondents belonging to a 
family of size x  and household size )(, Kx mmy  is the 
number of respondents belonging to families of size 

),( Kx ≥  and ).1()0( xuxuxu mmm +=   

Proof. See Appendix A2.  
The theorem implies that the estimator can be written as the 
imputation-based poststratified estimator, using family size 
as the stratifying variable , 

.
1ˆ

1post, ∑ =

∗

+
+

= K

x
xux

xyxy
x

I
y mm

nn
M

y
H  (4.3) 

Assuming ignorable response mechanism and using the 
model (3.1), the likelihood function is given by 

).|(1 iii
n
i xyYPr =∏ =  Then the maximum likelihood esti-

mate =YP (ˆ )| xy  is simply the observed rate among the 
respondents with household size ,y  given family size .x  
Thus the maximum likelihood estimator turns out to be 
identical to the standard poststratified estimator, with family 
size as the stratifying variable, 

.
1ˆ

1post, ∑ == K

x
x

xy
xy m

n
M

y
H  (4.4) 

For a general study of poststratification see, for example 
Holt and Smith (1979) and Särndal, Swensson and Wretman 
(1992, chapter 7.6). 

To illustrate the effects of nonresponse modeling and 
poststratification, we also present estimates based on the 
regular expansion estimator, given by 

r

y

ey n

n
N

y
H ⋅= 1ˆ

,  (4.5) 

and the imputation-based expansion estimator given by 

.
1ˆ

, n

nn
N

y
H

yyI
ey

∗+
⋅=  (4.6) 

Here, yn  is the number of respondents in households of 
size rny ,  is the total number of respondents, and 

=∗
yn .∑ ∗

x xyn  The estimator (4.5) does not seek to correct 
for nonresponse nor use the family population distribution 
as a post-stratifying tool to improve the estimation, while 
estimator (4.6) tries to take the response mechanism into 
account, but cannot correct for nonrepresentative samples.  
4.2 Imputation-based Poststratification with a 

Saturated Model  
We now proceed to an intuitive method of imputation 

that was used to estimate response probabilities for a 
modified Horvitz-Thompson estimator in the official 
statistics from the 1992 CES (described in Belsby 1995). 
We will use this imputation method for the poststratified 
estimator (4.3). 

The imputation method consists of distributing, within 
rural/urban area, the )( zmxu  nonresponse units over the 
household sizes 5...,,1  in such a way that, given 
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household size, the rate of nonresponse is the same for all 
family sizes. It implicitly assumes that the response 
probability for persons with the same household size within 
rural/urban area is identical for different family sizes. 
Denote the number of nonresponse persons with family size 
x  and household size y  and place of residence z  obtained 
in this manner by ).( zhxy  The corresponding number 
among the respondents is ).( znxy  The values of )( zhxy  
are determined by the equations 

1.0,  ,
)()(

)(

)()(

)(
=

+
=

+
z

znzh

zh

znzh

zh

iyiy

iy

xyxy

xy

 

(4.7) 

When ,0)( =znxy  we let .0)( =zhxy  The equation 
(4.7) is solved under the conditions  

1.0,  and5 4, 3, 2, 1,   );()( ===∑ zxzmzh
y

xuxy  (4.8) 

Solving (4.7) and (4.8) requires, for each value of ,z  one 
row ...,),(),(( 21 znzn xx ))(5 znx  of nonzeros, which 
holds for our case. The imputed values )( zhxy  determined 
by (4.7) and (4.8) correspond to the imputation method 
described by (4.2) for the following model: 

zxypzxyYP ,,  ) ,|( ==  with no restrictions (4.9a) 

,  ) ,  ,|1( , zyqzxyYRP ===  independent of .x  (4.9b) 

This can be seen as follows: 
For the ten multinomial trials determined by the different 

−),( zx values, we have 50 unknown cell probabilities 
).,|1,(, zxRyYPzyx ===π  With no restrictions on cell 

probabilities, the maximum likelihood estimates (mle) are 
given by observed relative frequencies,  

.
)()(
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ˆ , zmzm
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xy
zyx +

=π  

This also holds when .0)( =znxy  Now, it can be shown 
that there is a one-to-one correspondence between =π  

),( 10 ππ  and ,),,,( 1100 qpqp  where =π= yzyxz :( ,π  
,)5...,,1;5...,,1 =x )5...,,1;5...,,1:( , === xyp zyxzp  

and .)...,,( ,5,1 zzz qq=q  Since ,,,, yzzxyzyx qp ⋅=π  the 
mle of zyxp ,  and zyq ,  must satisfy 
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(4.10) 

and are uniquely determined by zyx,π̂ . 
Consider ),( zhxy  given by (4.5) & (4.6). Let 

∑= x xyy zhzh )()(  and .)()( ∑= x xyy znzn  From (4.7), 
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From (4.10) and (4.11) we have that the following 
intuitive estimates also are mle. 
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(also when ).0)()( == zhzn xyxy   

(We can also show (4.12) and (4.13) by maximizing the 
loglikelihood directly.) Next, we show that the imputed 
values (4.2) for the model (4.9) equal h zxy ( ) . From (4.2), 
we have ⋅=∗ )()( zmzn xuxy ).0,,|(ˆ == rzxyYP  Under 
model (4.9) and estimates (4.12) and (4.13), we find that 
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and it follows that )()( zhzn xyxy =∗ . If ,0)( =zn xy  then 
,0ˆˆ ,,, =π= zyxzxyp  and .0)( =∗ zn xy  We note that model 

(4.9) is saturated and will, from (4.10), give perfect fit. 
The imputation-based expansion estimates (4.6), with 

model (4.9), are identical to the modified Horvitz-
Thompson estimates with )]()([/)(ˆ , znznznq yyyzy

∗+=  
(from (4.12)) as the estimated response probabilities, used in 
the official statistics from the 1992 CES. This follows from 
the fact that the modified Horvitz-Thompson estimator of 

yN  is given by 
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So this modified Horvitz-Thompson estimator suffers 
from the same negative feature as the imputation-based 
expansion estimator (4.6); it cannot correct for the bias in an 
unrepresentative sample. For a general description of the 
modified Horvitz-Thompson method see, e.g., Särndal et al. 
(1992, chapter 15).  
4.3 Variance Estimation  

Variance estimation of the various estimates are obtained 
by bootstrapping. It  can be carried out under the modeling 
or quasi-randomization framework (Little and Rubin 1987). 
For instance, to estimate the variance under model (3.1) and 
RM1 (3.2), we may apply the parametric bootstrap with the 
estimated parameters (Efron and Tibshirani 1993). How-
ever, it is not clear how to compare the variances estimated 
under the alternative models. We have therefore chosen to 
estimate the variances of the different estimators under a 
common quasi-randomization framework. We assume 
simple random sampling conditional to the family size, 
which is the only assumption we make for variance 
estimation. Unconditionally we have a self-weighting, but 
not simple random, sample, and therefore this is a rather 
crude approximation to the actual conditional sampling 
design. However, for a comparative study of the estimators 
the approximation will serve this purpose well. The 
nonresponse indicator ir  is considered to be a constant 
associated with person i . We draw the bootstrap sample, 
resampling ),1,,( =iii rzy )0,( =ii rz  randomly with 
replacement, as described by Shao and Sitter (1996, Section 
5), within each post-stratum of }.;{ xxi ï =  While the sizes 
of the sample post-strata are fixed, both the number of 
nonrespondents and the number of persons from urban or 
rural areas vary from one bootstrap sample to another. We 
calculate the bootstrap estimates in the same way as based 
on the observed data. In particular, the bootstrap data are 
imputed in the same way as the original data if the estimator 
is imputation-based. Finally, the estimated variances and 
standard errors are obtained by the usual Monte Carlo 
approximation based on 500 independent bootstrap samples. 

 
5. Estimated Number of Households of Different 
       Sizes Based on the 1992 Norwegian Consumer 

        Expenditure Survey  
In this section we present the estimated number of 

households of sizes one to five and more, and the total 
number of households for the population in Norway aged 
less than eighty years old. The estimation uses the data from 
CES 1992, and is based on the estimators considered in 
Section 4. To compute the estimates we need the number of 
families of different sizes in the population, i.e., ,xM  at the 
time of the 1992 survey. The actual number at the time of 

the survey is not recorded. As an approximation we use the 
numbers at January 1, 1993. These are given in table 4.   

Table 4 
Families and Persons with Age Less than 80 Years  

in Norway at January, 1993 
 

Number of persons in family Families Persons 
1 person 793,869 793,869 
2 persons 408,440 816,880 
3 persons 261,527 784,581 
4 persons 266,504 1,066,016 
5 or more persons 127,653 670,528 
Total 1,857,993 4,131,874  

Note that the average family size for families with 5 or 
more persons is 670,528/127,653 = 5.25. We use 5.25 as an 
estimate of the average household size for households of 
size 5 or more, and divide by 5.25 instead of 5 in all esti-
mates of .5H  

 
5.1 Maximum Likelihood Estimation and 

Poststratification  
The estimated household distributions are presented in 

table 5. The estimates are based on the maximum likelihood 
(m.l.) estimator (4.1) using the population model with the 
restricted parametric link function xyp ,  in combination with 
the response models RM1 ),( zy  and RM2 ).,( zy  To 
illustrate the effect of nonresponse modeling versus post-
stratification we also present the standard poststratified 
estimator (4.4). We recall that this is the maximum likely-
hood estimator when ignoring the response mechanism. 
Furthermore, we present the estimated household size 
distribution based on the imputation-based poststratification 
(4.3) with the saturated model (4.9). For assessing the 
sampling variability of the different estimators, the esti-
mated standard errors are also included. 

The three models that take the response mechanism into 
account give higher total number of households. They also 
give considerable higher numbers of one-person-house-
holds. This seems sensible since we expect the one-person 
households to have the highest nonresponse rate. And thus, 
these estimates are most influenced by taking the response 
mechanism into account. We note that the restricted para-
metric link model (3.1) together with the logistic response 
model RM2 ),( zy  gives practically the same poststratified 
estimates as model (4.9), with also approximately the same 
standard errors. Because of the freedom of model (4.9), with 
perfect fit, it seems that model (3.1) & RM2 ),( zy  works 
well for estimating the number of households of different 
sizes. Regarding the uncertainty of the estimates, we see as 
one might expect that the standard errors typically seem to 
increase with the number of unknown parameters in the 
underlying model. Also, the total number of households is 
rather accurately estimated, not counting possible bias, 
while it’s clearly most difficult to estimate the number of 
one-person households.  
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In order to evaluate the extent to which the differences 
between the estimates are due to sampling error or non-
response bias, we consider the estimated standard errors of 
the differences of the point estimates. Some of these are 
given in table 6, using mostly the imputation-based post-
stratification with the saturated model as a reference. For 
short, we use the terms Est1 – Est4 for the estimates defined 
as they appear in table 5: 
 

Est1: M.l. estimator based on population model xyp ,  
and response model RM1 

 

Est2: M.l. estimator based on population model xyp ,  
and response model RM2 

 

Est3: Imputation-based poststratification based on the 
saturated model (4.9) 

 

Est4: Poststratified estimator without imputation.  
Based on tables 5 and 6 we can conclude that Est4 and 

Est3 have different expected values in estimating ,, 31 HH  
.and5 HH  Regarding the other comparisons, we see that 

in estimating 3H  there is a significant difference between 
Est1 and Est2/Est3, and note from earlier discussions in 
Section 3.3 that RM2 gives a better fit to the data than RM1.  

The estimates based on the expansion estimator eyH ,
ˆ , 

given by (4.5), in 100’s, are 390,500, 496,500, 283,900, 
279,900, 148,000 and 1,598,800 with estimated standard 
errors equal to 33,100, 21,700, 14,600, 11,600, 6,100 and 
23,700 for ,and...,, 51 HHH  respectively. The standard 
errors for the differences between these estimates and the 
Est3-estimates are 52,800, 30,900, 19,100, 10,800, 5,400 
and 32,000 for HHH and...,, 51  respectively. These 
expansion estimates indicate serious bias due to non-
response, especially the estimates for ,and, 51 HHH  

with poststratification correcting for some of the bias 
(probably about 50% for the estimates of ).and1 HH  We 
also note that the standard errors for the poststratified 
estimator and this simple expansion estimator are about the 
same. So by reducing the bias with poststratification one 
reduces the total error as well. 

Poststratification corrects for the bias caused by the 
discrepancy between the family size distributions in the 
response sample and the population. From table 1 and table 
4 we see that these family size distributions are given by (in 
percentages), for :5...,,1=x  

Response sample: 14.6 – 20.7 – 19.1 – 27.0 – 18.6 
Population: 19.2 – 19.8 – 19.0 – 25.8 – 16.2. 

Since the number of one-person families is much too low 
in the response sample, so will the expansion estimate of 

1H  be. With post strata determined by family size, post-
stratification corrects for the family size bias in the response 
sample, but does implicitly assume that nonrespondents and 
respondents have the same household size distribution, for a 
fixed family size. Or, in other words, the respondents are 
treated as a random subsample of sampled units with the 
same family size, as mentioned by Little (1993). This is 
most likely not the case. We recall that the family size 
variable was not significant when the household variable 
was included in the response models. Thus it seems 
reasonable to assume, as in our response models, that 
response rates will vary with the actual household sizes 
rather than the registered family sizes. Typically, estimates 
of the number of one-person households will be biased 
when the nonrespondents are ignored.  

 
Table 5 

Estimated Household Totals for Persons Aged Less than 80 Years in Norway at January 1, 1993, in Units of 100. 
In Parentheses, the Estimated Standard Error of the Estimates 

 

 Maximum likelihood estimator with nonignorable response 
mechanism 

Imputation-based 
poststratification 

Ignoring the response 
mechanism 

Household 
size, y 

Population model 
xyp ,

 
and 

response model 
RM1 ),( zy  

  

% Population model 
xyp ,

 
and  

response model 
RM2 ),( zy  

% Saturated population 
and response model 

% Poststratified 
estimator 

% 

1 558,800 
(38,900) 

32 595,400 
(48,000) 

34 596,600 
(53,500) 

34 486,000 
(35,800) 

29 

2 520,200 
(20,600) 

30 525,800 
(27,400) 

30 523,600 
(29,800) 

30 507,800 
(20,000) 

30 

3 278,900 
(13,800) 

16 249,100 
(20,300) 

14 250,000 
(19,800) 

14 286,200 
(14,100) 

17 

4 258,900 
(9,800) 

15 269,000 
(11,600) 

15 268,900 
(11,500) 

15 270,600 
(10,100) 

16 

≥ 5 125,800 
(4,700) 

7 126,000 
(5,100) 

7 126,200 
(5,000) 

7 131,300 
(4,700) 

8 

Total 1,742,600 
(25,600) 

100 1,765,300 
(29,700) 

100 1,765,300 
(31,900) 

100 1,681,900 
(23,300) 

100 
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Table 6 
Estimated Standard Errors of the Differences of the Point Estimates in Table 5 

 

Household size Est1 – Est2 Est1 – Est3 Est2 – Est3 Est4 – Est3 
1 29,700 37,000 16,600 42,400 
2 19,300 22,200 8,800 23,100 
3 15,400 15,200 5,300 15,500 
4 6,700 6,500 1,800 6,600 
≥ 5 1,700 1,700 500 1,900 
Total 15,300 18,800 8,900 23,300 

 
After having corrected for nonresponse bias by com-

pleting the sample with imputed values, the sample itself 
may be skewed compared to the population. To illustrate the 
effect of poststratification to correct for this, we shall 
compare, using the saturated model (4.9), the imputation-
based poststratified estimates Est3 with the imputation-
based expansion estimates given by (4.6): 583,900, 567,700, 
244,300, 259,300, 122,400 and 1,777,600 for ...,,1H  

,and5 HH  respectively. As noted in Section 4.2, see 
(4.14), these estimates are identical to the modified Horvitz-
Thompson estimates. The standard errors for these estimates 
are practically the same as for Est3. Hence, the alternative 
poststratified estimation methods based on nonignorable 
response models have standard errors at least no worse than 
the modified Horvitz-Thompson estimator. So if one 
reduces the bias with the alternative methods, one reduces 
the total error too. The standard errors of the differences 
between Est3 and this modified Horvitz-Thompson esti-
mator in the estimates of ...,,1H 5H Hand  are 3,500, 
2,200, 1,100, 600, 200 and 2,100 respectively. Clearly these 
two methods give significantly different estimates for all 
household size totals. In this comparison, one feature stands 
out. The expansion estimate of the number of two-persons 
households, 567,700, is clearly too high, as seen by com-
paring the family size distributions in the total sample and 
the population (in percentages), for :5...,,1=x   

Population: 19.2 – 19.8 – 19.0 – 25.8 – 16.2  
Sample: 18.6 – 23.0 – 17.8 – 24.9 – 15.7.  

The sample proportion of persons in two-persons fami-
lies is much too high, and even though we have corrected 
for nonresponse bias, the expansion estimator, and then also 
the modified Horvitz-Thompson estimator cannot correct 
for a nonrepresentative sample. This will necessarily lead to 
biased estimates of .2H  We need poststratification to 
correct for a skewed sample. One can regard the difference 
in expected values for these estimators of 2H  as being 
close to the bias for the modified Horvitz-Thompson esti-
mator, and note that an approximate 95% confidence 
interval for this difference is (39,800, 48,400). 

For robustness considerations we also present the esti-
mates from the cumulative logit model mentioned in Sec-
tion 3.1 together with RM1 ),,( zy  which we know fits the 

data poorly. They are, in 100’s: 591,800, 501,000, 265,200, 
267,300, 128,200 and 1,753,500 for ...,,1H  ,and5 HH  
respectively. Compared to table 5, this seems to indicate that 
a reasonable model for response plays a more important role 
than a good population model. It is also evident that 
nonresponse modeling makes a difference, as seen when 
compared to poststratification and simple expansion.   
5.2 Comparison with the Currently Used Estimates 

in CES, the Quality Survey for the 1990 Census 
and a Projection Study  

Since 1993, an alternative, computationally simpler, 
modified Horvitz-Thompson estimator of type (4.14) has 
been in use in the production of official statistics from CES, 
see (Belsby 1995). We recall from Section 2 that the 
weights are the inverse sampling probabilities of the 
households, multiplied with the estimated probability of 
response. The response probabilities are estimated using a 
logistic model similar to RM2 ),( zy  with place of residence 
and household size as explanatory variables. For the 
nonrespondents with unknown household size the registered 
family size is used instead, replacing (3.5). Thus, the 
weights may be regarded as an approximation to using (3.5). 
Of course, (3.5) is possible only when a population model is 
considered, which CES has not done. Table 7 presents 
estimated household distribution based on this CES-
modified Horvitz-Thompson estimator.  

The quality survey for the Census 1990, PES 1990, 
contains 8,280 respondents and uses practically the same 
household definition as CES. The response rate was 95%. 
The yH – estimates uses poststratification with respect to 
household size in the Census. However, no attempts were 
made to correct for possible nonresponse bias with respect 
to actual household size. PES deals with the whole 
population. Table 7 has the estimates for the 0 – 79 age 
group with the same poststratification method as in PES. 

Table 7 also presents estimates based on the Household 
Projections study by Keilman and Brunborg (1995). This 
study simulates household structure for the period 1990 to 
2020. The data sources are 28,384 individuals from the 
1990 Population and Housing Census and 1988 Family and 
Occupation Survey. Keilman and Brunborg project for the 
whole population in 1992. We adjust their estimates to the 
0 – 79 age group.  
 

 



208 Belsby, Bjørnstad and Zhang: Modeling and Estimation Methods for Household Size 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

 

Table 7 
Estimated Household Size Totals for Persons Less than 80 Years in Norway at January 1, 1993  

with CES-modified Horvitz-Thompson, PES 1990 and Projections, in Units of 100 
 

Household size CES-Modified 
Horvitz-Thompson 

% PES 1990 % Projections % 

1 622,900 35 626,000 35 668,300 37 
2 518,500 29 494,200 28 549,000 30 
3 259,900 15 291,500 16 211,900 12 
4 258,500 15 250,000 14 221,500 12 
≥ 5 124,600 7 115,300 6 97,500 5 
Unknown     78,500 4 
Total 1,784,400 1 1,777,000 99 1,826,700 100 

 
Table 8 

Estimated Probability of Response Based on the Method Used  
in CES Since 1993, in Percentages 

 

Household size 
Place of residence 1 2 3 4 5 or more 
 CES-method 
Rural 44.53 66.24 74.55 73.54 80.07 
Urban 36.01 57.90 67.25 66.09 73.80 
 Model xyp ,  in (3.1) combined with RM2( y, z) 

Rural 47.77 60.90 79.05 73.26 81.52 
Urban 38.92 52.04 72.44 65.62 75.46 

 

The estimates in table 7 support our impression that the 
estimates based on modeling the response mechanism leads 
to less biased estimates compared with ignoring the response 
mechanism as in mere poststratification or simple expansion. 
This is especially true for the one-person households and the 
total. The current “official estimator”, the modified Horvitz-
Thompson seems to give estimates of the right magnitude 
and in fact is closer to the results of  PES 1990 than the 
modelbased estimates. However, this is more by accident. As 
a method it has some problems even in a representative 
sample. We can study this by estimating the response prob-
abilities. Table 8 presents the results together with the esti-
mates based on RM2 ),( zy  & (3.1) from table 3. 

Compared to the estimated response probabilities based 
on model RM2 ),( zy  with (3.1), we see that replacing 
household size with family size in the nonresponse group is 
not a satisfactory approximation. Hence, if compared with 
the modified Horvitz-Thompson estimator in Section 5.1 
based on the saturated model (4.9), the latter one would be 
preferred. For this particular survey, the CES approach 
overestimates the probability of response for household of 
size 2, which in a representative sample would lead to 
underestimating of .2H  The estimated response prob-
abilities will most likely be biased when we are using family 
size in place of household size in the nonresponse group 
when estimating the parameters in the response model. This 
bias is an additional problem to the previously mentioned 
one, that the modified Horvitz-Thompson estimates will be 

similar to the imputation-based expansion estimates and 
cannot correct for nonrepresentative samples (as has been a 
problem in CES since 1993). In the 1992 CES, however, the 
sample is skewed with a too high proportion of families of 
size 2, and the 2H – estimate will be of the right 
magnitude, by accident.  

 
6. Conclusions  

We have investigated modeling and methodological 
issues for estimating the total number of households of 
different sizes in Norway, based on the Norwegian 
Consumer Expenditure Survey (CES ). The main issue is 
how to correct for bias due to nonignorable nonresponse. 
The existing estimation method in CES is a modified 
Horvitz-Thompson estimator that includes a correction for 
nonresponse by estimating response probabilities. We have 
considered basically two modelbased approaches, a 
maximum-likelihood estimator and imputation-based post-
stratification after registered family size. With a population 
model that corresponds to a group model after family size 
only, these two estimators are identical. This family group 
model for household size and a logistic link for the response 
probability using household size as a categorical variable 
seem to work well for our estimation problem. 

In analyzing the 1992 CES, we find serious bias due to 
nonresponse, especially the estimates for ,and1 HH  with 
pure poststratification (without imputation) correcting for 
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some of the bias (probably about 50% for the estimates of 
).and1 HH  Poststratification does not, however, take 

into account possible nonresponse bias dependent on 
household size. Our response models assume that the 
response rates will vary with the actual household sizes 
rather than the registered the family sizes, and it is quite 
evident that such nonresponse modeling makes a difference, 
leading to less biased estimates than mere poststratification 
or simple expansion, especially of .and1 HH  

The modified Horvitz-Thompson estimates used in the 
official statistics from CES correspond to imputation-based 
expansion estimates. Hence, they cannot correct for nonre-
presentative samples. The study in this paper shows that, in 
addition to a nonignorable response model it is also 
necessary to poststratify according to family size, i.e., using 
a population model given family size. Hence poststrat-
ification, response modeling and imputation are key ingre-
dients for a satisfactory approach.  

In any estimation problem of totals in survey sampling, 
one must be aware of the fact that a Horvitz-Thompson 
estimator cannot correct for skewed samples, even when 
modified with good response estimates. Poststratification 
should always be considered as well as imputation based on 
a response model, nonignorable when needed.  

Appendix A1  
The data for rural and urban areas separately are given in 

table A1.  
Appendix A2  

Theorem. Assume model (3.1) for Y . i.e., 

xypzxyYP ,),|( ==  is independent of ,z  but otherwise 
the xyp , ’s are completely unknown with the only restriction 
being that ∑ =y xyp ,1,  for all values of ,x  for all .k  The 
response mechanism is arbitrarily parametrized, i.e., no 

assumption is made about ).,,|1( zxyYRP ==  Then the 
maximum likelihood estimates for xyp ,  are given by 
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Table A1 

Family and Household Sizes for the 1992 Norwegian Consumer Expenditure Survey, Split into Rural  
and Urban Areas. The Upper Entry is for the Urban Group 

 

Household size 
Family size 1 2 3 4 ≥ 5 Total response Non-response Total Response rate 

1 urban 
 rural 

28 
55 

24 
24 

7 
13 

2 
7 

0 
2 

61 
101 

78 
75 

139 
176 

0.439 
0.574 

2 urban 
 rural 

6 
3 

70 
107 

12 
25 

3 
1 

0 
3 

91 
139 

84 
76 

175 
215 

0.520 
0.647 

3 urban 
 rural 

4 
6 

8 
17 

57 
74 

11 
29 

3 
3 

83 
129 

40 
51 

123 
180 

0.675 
0.717 

4 urban 
 rural 

0 
2 

3 
10 

15 
22 

80 
151 

5 
12 

103 
197 

43 
80 

146 
277 

0.705 
0.711 

≥ 5 urban 
 rural 

0 
1 

1 
3 

0 
4 

6 
11 

66 
115 

73 
134 

28 
32 

101 
166 

0.723 
0.807 

Total urban 
Total rural 

38 
67 

106 
161 

91 
138 

102 
199 

74 
135 

411 
700 

273 
314 

684 
1014 

0.601 
0.690 
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We determine xλ  by summing over :y  

,
),|0(ˆ
),|0(ˆ

)(

),|0(ˆ
)(

1

0

1

0

x
z

xu

z

xu
x

zxRP

zxRP
zm

zxRP

zm
m

λ−
=
=

−

=
=

∑

∑

=

=
 

hence 

).(
),|0(ˆ

)(1

0
xux

z

xu
x mm

zxRP

zm
+−

=
=λ ∑

=
 

It follows from (A1) that xyp ,ˆ  satisfies the following 
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The imputed values are given by , from (4.2), 
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Appendix A3  
Table A2 

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry  
is for the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM1( y, z) 

 

Household size   
Family size 1 2 3 4 ≥ 5 Total 

1 urban 
 rural 

77.8 
103.6 

44.1 
43.1 

12.9 
18.4 

3.9 
8.7 

0.3 
2.3 

139 
176 

2 urban 
 rural 

10.8 
7.5 

137.9 
168.6 

22.1 
33.9 

3.8 
1.7 

0.4 
3.3 

175 
215 

3 urban 
 rural 

7.5 
10.7 

14.3 
25.3 

81.3 
104.8 

16.4 
35.6 

3.6 
3.7 

123 
180 

4 urban 
 rural 

0.8 
3.5 

6.4 
16.7 

21.9 
35.1 

110.3 
206.9 

6.6 
14.8 

146 
277 

≥ 5 urban 
 rural 

0.5 
1.6 

2.4 
4.7 

1.0 
5.2 

9.0 
14.4 

88.2 
140.1 

101 
166 

Total /urban 
rural 

97.4 
126.9 

205.1 
258.4 

139.2 
197.4 

143.4 
267.3 

99.1 
164.2 

684 
1,014  

Table A3 
The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry  

is for the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM2 ( y, z) 
 

Household size 
Family size 1 2 3 4  ≥ 5 Total 

1 urban 
 rural 

81.6 
107.5 

42.7 
41.5 

10.4 
15.9 

4.0 
8.8 

0.3 
2.3 

139 
176 

2 urban 
 rural 

11.9 
8.6 

140.4 
170.9 

18.3 
30.3 

3.9 
1.8 

0.5 
3.4 

175 
215 

3 urban 
 rural 

9.4 
13.4 

16.1 
27.7 

75.2 
96.5 

18.6 
38.5 

3.7 
3.9 

123 
180 

4 urban 
 rural 

0.8 
3.7 

6.2 
16.2 

18.9 
29.2 

113.5 
213.1 

6.6 
14.8 

146 
277 

≥ 5 urban 
 rural 

0.5 
1.7 

2.3 
4.6 

0.6 
4.6 

9.3 
14.9 

88.3 
140.2 

101 
166 

Total /urban 
rural 

104.2 
134.9 

207.7 
260.9 

123.4 
176.5 

149.3 
277.1 

99.4 
164.6 

684 
1,014 
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Appendix A4  
Table A4 

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban.  
The Upper Entry is for the Urban Group and the Lower Entry is for the Rural Group. 

Based on Model (4.9), i.e, Imputations Determined by (4.7) and (4.8) 
  

Household size 
Family size 1 2 3 4 ≥ 5 Total 

1 urban 
 rural 

79.6 
108.3 

47.2 
38.5 

9.4 
16.9 

2.8 
9.9 

0.0 
2.4 

139 
176 

2 urban 
 rural 

17.1 
5.9 

137.7 
171.6 

16.0 
32.5 

4.2 
1.4 

0.0 
3.6 

175 
215 

3 urban 
 rural 

11.4 
11.8 

15.7 
27.3 

76.2 
96.2 

15.6 
41.1 

4.1 
3.6 

123 
180 

4 urban 
 rural 

0.0 
3.9 

5.9 
16.0 

20.0 
28.6 

113.2 
214.0 

6.9 
14.5 

146 
277 

≥ 5 urban 
 rural 

0.0 
2.0 

2.0 
4.8 

0.0 
5.2 

8.5 
15.6 

90.5 
138.4 

101 
166 

Total /urban 
rural 

108.1 
131.9 

208.5 
258.2 

121.6 
179.4 

144.3 
282.0 

101.5 
162.5 

684 
1,014 

 
 

Table A5 
The Total Numbers of Family and Household Sizes for Imputed Complete Sample. Based on Model (4.9) 

 

Household size 
Family size 1 2 3 4  ≥ 5 Total 

1 187.9 85.7 26.3 12.7 2.4 315 
2 23.0 309.2 48.6 5.7 3.6 390 
3 23.2 43.0 172.4 56.7 7.7 303 
4 3.9 21.9 48.7 327.2 21.3 423 

≥ 5 2.0 6.8 5.2 24.1 229.0 267 

Total 240.0 466.6 301.1 426.3 264.0 1,698 
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Bayesian Analysis of Nonignorable Missing Categorical Data: 
An Application to Bone Mineral Density and Family Income 

Balgobin Nandram, Lawrence H. Cox and Jai Won Choi 1 

Abstract 

We consider a problem in which an analysis is needed for categorical data from a single two-way table with partial 
classification (i.e., both item and unit nonresponses). We assume that this is the only information available. A Bayesian 
methodology permits modeling different patterns of missingness under ignorability and nonignorability assumptions. We 
construct a nonignorable nonresponse model which is obtained from the ignorable nonresponse model via a model 
expansion using a data-dependent prior; the nonignorable nonresponse model robustifies the ignorable nonresponse model. 
A multinomial-Dirichlet model, adjusted for the nonresponse, is used to estimate the cell probabilities, and a Bayes factor is 
used to test for association. We illustrate our methodology using data on bone mineral density and family income. A 
sensitivity analysis is used to assess the effects of the data-dependent prior. The ignorable and nonignorable nonresponse 
models are compared using a simulation study, and there are subtle differences between these models. 
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Key Words: Bayes factor; Chi-squared statistic; Importance function; Markov chain Monte Carlo; Multinomial-
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1. Introduction 
 

  
It is a common practice to use two-way categorical tables 

to present survey data. For many surveys there are missing 
data, and this gives rise to partial classification of the 
sampled individuals. Thus, for the two-way table there are 
both item nonresponse (one of the two categories is missing) 
and unit nonresponse (both categories are missing); see 
Little and Rubin (2002, section 1.3) for definitions of the 
three missing data mechanisms (MCAR, MAR, MNAR). 
Thus, there are four tables (one table with the complete 
cases, and three possible supplemental tables: one table with 
row classification only, one table with column classification 
only, and one table with neither row nor column classifi-
cation). One may not know how the data are missing. Thus, 
we use a model in which the likelihood function accounts 
for differences between the observed data and missing data 
(i.e., nonignorable missing data); see Rubin (1976) and 
Little and Rubin (2002) for the relation between igno-
rability/nonignorability and these three missing data 
mechanisms. Because there are well-known advantages of 
the Bayesian method over the non-Bayesian method for 
these problems, we propose a Bayesian analysis of a general 

cr ×  categorical table, consisting of a table with complete 
cases and three supplemental tables. Specifically, we 
develop a Bayesian method to estimate the cell probabilities 
and test for association between the two categorical 
variables.  

We assume that the only information available to the data 
analysts is the complete cases and the three supplemental 
tables. Specifically, we assume that there is no information 
(either from covariates or prior information) about non-
ignorability. In our Bayesian approach, the survey design 
features have been suppressed (i.e., there are no survey 
weights and there are no clustering or stratification). 
Sometimes survey data are presented to the public with 
certain features of the data suppressed for reasons of 
convenience and confidentiality. We recognize that both the 
ignorable and the nonignorable nonresponse models may be 
incorrect when they do not take account of these features. 
However, the parameters in the ignorable nonresponse 
model are identifiable and estimable, and one can take 
advantage of this fact to construct a nonignorable non-
response model which is related to the ignorable non-
response model. Also, in the ignorable nonresponse model 
we assume that there is a MAR mechanism that drives the 
nonresponse, and there may be information in the in-
complete cases (i.e., the two tables with observed row and 
column margins). Without any information about the degree 
of nonignorability, it is sensible to generalize the ignorable 
nonresponse model. This is how we attempt to accomplish 
our objectives in this paper. 

This paper has five sections. In section 1 we have further 
discussion of the problem, and we review related meth-
odology. In section 2, we describe a 33×  table of bone 
mineral density (BMD) and family income (FI) from the 
third National Health and Nutrition Examination Survey 
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(NHANES III). This is used mainly for illustration. In 
section 3, we describe the methodology to obtain estimates 
of the cell probabilities, and we use the Bayes factor to test 
for association of the two attributes. We accomplish these 
objectives by first constructing an ignorable nonresponse 
model, and we show how to expand an ignorable non-
response model into a nonignorable nonresponse model. In 
section 4, we analyze the NHANES III data to demonstrate 
our methods. Also, a simulation study gives further com-
parison of the ignorable and the nonignorable nonresponse 
models, and a sensitivity analysis shows that inference is not 
too sensitive to the choice of an important prior distribution. 
Finally, section 5 has concluding remarks.  
1.1 Discussion of the Problem  

We do not know whether an ignorable nonresponse 
model or a nonignorable nonresponse model is appropriate, 
but it is worthwhile noting that Cohen and Duffy (2002) 
point out that “Health surveys are a good example, where it 
seems plausible that propensity to respond may be related to 
health.” Thus, nonignorable nonresponse models are im-
portant candidates for the analysis of data from health 
surveys. For a general cr ×  categorical table (two categor-
ical variables, one with r  categories and the other with c  
categories) with nonresponse, our objectives are to show 
how to (a) make inference about the cell probabilities, and 
(b) test for no association between the two categories using 
the Bayes factor. While (a) comes directly from the 
modeling, (b) needs one extra step. 

Let iI  be the cell indicator for the thi  individual in a 
cr ×  table for ni ,,1 K=  individuals. Then, it is well 

known that if the iI  are independent and identically 
distributed, the Pearson’s chi-squared statistic has 

.2
)1()1( −−χ cr  Otherwise the Pearson’s chi-squared statistic 

does not have a ,2
)1()1( −−χ cr  and this is true when there are 

missing data and the respondents and nonrespondents differ. 
When this is the case, adjustments must be made to the 
Pearson’s chi-squared statistic. Within the non-Bayesian 
framework Chen and Fienberg (1974) and Wang (2001) 
have corrections for incomplete two-way tables. Although 
not directly relevant here, it is pertinent to mention that 
similar adjustments have been made for cluster sampling 
and stratified random sampling (Rao and Scott 1981, 1984). 
The works of Chen and Fienberg (1974) and Wang (2001) 
can essentially handle item nonresponse only; unit non-
response is excluded because the modeling is motivated by 
the ignorable nonresponse models (e.g., see discussion in 
Kalton and Kasprzyk 1986). 

The Bayesian method permits us to use a procedure that 
does not rely on asymptotic theory, incorporate non-
ignorable missingness into the modeling and obtain an 
alternative to Pearson’s chi-squared statistic for testing for 

no association; see Little (2003) for a discussion of the well-
known advantages of the Bayesian approach in survey 
sampling. Our alternative to the Pearson chi-squared statistic 
is based on the Bayes factor (Kass and Raftery 1995). This 
is a statistic that compares a model with association and one 
with no association via the ratio of their marginal like-
lihoods under the ignorable and the nonignorable non-
response models separately. 

Little and Rubin (2002, chapter 15) discuss the non-
ignorable nonresponse problem. For example, Rubin, Stern 
and Vehovar (1995) (also discussed in Little and Rubin 
2002, page 345) provide an interesting analysis of the 
November/December 1990 Slovenian Public Opinion 
survey in which there were data on 2,074 prospective voters 
in their plebiscite with three dichotomous variables; there is 
12% nonresponse. They fit both ignorable and nonignorable 
nonresponse models (loglinear with all interactions) to the 
data, and they were satisfied with the ignorable nonresponse 
model. However, they stated “Of course, this does not mean 
that MAR should be automatically applied in all cases. 
Analyses assuming MAR are not likely to be adequate if a 
survey has large amounts of nonresponse, if covariate 
information is limited, or for cases where the missing-data 
mechanism is clearly nonignorable (e.g., censored data).”  
1.2 Related Methodology  

Our methodology is different from Rubin, Stern and 
Vehovar (1995). We start with Nandram and Choi (2002 a, 
b) in which a parameter γ  centers (can be viewed as an 
index) the nonignorable nonresponse model on the 
ignorable nonresponse model. When ,1=γ  the non-
ignorable nonresponse model is the ignorable nonresponse 
model, and thus, the nonignorable nonresponse model 
“degenerates” into the ignorable nonresponse model when 

;1=γ  see also Forster and Smith (1998). This is useful 
because the nonignorable nonresponse model contains the 
ignorable nonresponse model as a special case; thereby 
expressing uncertainty about ignorability. Draper (1995) 
called this a continuous model expansion, and he has 
recommended the use of a continuous model expansion over 
a discrete model expansion (i.e., finite mixtures) whenever it 
is possible. We simply call the continuous model expansion 
an expansion model. Nandram and Choi (2002 a, b) obtain 
the centering by taking ),(Gamma~| νννγ  in which 

./1)|(var,1)|( vvvE =γ=γ  
Nandram and Choi (2002 a) analyze binary data on 

household crimes in the National Crime Survey, and 
Nandram and Choi (2002 b) analyze binary data on doctor 
visits in the National Health Interview Survey. While 
Nandram and Choi (2002 a) has more comparisons, 
Nandram and Choi (2002 b) has more sensitivity analyses. 
Nandram, Han and Choi (2002) describe two hierarchical 
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Bayesian models, an ignorable and a nonignorable non-
response model, for the analysis of count data from several 
areas, the counts in each area being described by a multi-
nomial distribution. In all these works the issue of associa-
tion is not relevant because there is a single categorical 
variable. 

The approach in Nandram and Choi (2002 a, b) is 
attractive, but it does not apply immediately to the current 
application on cr ×  categorical table. Specifically, only one 
centering parameter was needed in Nandram and Choi 
(2002 a, b). To extend the method of Nandram and Choi 
(2002 a, b), one needs rc  centering parameters. Each of 
these parameters has to have a distribution centered at one to 
allow degeneration to the ignorable nonresponse model. 
There are also inequality constraints that must be included 
in the nonignorable nonresponse model. Thus, while this 
idea is attractive, the methodology needed to apply the work 
of Nandram and Choi (2002 a, b) is much beyond the scope 
of our current paper. 

Nandram, Liu, Choi and Cox (2005) extend the work of 
Nandram, Han and Choi (2002) in two important directions 
to (a) consider several two-way categorical tables instead of 
one-way tables and (b) develop a method to study the 
association between the two categorical variables. Nandram, 
Liu, Choi and Cox (2005) analyze data on the relation 
between bone mineral density (BMD) and age from thirty-
five counties in the third National Health and Nutrition 
Examination Survey. In each county the data are cate-
gorized into two levels of age and three levels of BMD (i.e., 
there are thirty-five 32 ×  categorical tables). Note that the 
age of everyone is observed, but the BMD values for a large 
number of individuals are not observed. Thus, for each 
county there is a single table with complete cases, and one 
table with row totals (i.e., the ages of these individuals are 
known, but their BMD values are missing). Here, our 
objective is to extend the work of Nandram, Liu, Choi and 
Cox (2005) to a general cr ×  categorical table. This is an 
important advance because now there are three supple-
mental tables (one table with row classification only, one 
table with column classification only, and one table with 
neither row nor column classification) instead of just one 
with row totals as in Nandram, Liu, Choi and Cox (2005). 

 
2. Data on Bone Mineral Density 

      and Family Income   
We briefly describe the 33×  categorical table of bone 

mineral density (BMD) and family income (FI). FI is a 
discrete variable, and there are three levels: low, medium 
and high. While BMD is a continuous variable, the World 
Health Organization has classified BMD into three levels: 
normal, osteopenia and osteoporosis; see Looker, Orwoll, 

Johnston, Lindsay, Wahner, Dunn, Calvo and Harris (1997, 
1998). BMD is used to diagnose osteoporosis, a disease of 
elderly females, and in NHANES III it is measured for 
individuals at least twenty years old (i.e., we use the data on 
white females only with chronic conditions older than 
twenty years). 

Among those participated in the examination stage, about 
62% of the individuals have both FI and BMD observed, 
8% with only BMD observed, 29% with only income 
observed, 1% with neither income nor BMD. The dataset, 
used in our study, is presented in Table 1 as a 33×  ca-
tegorical table of BMD and FI. Our problem is to estimate 
the proportion of individuals at each BMD-FI level and to 
test for association between BMD and FI. In NHANES III 
the response rate increases up to age twenty years, and 
stabilizes after that age; race, sex and the sampling weights 
play a minor role (see Nandram and Choi 2005). Thus, for 
this application we assume that the only data available are 
the four tables of BMD and FI, and we develop a 
methodology for this situation.  

Table 1 
Classification of Bone Mineral Density (BMD) and Family Income 

(FI) for 2,998 White Females, at Least 20 years Old (20+) 
 

 FI   

BMD 0 1 2 Missing Sum 
0 621 290 284 135 1,330 
1 260 131 117 69 577 
2 93 30 18 27 168 
Missing 456 156 266 45 923 

Sum 1,430 607 685 276 2,998 
 

Note: BMD: 0(> 0.82g/cm2; normal), 1(> 0.64, ≤ 0.82g/cm2; 
osteopenia), 2(≤ 0.64g/cm2; osteoporosis); FI: 0(< 
$20,000), 1(≥ $20,000, < $45,000), 2(≥ $45,000); BMD 
is only measured for age 20+.   

It is difficult to assess an association between BMD and 
FI when there are many individuals not completely 
classified (i.e., missing data). As discussed in the literature, 
not necessarily on NHANES III, there are several poten-
tially important confounding variables such as age, 
smoking, dietary calcium intake, estrogen replacement 
therapy, physical activity, educational attainment, health 
status and alcohol consumption (see Ganry, Baudoin and 
Fardellone 2000). Farahmand, Persson, Michaelsson, Baron, 
Parker and Ljunghall (2000) stated that for postmenopausal 
women, aged 50 – 81 years, from six counties in Sweden, 
higher household income is associated with decreased hip 
fracture risk. Using complete data from NHANES III, 
Lauderdale and Rathouz (2003) studied the regression of 
bone mineral content on economic indicators (e.g., educa-
tion and poverty income ratio). An adjustment was made for 
other factors such as age, height and weight. They conclude 
that “Bone density does not reflect economic conditions as 
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strongly or consistently as physical stature.” Unfortunately, 
these works do not address the nonignorability of the 
missing data; missing data are not discussed. Also, the 
response rate to income items is usually low. 

We have looked at the data for the complete cases more 
closely. We fit a multinomial-Dirichlet model with associa-
tion and one with no association . The model with asso-
ciation is )( lMultinomia~| ppn n,  and ~p Dirichlet 

).1,,1( K  Note that by no association we mean that 
,,,1,,,1,)2()1( ckrjppp kjjk KK ===  where ∑ = =r

j jp1
)1( 1  

and .11
)2(∑ = =c

k kp  Thus, for the model with no association, 
)1(),(lMultinomia~| pppn n,  ),1,,1(Dirichlet~ K  and 

independently 1),,1,Dirichlet(~)2(
Kp  where )1(p  and 

)2(p  have r  and c  components respectively. It is easy to 
show that the marginal likelihood with association (as) is 

)!1/(!)!1()(as −+−= rcnnrcp n  and with no association 
(nas) is  
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Consider our data in Table 1 again. Under independence 
(i.e., no association) the observed chi-squared statistic is 
12.7 on 4 degrees of freedom with a p – value of 0.013 and 
the hypothesis of no association is rejected. On the 
logarithmic scale, the marginal likelihoods are =)(nas np  

2.46−  and 6.49)(as −=np  resulting in a log Bayes factor 
of 3.40 for evidence of no association relative to association. 
Therefore, while the chi-squared test provides strong 
evidence against no association, the log Bayes factor 
provides strong evidence for no association. Thus, there is a 
contradictory evidence for no association. See Mirkin 
(2001) for a review of interpretations of the chi-squared 
statistic as a measure of association or independence.  

How sensitive is the Bayes factor to the choice of the 
prior distributions? First, note that the prior density that any 
reasonable person might use in this problem is the Dirichlet 
distribution. For the model with association we have 
selected the prior distributions to be ),(Dirichlet~ γp  and 
for the model with no association )(Dirichlet~)1( αp  and 
independently ).(Dirichlet~)2( βp  Let ∑ == c

k jkj nn 1
)1(

. ,  
rj ,,1 K=  and ∑ = == r

j jkk cknn 1
)2( .,,1,. K  Then, it is 

easy to show that the Bayes factor for a test of association 
versus no association is 

,
)()(/)(

).().(/)(
BF

)2()1(

βαγ
βαγ

crrc

crrc

DDD

DDD +++= nnn
 

where (.)rD  refers to the Dirichlet function with r  com-
ponents, etc.; see section 3.1 for notations. Then, we choose 

each of the components of βα,  and γ  to be κ  (e.g., in 
)(as np  and ).1),(nas =κnp  Sensitivity to the choice of 

prior distributions can be studied in terms of .κ  Here 1=κ  
corresponds to the prior distributions that are usually used in 
the multinomial-Dirichlet model, and =κ  ,50.0  Jeffreys’ 
prior. Thus, we have chosen ,5.0,25.0=κ  ,3,2,5.1,0.1  
and the corresponding Bayes factors (log scale) are 4.7, 3.6, 
3.4, 3.9, 4.7, 6.6. Thus, while the Bayes factor is sensitive to 
the choice of the prior distributions, it is not too sensitive. Of 
course, if there is informative prior information, in which κ  
is substantially large, it is a different issue.  

The Pearson chi-squared statistic is dominated by cells 
(3, 1) and (3, 3) with squares of the Pearson residuals being 
4.61 and 6.15 respectively (the observed chi-squared 
statistic is 12.7 ). It is interesting that the Bayes factor tends 
to smooth this effect out. We have collapsed the two 
categories, osteopenia and osteoporosis, into a single 
category. For this 32 ×  categorical table, the chi-squared 
test statistic is 1.7 on 2 degrees of freedom with a p – value 
of 0.42. The marginal likelihoods are 2.28)(nas −=np  and 

0.32)(as −=np  resulting in a log Bayes factor of  – 3.81. 
Therefore, both tests suggest no association for this 32 ×  
table. Thus, based on these data it is hard to believe that 
there is an association between BMD and FI. The question 
that now arises is “Can this conclusion change if we take 
into account the incomplete data?” 

 
3. Methodology and Nonresponse Models   

First, we describe the notation. Second, we describe the 
ignorable nonresponse model. Third, we construct a non-
ignorable nonresponse model by expanding the ignorable 
nonresponse model. Fourth, we discuss the Bayes factor. 
Finally, we describe how to specify an important prior 
distribution.  
3.1 Notation  

For a cr ×  categorical table, let thif1 ll =jkI  indi-
vidual falls in the thj  row and thk  column and 0 otherwise. 
Also, let 1=lsJ  if the thl  individual falls in table :1( =ss  
complete cases; :2=s  table with row totals; :3=s  table 
with column totals; :4=s  table with individuals un-
classified), and 0=lsJ  otherwise, 4,3,2,1=s  with 

.14
1 =∑ = ss J l  The vector ),,,(, 4321 ′= lllll JJJJJ  has its 

components corresponding to the four tables. 
Let jkp  be the probability that an individual belongs to 

cell ),( kj  of the cr ×  table, and let sjkπ  be the probability 
that an individual belongs to the ths  table, given that cell 
status ).,( kj  For the ignorable nonresponse model =πsjk  

,sπ  but for a nonignorable nonresponse model sjkπ  
depends on at least one of j  and k  as well. We will also let 



Survey Methodology, December 2005 217 
 

 
Statistics Canada, Catalogue No. 12-001-XIE

p  be the vector ,,,1,,,1, ckrjp jk KK ==  and jkπ  
be a vector with components ,,,1},4,,1,{ rjssjk KK ==π  

.,,1 ck K=   
Then, we take  

},l{1,Multinomia| ~
iid

ppIl  (1) 

where .,,1,,,1,0,111 ckrjpp jkjk
c
k

r
j KK ==≥=∑∑ ==  

For the parameters p  we take  

∑∑
= =

=≥
r

j

c

k
jkjk pp

1 1

.1,0),1,1,Dirichlet(~ Kp  (2) 

Henceforth, we will use the notation that a k-dimensional 
vector, )(Dirichlet ~ tcx  to mean /}{)(

1−∏= tc
j

k
j

jxf x  
∑ = =≥ k

j jjk xxtD 1 ,1,0),(c  where ∏ = Γ= k
j jk tctD 1 /)}({)(c  

)(tΓ  is the Dirichlet function with ∑ = => k
j jj cc 1 .1,0  

Assumptions (1) and (2) are the same for both the 
ignorable and nonignorable nonresponse models, and they 
are standard when there are no missing data.  

Let the cell counts be 4,3,2,1,1 == ∑ = sJIy sjk
n

sjk lll  for 
the four cases. Here jky1  are observed and 4,3,2, =sysjk  
are missing (i.e., latent variables). For jky1  we know that 

∑∑ == =c
k jk

r
j ny1 011 ,  the number of individuals with com-

plete data; for jky2  we know that ,21 jjk
c
k uy =∑ =  where the 

row margins rju j ,,1, K=  are observed; for jky3  we 
know that ,31 kjk

r
j vy =∑ =  where the column margins 

ckvk ,,1, K=  are observed; and for jky4  we know that 
.411 wy jk

c
k

r
j =∑∑ ==  Throughout we assume that all infer-

ence is conditional on vu,,0n  and ,w  and we will 
suppress this notation whenever it is understood. Whenever 
it is convenient, we will use notations such as ≡∑ sjkkjs y,,  

,11
4

1 sjk
c
k

r
js y∑∑∑ ===  sjk

c
k

r
jssjkkjs π≡π ∏∏∏∏ === 11

4
1,,  and 

),,(),,,( 431)2(432)1( yyyyyyyy ==  etc., where 
=sy .4,3,2,1),,,1,,,1,( === sckrjysjk KK  Also, ∑ cr

kjs
,,4
,,  

.nysjk =  We will also use sjksjksjkkjs yyyy ∑∑ == ⋅⋅⋅ ,,  and 
).,,,( 4321 yyyyy =   

3.2 Ignorable Nonresponse Model   
For the ignorable nonresponse model we take  

}.l{1,Multinomia| ~
iid ππlJ  (3) 

That is, there is no dependence on the cell status of an indi-
vidual.  

Then, the augmented likelihood function for |,, (1)yp π  
wn ,,,, 01 vuy  is  
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subject to ∑ ∑= = =r
j

c
k jk ny1 1 01 ,  ∑ = ==c

k jjk rjuy1 2 ,,,1, K  
∑ = ==r

j kjk ckvy1 3 ,,,1, K  and ∑ ∑= = =r
j

c
k jk wy1 1 4 .  There 

are three interesting features in (4). First, under ignorability 
the likelihood function separates into two pieces, one that 
contains the sπ  only and the other the ,jkp  and inference 
about these two parameters are unrelated. Second, inference 
about sπ  is based only on the observed ⋅⋅sy  (i.e., the suf-
ficient statistics for 321 ,, πππ  and 4π  are essentially the 
proportions of cases in the first, second, third and fourth 
tables respectively). Third, under the ignorable nonresponse 
model, the ju  and the kv  contain information about the 

wp jk ;  does not contain any information about the .jkp  
This is easy to show; letting T denote the set ,,{( 32 yy  
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Finally, for the parameters π  we take 

∑
=

=π≥π
4

1

.1,0),1,1,Dirichlet(~
s

ssKπ  (5) 

Note that this is a uniform probability density in four-
dimensional space, and there are no hyperparameters in this 
model. Thus, for the ignorable nonresponse model, com-
bining (2) and (5), the joint prior density is 

,1,0,1,0,1),(
4

111
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jk ppg πp  (6) 

which is proper. 
Finally, combining the likelihood function in (4) with the 

joint prior density in (6) via Bayes’ theorem, the joint 
posterior density of the parameters p,π  and )1(y  is  
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A posteriori p  and π  are independent. Inference about 
π  is easy because  ,,1(Dirichlet~,| 1)1(1 K+⋅⋅yyyπ  

),14 +⋅⋅y  which is independent of .)1(y  Inference about p  
can be obtained using a simple Gibbs sampler because, 
letting kj

c
kjkjk ppq ′=′∑= 1

)1( /  and ,/ 1
)2(

kj
r
jjkjk ppq ′=′∑=  the 

conditional probabilities are 

),1,1,Dirichlet(~| 11 ++ ⋅⋅ rcyy Kyp  

,,,1),,l(Multinomia,, )1(ind

)2(2 ~ rjuu jjjj K=qyp|y  

,,,1),,l(Multinomia,, )2(ind

)3(3 ~ ckvv kkkk K=qyp|y  
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).,l(Multinomia~,,| )4(4 pypy ww  (8) 

Clearly, the parameters p  and π  are identifiable and 
estimable. Also, note that 4y  in (8) is a latent variable and 
that it does not contribute to inference about .p  Rather it 
assists in the computation by providing a simple Gibbs 
sampler. However, we note that information in ,4y  via w, is 
important under a nonignorable nonresponse model.  
3.3 Nonignorable Nonresponse Model   

For nonignorable missing data we take 

}.l{1,Multinomia
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(9)
 

Assumption (9) specifies that the probabilities an individual 
belongs to one of the four tables depend on the two 
characteristics (i.e., row and column classifications) of the 
individual. In this manner we incorporate the assumption 
that the missing data is nonignorable. This is an extension of 
the model in Nandram, Han and Choi (2002). One can also 
have jπ  or kπ  instead of ;jkπ  the methodology is similar.  

Next, we need the likelihood function. Here the 
augmented likelihood function for 1)1( |,, yyp π  is 
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Observe that in (10) the parameters jkp  and sjkπ  are not 
identifiable. Clearly, to estimate jkp  one needs to know 

,jky⋅  but only the jky1  are known. Also, to estimate sjkπ  
one needs to know .4,3,2, =sysjk  Thus, 4,3,2, =sysjk  
are also not identifiable. Putting very informative proper 
priors on the sjkπ  will help, but this is not a practical 
solution. If an ignorable model (i.e., ssjk π=π ) is used, then 
all the parameters can be identified. Therefore, a sensible 
solution is to attempt to link the jkπ  over ),( kj  using a 
common feature. If the jkπ  come from a common distri-
bution with “known” parameters, we would be able to esti-
mate them. That is, we must attempt to “borrow strength” as 
in small area estimation. This permits estimation of )1(y  
which, in turn, will facilitate estimation of the jkp  and .sjkπ  

For the jkπ  we “center” the nonignorable nonresponse 
model on the ignorable nonresponse model. Specifically, we 
assume that  

),,,,(Dirichlet,| 4321

iid
~ τμτμτμτμτμπ jk  
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s
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.,,1,,,1 ckrj KK ==  In (11) the parameter τ  tells us 
about the closeness of the nonignorable nonresponse model 
to the ignorable nonresponse model. For example, if τ  is 
small, the jkπ  will be very different, and if τ  is large, the 

jkπ  will be very similar. Thus, inference may be sensitive 
to the choice of ,τ  and one has to be careful in choosing .τ  
In the absence of any information about nonignorability, it is 
natural to choose a prior density for τ  so that the non-
ignorable nonresponse model generalizes the ignorable 
nonresponse model. This generalization is attained because 
as τ  goes to infinity, the jkπ  converge to the same value 
over ),( kj  (not component-wise), the ignorable non-
response model. The parameters μ  and τ  are not iden-
tifiable because the jkπ  are not. Thus, it is impossible to 
estimate μ  and τ  without any information; a natural way to 
proceed is to attempt to use some of the data already 
observed. 

Specifically, a priori we take μ  and τ  to be independent 
with 
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where 0α  and 0β  are to be specified; without any infor-
mation about 0α  and 0β  one needs to use the data again. 
To help specify 0α  and 0β  for the nonignorable non-
response model, we have used the ignorable nonresponse 
model. The prior on τ  adds extra variation, thereby 
permitting some degree of nonignorability (see section 3.5). 
Note again that if τ  is very large (i.e., ),00 β>>α  this non-
ignorable nonresponse model degenerates into the ignorable 
nonresponse model. Thus, an issue of how sensitive infer-
ence is to this specification arises. Of course, one can 
choose other distributions for τ  in (12) (e.g., lognormal 
distribution), but this is really not the key issue.  

Combining (2), (11) and (12), the joint prior density of 
μπ ,, p  and τ  is  
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Note again that (13) is a proper prior density. Finally, 
combining the likelihood function in (10) with the joint 
prior density in (13) via Bayes’ theorem, the joint posterior 
density of the parameters τ,,, μπ p  and the latent variables 

)1(y  is  
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In Appendix A we show how to fit the nonignorable 
nonresponse model to obtain the appropriate inference using 
the Gibbs sampler.  
3.4 Bayes Factor: Tests of Association and 
 Nonignorability  

We construct a test for the association between BMD and 
FI. This test is an assessment of the assumption that 

,,,1,,,1,21 ckrjqqp kjjk KK ===  and 111 =∑ = j
r
j q  and 

.121 =∑ = k
c
k q  We use the Bayes factor, the ratio of the 

marginal likelihoods under two scenarios (e.g., association 
versus no association). Note that we observe ,1y  but )1(y  is 
a set of latent variables. So each marginal likelihood is 
simply the probability that 1y  is the observed value of ,1Y  
which we denote by ).( 1yp  

We set 
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Then, letting )!1(!!3 −= rcnd  and ,)!1()!1(!!3 −−= crne  
the marginal likelihood for the ignorable (IG) nonresponse 
model is 
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and letting ),,,( τ=Ω μπpa  and ),,,,,( 21 τ=Ω μπqqna  
the marginal likelihood for the nonignorable (NIG) non-
response  model is 
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The summation in the set C is computationally intensive 
because there are numerous points C∈)1(y  (i.e., we need to 

sum over all of them). We avoid this problem by first 
summing over C analytically and the rest is obtained using 
Monte Carlo integration.  

For the ignorable model it is easy to show that  

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−+−+
−−

+
=

−+
−

+
=

=

∏ ∏
∏∏ ⋅⋅

n,associationo

,
!

!!

)!1()!1(
)!1()!1(

1
!!3

nassociatio

,
)!1(

)!1(
1
!!3

)(

1

11

1IG

j k jk

kkjj

y

yy

cnrn

cr

n

n
b

rcn

rc

n

n
a

p y

 

(18)

 

where n is the total number of individuals in the entire table. 
We describe how to estimate )( 1NIG yp  in Appendix B.  

However, we note that a test for ignorability or non-
ignorability is tenuous because we assume that there is no 
information about ignorability or nonignorability. Yet, our 
nonignorable nonresponse model is a generalization of our 
ignorable nonresponse model. We believe that the test about 
association under the ignorable nonresponse model or 
nonignorable nonresponse model is reliable.  

Finally, we note that the Bayes factor may be sensitive to 
prior specifications, especially when there are not enough 
data to estimate the parameters under test; see Sinharay and 
Stern (2002) for an interesting discussion on nested models. 
We have studied sensitivity of the Bayes factor with respect 
to the specification of 0α  and 0β  in (17); see section 3.5 
and Table 6. This is useful because it is an important prior in 
our nonignorable nonresponse model. However, the main 
comparison is a test for no association under the ignorable 
nonresponse model and the nonignorable nonresponse 
model separately. The parameter τ  only enters the non-
ignorable nonresponse model, and τ  has the same prior 
under association and no association.  
3.5 Specification of 0α  and 0β    

The specification of the hyperparameters 0α  and 0β in 
),(Gamma~ 00 βατ  is a key issue in our method; see (12). 

This is important because we use this technique to robustify 
the ignorable nonresponse model; a sensitivity analysis is 
performed later. Note that ;/)( 00 βα=τE  thus if >>α  0  

,0β  the nonignorable nonresponse model will be similar to 
the ignorable nonresponse model. Suppose we can observe a 
random sample )()1( ,, Mττ K  from ).,(Gamma 00 βα  Then, 
we can use a simple method (e.g., the method of moments) 
to estimate 0α  and .0β   

How can we obtain a sample to fit ?),(Gamma 00 βα  
The Gibbs sampler in (8) for the ignorable nonresponse 
model gives imputed values for the missing cell counts. We 
have imputed the missing cell counts M times, ;000,1=M  
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let jk
h
jk yn 1
)(

1 ≡  and Mhsn h
sjk ,,1,4,3,2,)( K==  denote 

the missing cell counts. Then, for each h we fit the 
nonignorable nonresponse model without the prior specifi-
cation in (12), 
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After integrating out p  and ,jkπ  we get the likelihood 
function, 
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Using the Nelder-Mead algorithm to maximize the like-
lihood function in (19) over ,4,3,2,1,0 =>α ss  at the 

thh iterate, we obtain the maximum likelihood estimators 
.,,1,ˆ )( Mhh K=α  Now letting ,ˆ )(4

1
)( h

ss
h α=τ ∑ =  we view 

Mhh ,,1,)( K=τ  as a random sample from Gamma 
).,( 00 βα   

Finally, using the method of moments, we fit 
),(Gamma 00 βα  to the “data,” ,,,1,)( Mhh K=τ  to get 

ba /2
0 =α  and =β0 ,/ba  where )(

1
1 hM

hMa τ= ∑ =
−  and 

∑ =
−−= M

hMb 1
1)1( .)( 2)( ah −τ Thus, we have constructed a 

data-dependent prior distribution for .τ  Our procedure gives 
,1250 =α  35.00 =β  (i.e., τ  has mean 357 and standard 

deviation 31.9). In section 4 we discuss sensitivity to this 
choice. 

 
4. Data and Empirical Analysis  

We apply our methodology to the data in the 33×  
categorical table in Table 1. After we present results 
associated with the observed data and a sensitivity analysis, 
we describe a simulation study to assess the difference 
between the ignorable and the nonignorable nonresponse 
models.  
4.1 Data Analysis   

See Table 2 for a comparison of the ignorable 
nonresponse model and the nonignorable nonresponse 
model. We have also included the numerical standard error 
(NSE) which is a measure of how well the numerical results 
can be reproduced; we have used the batch-means method 
to compute it. Thus, one would be comfortable with small 
NSE’s relative to the Monte Carlo estimates or the posterior 
means. For both models the NSE’s are small with relatively 

larger values for the nonignorable nonresponse model (both 
near zero any way), indicating that the computations are 
repeatable. The posterior means (PM) are very similar for 
the two models. The posterior standard deviations (PSD) are 
larger for the nonignorable model, making the 95% credible 
intervals wider. Virtually all the 95% credible intervals 
under the ignorable nonresponse model are contained by 
those of the nonignorable nonresponse model. 
 

Table 2 
Comparison of the Posterior Means (PM), Posterior Standard 

Deviations (PSD), Numerical Standard Errors (NSE), and 95% 
Credible Intervals (CI) for p from the Ignorable and Nonignorable 

Nonresponse Models 
 

Cell p̂  PM PSD NSE CI 
(a) Ignorable Model 
(1, 1) 0.337 0.330 0.005 0.001 (0.321, 0.339) 
(1, 2) 0.157 0.142 0.003 0.001 (0.136, 0.147) 
(1, 3) 0.154 0.168 0.004 0.001 (0.162, 0.175) 
(2, 1) 0.141 0.142 0.004 0.001 (0.134, 0.148) 
(2, 2) 0.071 0.066 0.002 0.001 (0.061, 0.070) 
(2, 3) 0.063 0.071 0.003 0.001 (0.066, 0.078) 
(3, 1) 0.050 0.053 0.003 0.001 (0.048, 0.059) 
(3, 2) 0.016 0.016 0.001 0.000 (0.013, 0.019) 
(3, 3) 0.010 0.012 0.002 0.000 (0.009, 0.015) 

(b) Nonignorable Model 

(1, 1) 0.337 0.321 0.020 0.009 (0.278, 0.355) 
(1, 2) 0.157 0.143 0.008 0.003 (0.126, 0.158) 
(1, 3) 0.154 0.173 0.014 0.007 (0.140, 0.196) 
(2, 1) 0.141 0.139 0.019 0.009 (0.109, 0.182) 
(2, 2) 0.071 0.069 0.007 0.003 (0.056, 0.085) 
(2, 3) 0.063 0.071 0.013 0.006 (0.053, 0.102) 
(3, 1) 0.050 0.052 0.008 0.002 (0.040, 0.070) 
(3, 2) 0.016 0.019 0.003 0.001 (0.014, 0.026) 
(3, 3) 0.010 0.013 0.003 0.001 (0.009, 0.020) 

Note: The ignorable nonresponse model has ,ssjk π=π  
.3,2,1,3,2,1,4,3,2,1 === kjs  The observed value of p 

based on the complete data is .p̂  
 

In Table 3 we have also compared the estimation of sπ  
in the ignorable nonresponse model with sjkπ  in the non-
ignorable nonresponse model. For the nonignorable non-
response model we present the range of the posterior means 
(PM) for the nine cells of each .4,3,2,1, =ss  This indi-
cates the extent of the nonignorability. The PM’s of sπ  are 
within the range of the ,sjkπ  and as expected, the PSD’s are 
larger for the nonignorable model. For example, over the 
nine cells the jk1π  vary from 0.388 to 0.656, and these two 
numbers differ significantly from 0.615, showing some 
degree of nonignorability. Thus, there is some difference 
between the ignorable and the nonignorable nonresponse 
models. 

In Table 4 we have presented the logarithms of the Bayes 
factors for testing the goodness of fit of the ignorable non-
response model and the nonignorable nonresponse model. 
There is “strong” evidence that the ignorable nonresponse 
model fits better than the nonignorable nonresponse model 
for these data (Kass and Raftery 1995). While the ignorable 
nonresponse model provides “strong” evidence for no asso-
ciation, the evidence from the nonignorable nonresponse 
model is “positive” as stated by Kass and Raftery (1995). 
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Thus, again there is a difference between the ignorable and 
the nonignorable nonresponse models. However, the NSE 
of 1.80 tends to nullify such differences. Our conclusion is 
that there is strong evidence to suggest no association 
between BMD and FI.  

Table 3 
Comparison of the Posterior Means (PM) and Posterior Standard 
Deviations (PSD) for sjkπ  from the Ignorable and Nonignorable 

Nonresponse Models 
 

 Ignorable Nonignorable 

1π  0.615 (0.009) 0.388 (0.078) – 0.656 (0.044) 

2π  0.077 (0.005) 0.057 (0.017) – 0.195 (0.068) 

3π  0.292 (0.008) 0.217 (0.041) – 0.349 (0.053) 

4π  0.015 (0.002) 0.013 (0.005) – 0.152 (0.055) 
 

Note: PSD’s are in parentheses. For the ignorable nonresponse 
model the parameters are 321 ,, πππ  and 4π  and for the 
nonignorable nonresponse model the parameters are 

,3,2,1,4,3,2,1, ==π jssjk  .3,2,1=k  Among the 
nine cells for each s we selected the smallest PM and the 
largest PM to form the range.   

Table 4 
Marginal Likelihoods and Bayes Factors for Testing Association 
Between BMD and FI Under the Ignorable and the Nonignorable 

Nonresponse Models 
 

 Association No association Difference 

Ignorable – 49.571 – 46.173 – 3.398 

Nonignorable – 53.129 – 50.132 – 2.996 
NSE 1.800 1.790  
Note:  All entries (marginal likelihoods and their differences) are on 

the logarithmic scale. The Monte Carlo integration uses 
50,000 iteractions. The NSEs, numerical standard errors, are 
small relative to the marginal likelihoods.  

We have considered the relation between BMD and FI 
when the osteopenia and osteoporosis levels are collapsed 
into one level. Under the ignorable nonresponse model the 
log Bayes factor is – 2.77 (log marginal likelihoods: – 32.82 
and – 29.05), and under the nonignorable nonresponse 
model the log Bayes factor is – 4.52 (log marginal 
likelihoods:  –34.25 and – 4.52). Thus, the same conclusion 
is reached about no association between BMD and FI. 

We have also separated out the data into two age groups: 
premenopausal (age at most 49 years old; young) and 
postmenopausal (age at least 50 years old; old). For the 
young group there were only 4 females with osteoporosis, 
and so we collapsed the females with osteopenia and 
osteoporosis. We fit both the ignorable and nonignorable 
nonresponse models to these data and got similar results. 
For the old group using the ignorable nonresponse model 
the log marginal likelihoods corresponding to no association 
and association are – 43.01 and – 38.91 giving a log Bayes 
factor of 4.10 for no association. Thus, there is strong 
evidence for no association between BMD and FI. For the 
young group using the ignorable nonresponse model the log 
marginal likelihoods corresponding to no association and 
association are – 29.93 and – 28.80 giving a log Bayes 
factor of 1.13 for no association. Thus, there is positive 
evidence for no association between BMD and FI for both 
age groups. Therefore, age is unlikely to play a role in the 
association of BMD and FI.  
4.2 Sensitivity Analysis   

We have studied the sensitivity of inference about the 

jkp  with respect to the prior distribution of .τ  That is, we 
have taken ),,Gamma(~ 00 βακτ where κ  is a sensitivity 
parameter that we have taken to be 1 in our analysis (note 
that )./)( 00 βακ=τE  

Our procedure for the specification of 0α  and 0β  gives 
values of 1250 =α  and ;35.00 =β  see section 3.5. Making 
κ  bigger than 1 induces less changes in the posterior mean 
(PM) and posterior standard deviation (PSD) of the jkp  
than for κ  smaller than 1 because larger values of κ  
induces much smaller changes in the prior distribution of .τ   
In Table 5 we present PM’s and PSD’s of the jkp  for 

.00.4,00.2,00.1,50.0,25.0=κ  The PM’s increase with κ  
and the PSD’s decrease as κ  increases from 0.25 to 4.00. 
Thus, there is some sensitivity to the specification of 0α  
and ,0β  but the changes are small. For example, the PM’s 
of 11p  are 0.31, 0.32, 0.33 at 00.4,00.1,25.0=κ  and the 
PSD’s at these values of κ are 0.04, 0.02, 0.01.  

 

Table 5 
Sensitivity of the Posterior Means (PM) and Posterior Standard Deviations (PSD) of the jkp  to Choices of κ  

in the Nonignorable Nonresponse Model 
 

κ       0.25        0.50         1.00        2.00        4.00 
Cell PM PSD PM PSD PM PSD PM PSD PM PSD 
(1, 1) 306.93 36.09 315.01 25.81 321.81 19.95 325.37 14.55 326.16 10.46
(1, 2) 141.12 15.52 139.86 11.91 142.66 8.44 142.63 6.68 143.42 5.01
(1, 3) 161.68 25.80 167.83 18.77 173.40 13.77 176.20 8.44 175.78 6.71
(2, 1) 143.18 34.20 142.62 24.92 138.57 18.82 137.23 13.59 137.26 9.70
(2, 2) 68.46 13.12 71.06 10.09 68.44 7.48 68.79 5.72 68.11 4.45
(2, 3) 79.78 22.83 75.97 17.86 71.11 12.56 68.09 7.84 68.34 6.38
(3, 1) 59.97 21.60 53.50 12.12 52.14 7.76 50.97 5.29 51.41 4.35
(3, 2) 21.43 7.76 20.02 4.89 18.96 23.28 18.67 2.78 17.84 2.23
(3, 3) 17.45 10.38 14.12 4.28 12.93 2.99 12.05 2.34 11.69 1.99

 

 

Note: All entries must be multiplied by .10 3−  In the nonignorable nonresponse model ),β,α(κ Gammaπ 00
iid
~sjk  

where κ is the sensitivity parameter and 125α0 =  and .35.0β0 =   
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We have also studied the sensitivity of the Bayes factors 
to choices of κ  (see Table 6). First, the NSE’s decrease 
with ,κ  but the change is small. Note that we have used 
50,000 iterations in the Monte Carlo integration; this sample 
size is needed for the Monte Carlo estimates to stabilize. 
The log marginal likelihoods do not change too much with 

.κ   Because the log Bayes factors are small, some changes 
are reflected in inference: At 00.4,50.0,25.0=κ  there is 
“strong” evidence for no association, but at 00.2,00.1=κ  
there is “positive” (borderline) evidence for no association. 
Overall, there is some degree of evidence for no association. 
Thus, it is interesting that one does not need to worry too 
much about the choice for ).,( 00 βα   

Table 6 
Sensitivity of the Marginal Likelihoods and the Bayes Factor to 

Choices of κ in the Nonignorable Nonresponse Model 
 

Association No Association Bayes Factor 
κ ML NSE ML NSE  

0.25 – 53.37 1.90 – 49.16 1.89 – 4.21 
0.50 – 52.58 1.83 – 49.49 1.82 – 3.08 
1.00 – 52.58 1.80 – 49.76 1.79 – 2.82 
2.00 – 52.81 1.79 – 49.83 1.78 – 2.98 
4.00 – 52.95 1.78 – 49.91 1.77 – 3.04 

Note: All entries  are  on the logarithm scale. In the nonignorable non-

response model sjkπ ~
iid

),β,α(κ Gamma 00  where κ  is the 

sensitivity parameter and 125α0 =  and .35.0β0 =   
4.3 Simulation Study   

We have performed a simulation study to further 
compare the ignorable and nonignorable nonresponse 
models. Our objective is to confirm differences that exist 
between the two models. In our situation a test based on the 
Bayes factor can confirm one or the other. With limited 
information about nonignorability (our current situation), it 
is sensible to fit an ignorable nonresponse model because all 
the parameters are identifiable in the ignorable nonresponse 

model. Thus, we proceed by comparing the ignorable and 
nonignorable nonresponse models when data are generated 
from (a) the ignorable nonresponse model and (b) the 
nonignorable nonresponse model. This is a typical Bayesian 
analysis. 

We obtained the posterior means of the jkp  and the 
,sjkπ  denoted by jkp~  and sjkπ~  respectively, after the non-

ignorable nonresponse model is fit to the observed data. For 
the ignorable model we took ∑ ∑= = π=π r

j sjk
c
ks 1 1 /~~  

.4,3,2,1, =src We obtained the cell counts for the 
ignorable model by drawing from  

)}~~,,~~(,l{Multinomia~

~,~|),,,,,,(

4111

44111111

rc

rcrc

ppn

yyyy

ππ K

KKK pπ
 

and for the nonignorable model by drawing from   
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where ,998,2=n  the total number of individuals in the 
original data set (see Table 1). We have generated 1,000 
datasets from each of the ignorable and nonignorable non-
response models. Then, we fit the ignorable and non-
ignorable nonresponse models to each dataset in exactly the 
same manner for the observed data in Table 1, and we 
computed the posterior means (PM) and the posterior 
standard deviations (PSD) for the .jkp  In Table 7 we 
present the averages of the PM’s and PSD’s over the 1,000 
datasets. The second column (labeled p̂ ) has the posterior 
mean of jkp  for the observed data under the nonignorable 
nonresponse model (see Table 2b). 

For (a) in Table 7 the PM’s are very close to the jkp̂  for 
the ignorable nonresponse model, but not so close when the 
nonignorable nonresponse model is fit. It is noticeable that  

 
Table 7 

Comparison of the Ignorable and Nonignorable Nonresponse Models Via the Simulated Data and the Posterior Means (PM)  
and Posterior Standard Deviations (PSD) of the jkp  

 

 Simulated Ignorable (a) Nonignorable (b) 
 Fitted Ignorable Nonignorable Ignorable Nonignorable 

Cell p̂  PM PSD PM PSD PM PSD PM PSD 

(1, 1) 321.81 320.73 5.72 307.42 11.30 332.02 5.10 324.44 10.60 
(1, 2) 142.66 142.96 4.24 146.44 7.34 141.81 3.30 143.44 5.43 
(1, 3) 173.40 172.59 4.42 173.49 7.62 168.66 4.14 174.10 7.04 
(2, 1) 138.57 138.82 4.81 135.32 9.82 143.63 4.52 139.20 9.74 
(2, 2) 68.44 68.44 3.55 72.01 6.02 64.51 2.91 68.20 4.76 
(2, 3) 71.11 71.41 3.65 75.00 6.30 70.85 3.76 69.63 6.58 
(3, 1) 52.14 52.17 3.11 53.03 4.95 53.08 3.04 52.44 4.70 
(3, 2) 18.96 19.35 2.08 21.65 2.98 15.08 1.72 17.32 2.48 
(3, 3) 12.93 13.54 1.78 15.64 2.55 10.95 1.85 11.20 2.18 

 

Note: Data are simulated from the ignorable nonresponse model in (a) or the nonignorable nonresponse model in (b), and both 
the ignorable and nonignorable nonresponse models are fit. We have generated 1,000 datasets, and we fit both the 
ignorable and nonignorable nonresponse models to each simulated dataset. The PM’s and PSD’s are averages over the 
1,000 datasets and p̂  is the posterior mean for the observed data which we used to generate the data sets. All entries must 
be multiplied by .10 3−   
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the PSD’s under the nonignorable nonresponse model are 
about twice as large as those under the ignorable non-
response model. For (b) in Table 7 the PM’s for the non-
ignorable nonresponse model are closer to the jkp̂  than 
those from the ignorable nonresponse model. However, in 
both cases the PSD’s for the nonignorable nonresponse 
model are about twice those from the ignorable nonresponse 
model. For example, in Table 7 for the (1, 1) cell as 
compared with 0.322 for ,p̂  in (a) the ignorable (non-
ignorable) model gives a PM of 0.321 (0.307), but in (b) the 
ignorable (nonignorable) model gives a PM of 0.332 (0.324) 
for other examples. Thus, the two models are indeed 
different for estimating  p. 

We have also considered estimating the proportion P of 
simulated datasets in which the ignorable nonresponse 
model performs better than the nonignorable nonresponse 
model. It is expensive to compute the marginal likelihood 
under the nonignorable nonresponse model. We note again 
that it takes 50,000 iterations for the Monte Carlo estimate 
to stabilize; this is an enormous task for the simulation study 
because we need to calculate the marginal likelihoods for 
1,000 datasets. Thus, we use a simple procedure to compare 
the two models, and we expect that this procedure would 
give a conclusion similar to a power calculation. 

Specifically, we compute ∑∑ ===Δ c
k

r
j

h n 11
)(  −jkp̂(  

,/) )(2)( h
jk

h
jk PMPM  where )(h

jkPM  is the posterior mean of 

jkp  corresponding to the thh  dataset. We denote )(hΔ  by 
)(

IG
hΔ  for the ignorable nonresponse model and )(

NIG
hΔ  for the 

nonignorable nonresponse model. An estimator of ,ˆ, PP  is 
obtained by counting the number of the 1,000 experiments 
in which .)(

NIG
)(

IG
hh Δ>Δ  For the data generated from the 

ignorable nonresponse model, P̂  is 0.236 with a standard 
error of 0.013. For the data generated from the nonignorable 
nonresponse model, P̂  is 0.920 with a standard error of 
0.009. Thus, if the ignorable nonresponse model is expected 
to hold, about 24% of the time the nonignorable non-
response model will beat it, and if the nonignorable 
nonresponse model is expected to hold, only about (1 – 

0.920)100% ≈ 8% of the time the ignorable nonresponse 
model will beat it. Thus, there are latent differences between 
these two models. The nonignorable nonresponse model 
does capture some degree of nonignorability, and it 
robustifies the ignorable nonresponse model. We believe 
that this is a reasonable comparison between the ignorable 
and the nonignorable nonresponse models. 

 
5. Concluding Remarks 

 

 

  
There are two key methodological developments in this 

paper. Specifically, we have shown that (a) it is possible to 
analyze multinomial data from cr ×  categorical tables 

when there are both item and unit nonresponses, and the 
nonresponse mechanism may be nonignorable; and (b) by 
using the Bayes factor (ratio of the marginal likelihoods of 
two models), we can test for association between the two 
categories. Essentially, we have assumed that there is no 
information about nonignorability, all design features are 
suppressed and we have taken a conservative ground.  

For the 33×  categorical data of BMD and FI, we have 
shown how to estimate the cell probabilities accurately. For 
the complete cases, the Bayes factor shows “strong” 
evidence for no association between BMD and FI. For all 
the data, our Bayes factor shows that the evidence for no 
association is “strong” under the ignorable nonresponse 
model, and is “positive” under the nonignorable non-
response model. Thus, there is virtually no difference 
between the two scenarios: data from only the complete 
cases are used and all the data are used. Also, based on the 
Bayes factor and our simulation study, while there are 
differences between the ignorable nonresponse model and 
the nonignorable nonresponse models, such differences are 
small. There are differences for inference about the pro-
portions of individuals in various BMD-FI levels; the 
posterior means are similar but the posterior standard 
deviations under the nonignorable nonresponse model are 
larger than those under the ignorable nonresponse model. 

Our simulation study supports two properties (subtle 
differences) of our models. First, the estimates of the cell 
probabilities from the ignorable (nonignorable) nonresponse 
model are closer to the true values when the ignorable 
(nonignorable) nonresponse model is expected to hold, but 
in either case the estimates from the nonignorable non-
response model have about twice the standard deviations 
from the ignorable nonresponse model. Second, if the 
ignorable (nonignorable) nonresponse model is expected to 
hold, it can be beaten by the nonignorable (ignorable) non-
response model. This happens a significantly larger pro-
portion of time when the ignorable nonresponse model is 
expected to hold. Thus, there are differences between these 
models. We suggest fitting both models, and compute the 
Bayes factor to decide which one to use. We do not re-
commend using these models when there are appropriate 
covariates and/or prior information to explain non-
ignorability. 

In future research one can attempt to reduce the number 
of parameters in the nonignorable nonresponse model to 
further reduce the effects of nonignorability. For example, it 
may be possible to consider representing the data in two 
categorical tables as follows. The three supplemental tables 
are collapsed into a single supplemental table with its thj  
row having at least ju  individuals, and its thk  column 
having at least kv  individuals; the total number of indi-
viduals in this supplemental table is ;11 k

c
kj

r
j vuw ∑∑ == ++  
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see section 3.1 for notations. Finally, we note that a full 
analysis of data from a complex survey requires an input of 
information (covariates and prior information) about non-
ignorability, sampling weights and clustering effects as well.  

Appendix A 
Fitting the Nonignorable Nonresponse Model  

We show how to use the Gibbs sampler to make 
inference about the parameters in (14). The conditional 
posterior density of p is 

)1,,1Dirichlet(~| 11 ++ ⋅⋅ rcyy Kyp  (A.1) 

and the conditional posterior density of jkπ  is  
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with independence over .,,1,,,1 ckrj KK ==   
We need the conditional posterior probability mass 

functions of 4,3,2, =ssy  given ,,,1,,,)( rjjks K=πpy  
.,,1 ck K=  From (14) it is clear that the 4,3,2, =ssy  are 

conditionally independent multinomial random vectors. 
Specifically,  

,,,1),,l(Multinomia  

},,1,,,1,,,{|

(2)ind

12

~ rju

ckrj

jj

jkj

K

KK

=

==

q

pyy π
 

,,,1),,l(Multinomia 

},,1,,,1,,,{|

(3)ind

13

~ ckv

ckrj

kk

jkk

K

KK

=

==

q

pyy π
 

),,l(Multinomia 

},,1,,,1,,,{|

)4(

14

~ q

pyy

w

ckrjjk KK ==π
 

(A.3)
 

where ==ππ= ′′=′∑ )3(
212
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Next, we consider the hyper-parameters. Letting =δs  
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c
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j π∏∏ ==  the joint conditional posterior density of 
τ,μ  is 
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where .0,4,3,2,1,0,14
1 >τ=≥μ=μ∑ = ssss   

We use the grid method to get samples from the 
conditional posterior density of ,,,1,,|( rjp jk K=τ πμ  

),,1 ck K=  and ,,,1,,|( rjp jk K=τ πμ  ).,,1 ck K=  
After transforming τ  to ),1/( ϕ−ϕ  the parameters now live 
on )1,0(  with appropriate constraints, making the grid 
procedure convenient. We use 50 intervals of equal widths 
(obtained by experimentation) to draw μ  and ,ϕ  and a 
random deviate for τ  is ).1/( ϕ−ϕ  

The Gibbs sampler is executed by drawing a random 
deviate from each of the conditional posterior “densities”, 
(A.1), (A.2), (A.3), and (A.4) in turn, iterating the entire 
procedure until convergence. This is an example of the 
griddy Gibbs sampler (Ritter and Tanner 1992).  

Appendix B  
Estimation of )( 1ypNIG  in (16)  

Letting mn  denote the number of incomplete cases (i.e., 
),0 mnnn +=  one can also show that for the model with 

association Annnap m )!!/())!1(()( 01NIG +=y  and for the 
model with no association ,))!!/()!1(()( 01NIG Bnnnbp m+=y  
where a and b are given in (18),  
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Note that 1,0 << BA  gives a useful diagnostic check on 
the computation. 

We show how to compute A in (B.1) using Monte Carlo 
integration; the procedure to compute B is similar. We 
prefer the simpler procedure based on Monte Carlo 
integration with an importance function (Nandram and Kim 
2002) rather than the method based on a continuation of the 
Gibbs sampler (Chib and Jeliazkov 2001). 

For A we choose the importance function  
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where sμ~  and τ~  are estimates obtained using a Gibbs 
output. We obtain a sample from )( aim Ωπ  by drawing 
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Then, letting ∑∑∑∑ =+π= r
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numerical standard error (NSE) of )ˆlog(A  can be approx-
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MS /  approximately. We start with 000,10=M  

independent samples from the importance function, and 
increasing M until convergence which occurs about 

.000,50=M  
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On the Use of Data Collection Process Information for the Treatment of  
Unit Nonresponse Through Weight Adjustment 

Jean-François Beaumont 1 

Abstract 

Nonresponse weight adjustment is commonly used to compensate for unit nonresponse in surveys. Often, a nonresponse 
model is postulated and design weights are adjusted by the inverse of estimated response probabilities. Typical nonresponse 
models are conditional on a vector of fixed auxiliary variables that are observed for every sample unit, such as variables 
used to construct the sampling design. In this note, we consider using data collection process variables as potential auxiliary 
variables. An example is the number of attempts to contact a sample unit. In our treatment, these auxiliary variables are 
taken to be random, even after conditioning on the selected sample, since they could change if the data collection process 
were repeated for a given sample. We show that this randomness introduces no bias and no additional variance component 
in the estimates of population totals when the nonresponse model is properly specified. Moreover, when nonresponse 
depends on the variables of interest, we argue that the use of data collection process variables is likely to reduce the 
nonresponse bias if they provide information about the variables of interest not already included in the nonresponse model 
and if they are associated with nonresponse. As a result, data collection process variables may well be beneficial to handle 
unit nonresponse. This is briefly illustrated using the Canadian Labour Force Survey. 
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1. Introduction  
Unit nonresponse is often handled in surveys by using a 

nonresponse weight adjustment method. The basic principle 
that is often chosen is to adjust the design weights by the 
inverse of estimated response probabilities (see, for exam-
ple, Ekholm and Laaksonen 1991). These estimated re-
sponse probabilities are obtained by postulating a model for 
the unknown nonresponse mechanism, which we call the 
nonresponse model. Key to reducing the nonresponse bias 
and variance as much as possible is to condition on a vector 
of auxiliary variables that are observed for every sample 
unit and that are good predictors of both nonresponse and 
the variables of interest (Little and Vartivarian 2005). 
Usually, the auxiliary variables are treated as being fixed 
both unconditionally and conditionally on the selected 
sample.  

In this note, we consider using Data Collection Process 
(DCP) varimpbleps as potential auxiliary vmpriables to be 
included in the nonresponse model. An example is the 
number of attempts to contact a sample unit. Such type of 
data is sometimes called paradata (see Couper and Lyberg 
2005 for a recent reference on paradata) and has been used 
to deal with unit nonresponse by Holt and Elliott (1991), 
among others. In our treatment, contrary to Holt and Elliott 
(1991), DCP variables are taken to be random, even after 
conditioning on the selected sample, since they could 

change if the data collection process were repeated for a 
given sample.  

DCP variables may be particularly useful in cross-
sectional surveys where the auxiliary variables available to 
handle unit nonresponse are often limited to variables used 
to construct the sampling design. Although such design 
variables are not useless, they are often neither very good 
predictors of nonresponse nor the variables of interest. The 
additional information from data collection process may be 
welcome in these cases. In longitudinal surveys, there is a 
wealth of potential auxiliary variables to deal with wave 
nonresponse. DCP information may thus not have the same 
importance to compensate for wave nonresponse than the 
importance it has to compensate for unit nonresponse in 
cross-sectional surveys. However, we have yet to study this 
in any depth. It may turn out that, at change points, DCP 
variables may matter greatly.  

In section 2, we introduce notation and theory concerning 
the effect of using random auxiliary variables in the 
nonresponse model when estimating population totals. This 
issue of the randomness of DCP auxiliary variables was 
raised and debated at Statistics Canada’s Advisory Commit-
tee on Statistical Methods after the paper by Alavi and 
Beaumont (2004) was presented. The goal of section 2 is 
thus to shed some light on this issue. The use of DCP 
variables to adjust design weights for nonresponse is briefly 
illustrated in section 3, using the Canadian Labour Force 
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Survey (CLFS). The last section, section 4, contains a brief 
summary of the paper. 

 
2. Theory  

Let us assume that we are interested in estimating the 
population total ∑ ∈= Uk ky yt  of a variable of interest y  
for a certain fixed population U  of size .N  From this pop-
ulation, a random sample s  of size n  is selected according 
to a probability sampling design ),|( Dsp  where D  is a 

−N row matrix containing kd′  in its thk  row and d  is the 
vector of design variables. Let also assume that, in the ab-
sence of nonresponse, we would use the Horvitz-Thompson 
estimator ,ˆ ∑ ∈= sk kky ywt  where kkw π= /1  is the design 
weight of unit k  and )( skPk ∈=π  is its selection proba-
bility. 

Usually, due to a number of reasons, unit nonresponse 
occurs so that the variable y is only observed for a subset rs  
of ,s  the respondents. Along with rs , a random vector z  
of DCP variables is also observed for every sample unit 
according to a joint mechanism ,(# sq Z ).,,,| XDYss r  
As mentioned in the introduction, the number of attempts to 
contact a sample unit is an example of a DCP variable. The 
vector z  of DCP variables and the set of respondents rs  
are random after conditioning on the selected sample since 
these quantities would likely take different values if the data 
collection process were repeated for a given sample. The 
quantity sZ  is a −n row matrix containing kz ′  in its thk  
row, Y  is a −N element vector containing ky  in its thk  
element and X  is a −N row matrix containing kx′  in its 

thk  row. The vector x  is a vector of additional fixed 
auxiliary variables. For instance, these auxiliary variables 
could come from an administrative file or, in a longitudinal 
survey, they could be the variables of interest observed at 
the previous wave. As a result, the vector x  may not be 
available for nonsample units. Table 1 summarizes the 
availability of the different types of variables for the re-
spondents, nonrespondents and nonsample units.   

Table 1 
Availability of Variables 

 

 y z x d 

Respondents: rs  YES YES YES YES 

Nonrespondents: rss −  NO YES YES YES 

Nonsample units: sU −  NO NO * YES ** YES 
 

* The vector z is not even defined for nonsample units. 
** The vector x may not always be available for non-

sample units.  
The joint mechanism ),,,|,(# XDYZ ssq rs  can be 

factorized into two distinct random mechanisms: i) 
),,,|(# XDYZ ss  and ii) ).,,,,|( sr ssq ZXDY  The 

former is called the DCP mechanism while the latter is 
called the nonresponse mechanism. This factorization will 
be useful later to obtain properties of our nonresponse-
weight-adjusted estimator defined in equation (2.2) below. 
We assume that  

),,,,|(),,,,|( sssrsr ssqssq ZXDZXDY =  (2.1)  

where sD  and sX  are the sample portions of D  and X  
respectively. This assumption implies that the nonresponse 
mechanism is independent of (or unconfounded with) ,Y  
after conditioning on sss XD ,,  and ,sZ  and that the data 
are missing at random. However, we make no explicit 
simplifying assumption about the DCP mechanism so that it 
may well depend on ,Y  even after conditioning on D,s  
and .X  

To compensate for unit nonresponse, we consider the 
nonresponse-weight-adjusted estimator 

,
)ˆ(

ˆ NWA ∑
∈

=
rsk

k
k

k
y y

p

w
t

α
 (2.2) 

where );,,,|()( αZXDα sssrk sskPp ∈=  is the condi-
tional response probability for a unit sk ∈  and α̂  is an 
estimator of the vector of unknown nonresponse model 
parameters .α  Note that a nonresponse model is a set of 
assumptions about the unknown nonresponse mechanism 

;),,,,|( sr ssq ZXDY  one of them being assumption 
(2.1). We assume that α̂  is implicitly defined by the equa-
tion ,)ˆ(1 0αU =  where (.)1U  is a vector of −q unbiased 
estimating functions for ;α  that is, ,,|)({ 1 YαUE sq  

.},, 0ZXD =s  Therefore, (.)1U  is also −qp # unbiased 
for .α  In the remaining of the paper, we remove every-
where the conditioning on DY,  and X  when taking ex-
pectations and variances since these vectors are always 
treated as being fixed. For instance, we will write 

0ZαUE =},|)({ 1 sq s  instead of ,,,|)({ 1 DYαUE sq  
.0}, =sZX  This will simplify considerably the notation. 

Note that the nonresponse-weight-adjusted estimator 
(2.2) is implicitly defined by the equation 

∑
∈

=−=
rsk

k
k

k
yy y

p

w
ttU 0

)ˆ(
ˆ)ˆ,ˆ( NWANWA

2 α
α . (2.3) 

If the nonresponse model is correctly specified and, in 
particular, if assumption (2.1) is satisfied, then the esti-
mating function (.,.)2U  is −qp # unbiased for ;yt  that is, 

.0)},({E 2# =yqp tU α  To make assumption (2.1) as plau-
sible as possible, it is important that the nonresponse model 
be conditional on design, auxiliary and DCP variables that 
are well correlated with ,y  provided that these variables are 
also associated with nonresponse. This recommendation 
should be useful to control the magnitude of the non-
response bias, which may be unavoidable in real surveys. 
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This is also in line with the recommendation given in Little 
and Vartivarian (2005). Therefore, if DCP variables contain 
information about y  above the information already con-
tained in d  and ,x  then the use of DCP variables may be 
useful to reduce the nonresponse bias if they are associated 
with nonresponse. 

Now, let ,),( ′′= ytαθ )ˆ,ˆ(ˆ NWA ′′= ytαθ  and =)
~

(θU  
,})~,~(),~({ 21

′′
ytU ααU  for some vector .)~,~(

~ ′′= ytαθ  As 
noted above, θ̂  is implicitly defined by the equation 

0θU =)ˆ(  and the estimating function (.)U  is −qp #  
unbiased for θ  since .)}({# 0θUE =qp  Using a first-order 
Taylor approximation (see Binder 1983), we have ≈θ̂  

),()}({ 1 θUθHθ −−  where }.
~

/)
~

({)
~

( # θθUEθH ′∂∂= qp  
The matrix 1)}({ −θH  is thus given by 
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where ),~/())
~

(()
~

( #1 αθUEθH ′∂∂= iqpi  for .2,1=i  
Using conditions similar to those of Binder (1983), θ̂  is 
asymptotically normal and asymptotically −qp # unbiased 
for .θ  As a result, NWAˆ

yt  is asymptotically normal and 
asymptotically −qp # unbiased for .yt  Therefore, using 
DCP variables in the nonresponse model does not introduce 
any bias in the nonresponse-weight-adjusted estimator 

NWAˆ
yt  provided that the nonresponse model (specification of 

),,,|( sssr ssq ZXD  and assumption 2.1) holds. Also, if 
the true unknown nonresponse mechanism depends on the 
sample portion of ,, sYY  after conditioning on ss D,  and 

,sX  then conditioning on a vector z  of DCP variables is 
likely to reduce the nonresponse bias if the DCP mechanism 
depends on ,sY  after conditioning on ss D,  and ,sX  
which means that the DCP variables contain information 
about y  not already contained in d  and .x  

Continuing our Taylor linearization, and using the fact 
that 
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the −qp # variance-covariance matrix of ,θ̂ ),ˆ(# θV qp  is 
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The first term on the right-hand side of equation (2.5) is 
called the sampling variance of ,θ̂  the second term is called 
the DCP variance of θ̂  and the third term is called the 
nonresponse variance of .θ̂  The variance )ˆ(V NWA

# yqp t  is 

approximated by the value in the last row and in the last 
column of equation (2.5). Using expression (2.4) and the 
fact that ,)ˆ,(},|)({ ′−′= yysq tts 0ZθUE  the approxi-
mate variance (2.5) reduces to 

.)}(}{,|)({)}({

0)ˆ(V)ˆ(

1
#

1

#

−− ′+

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

θHZθUVEθH

0
00

0
00θV

sqp

yp
qp

s

t
&

(2.6) 

The second matrix on the right-hand side of equation 
(2.6) corresponds to the DCP variance of θ̂  and contains 0 
for all its elements. Therefore, using random auxiliary 
(DCP) variables in the nonresponse model does not 
introduce any additional term of variance, as opposed to 
using only fixed auxiliary variables, when the nonresponse 
model is properly specified. Since DCP variables are likely 
to reduce the nonresponse bias if they are associated with y, 
then it seems beneficial to take advantage of them when 
handling unit nonresponse through a weight adjustment. 
Also, as pointed out by Little and Vartivarian (2005), adding 
auxiliary variables in the nonresponse model that are 
associated with y tends to reduce the nonresponse variance. 
The mean squared error can therefore be reduced on both 
counts. 

A more detailed expression for the nonresponse variance 
term in equation (2.6) as well as a sampling and a non-
response variance estimator can be obtained similarly as in 
Beaumont (2005). Beaumont (2005) also discusses the 
effect of estimating the nonresponse model parameters on 
the variance of an estimator of a population total.  

 
3. The Example of the Canadian  

      Labour Force Survey  
The goal of this example is not to provide every detail of 

the analysis that was conducted on the Canadian Labour 
Force Survey (CLFS) data but simply to describe some 
issues related to the choice of the nonresponse model and to 
the estimation of response probabilities. With these points in 
mind, we then go on to discuss the main conclusions that 
were reached. Greater detail about the results of the 
investigations in the CLFS, implementation of the new 
method and a comparison with the previous method can be 
found in Alavi and Beaumont (2004).  

The CLFS is a monthly survey with a stratified multi-
stage sampling design (Gambino, Singh, Dufour, Kennedy 
and Lindeyer 1998). The information used to construct the 
sampling design and to draw a sample of dwellings is essen-
tially geographic. The sample is divided into six represent-
tative rotation groups and each sampled dwelling stays in 
the sample for six consecutive months. One rotation group 
contains dwellings for which the members are interviewed 
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for the first time; another rotation group contains dwellings 
for which the members are interviewed for the second time 
and so on. Thus, for five rotation groups out of six, the 
sampled dwellings are common from one month to the next. 
Computer-assisted interviews are used to collect the survey 
information for every person in the selected households. 
With computer-assisted interviews, a large amount of DCP 
information is obtained for both responding and non-
responding households. 

A logistic nonresponse model has been considered to 
model the unknown nonresponse mechanism ,,|( sr ssq D  

).sZ  With this model, the unknown response probability 
for household k  is expressed as αα ′−+= exp(1{)(kp  

1)})( −
kzd  and sampled households are assumed to respond 

independently of one another. The vector zd  is a vector 
that contains DCP variables ,z  fixed design variables d  as 
well as interactions between these two types of variables. 
No additional vector x  of auxiliary variables was available. 
Two DCP variables were used: the number of attempts to 
contact a sampled household, which was divided into five 
categories, and the time of the last attempt, which was also 
divided into five categories. The design variables used were 
mainly geographic and also included the rotation group 
indicator. Due to potential interviewer and clustering effects, 
the above model may not be entirely realistic. It was used 
for its simplicity and because it appeared reasonable and an 
improvement over the previous method. Also, the estimated 
response probabilities resulting from this model were used 
only to provide a score and were not used directly to adjust 
design weights, as described below in this section. 

The unknown vector α  was estimated by the maximum 
likelihood method using the −q unbiased estimating func-
tion 

,)()}({)(1 ∑ ∈ −=
sk kkk pr zdααU  (3.1) 

where ,1=kr  if ,rsk ∈  and ,0=kr  otherwise. Note that a 
design-weighted estimating function was not considered. 
This follows the practice recommended in Little and 
Vartivarian (2003) and can be justified by noting that the 
interest is in modelling the nonresponse mechanism only for 
sampled households sk ∈  (not for the whole population) 
and that this mechanism is conditional on s. Also, the DCP 
variables are not even defined outside the sample. The use 
of design weights does thus not make sense in this context 
and increases the variance of α̂  if the nonresponse model is 
correctly specified. Also, it is not clear that using a design-
weighted estimating function would systematically bring 
robustness in this case. However, note that we do not ignore 
design information since it is included in the nonresponse 
model. This can be paralleled to the recommendation of 
including design information in imputation models (see, for 
example, Rubin 1996). 

Stepwise logistic regression was performed for several 
months in order to determine appropriate design and DCP 
variables to be included in the final nonresponse model. In 
all months considered, the variable ‘number of attempts’ 
was the first to enter in the model and thus the most useful 
for explaining nonresponse. This variable was also corre-
lated with the main variables of interest ‘employment’ and 
‘unemployment’. For instance, people belonging to respon-
dent households with a large number of attempts, i.e. those 
that are difficult to reach, had a tendency to be more often 
employed (see Alavi and Beaumont 2004). Households with 
a large number of attempts had also a tendency to be 
nonrespondents. Therefore, it seems appropriate to give a 
larger weight adjustment to the responding households for 
which the number of attempts is large since their propensity 
to respond is lower and they are more likely to have 
characteristics similar to the nonrespondents.  

The final nonresponse model chosen fit reasonably well 
the CLFS data in most months considered, according to the 
Hosmer-Lemeshow goodness-of-fit test. Nevertheless, the 
score method of Little (1986) was used to obtain some 
robustness against undetected model failures. The above 
logistic nonresponse model was first used to obtain an 
estimated response probability for every sampled household 
and then the sample was divided into about 50 homog-
eneous classes with respect to this estimated response 
probability using the clustering algorithm implemented in 
the procedure FASTCLUS of SAS. This large number of 
classes was possible given the large CLFS sample size. It 
was chosen so as to reduce the nonresponse bias not only at 
the population level but also for smaller domains. The 
nonresponse weight adjustment for a responding household 
k within a given class c was simply computed as the inverse 
of the unweighted response rate within class c. A threshold 
on the nonresponse weight adjustment was set to 2.5 to 
control the nonresponse variance of the nonresponse-
weight-adjusted estimator. When needed, the application of 
this threshold was necessary only for a very small number 
of classes. These were the classes with the smallest esti-
mated response probabilities. Without this threshold, non-
response weight adjustments around 4 could occasionally be 
observed. 

Another nonresponse model was considered in which the 
response probability for a household k is modelled as the 
product of the probability that household k be contacted, 
times the probability that this household respond, given it is 
contacted. The latter two probabilities were modelled sepa-
rately. Although this model seems to be a better approx-
imation of reality and gave slightly better results in the sense 
that it better explained nonresponse, the gains were not 
deemed sufficient to add this complexity in the nonresponse 
adjustment method. It may deserve further study. 
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4. Conclusion  
An important contribution of this paper is that DCP 

information must be treated as being random when used in a 
nonresponse model. We then have shown that the use of 
such information to handle unit nonresponse through a 
weight adjustment does not introduce any bias and that there 
is no additional variance component in the estimates of 
population totals when the nonresponse model is properly 
specified. Moreover, we have argued that if DCP 
information is associated with the variables of interest and 
with nonresponse, then its use is likely to reduce the 
nonresponse bias when the nonresponse mechanism 
depends directly on the variables of interest. We have also 
illustrated through the CLFS example that such information 
can be useful for dealing with unit nonresponse in a major 
survey. 

The full response estimator that we have considered is 
the Horvitz-Thompson estimator. Our conclusions would 
have remained the same had we used instead a generalized 
regression estimator. We have used the Horvitz-Thompson 
estimator for its simplicity and because it was sufficient to 
show our main point. 
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On the Correlation Structure of Sample Units 
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Abstract 

In this paper we make explicit some distributional properties of sample units, not usually found in the literature; in 
particular, their correlation structure and the fact that it does not depend on arbitrarily assigned population indices. Such 
properties are relevant to a number of estimation procedures, whose efficiency would benefit from making explicit reference 
to them. 
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1. Introduction  
In recent times, population and household censuses, as 

we know them, have become more difficult to perform for a 
number of reasons. Alternative ways of securing more 
frequent information for the production of local, state and 
national statistical results have been proposed. Continuous 
large national surveys, among them those known as rolling 
censuses, with large sample sizes and complex designs, are 
being considered.  

However, in order to produce results at the local 
authority level the way a census does, different techniques 
for estimation as well as for validation and, in some cases, 
for imputation have to be developed and their efficiency 
improved. One way of achieving greater efficiency consists 
of taking into account all relevant information available. Of 
course, this includes the stochastic properties of sample 
units. 

In what follows, beginning from basic principles, we 
derive a general explicit form for the probability function of 
an ordered sample. We also show how that function, as well 
as the inclusion probabilities, can be computed. Finally, we 
give a general form for the correlation matrix of sample 
units, which depends solely on inclusion probabilities, so 
that linear and maximum-likelihood estimation procedures 
can benefit from it. 

 
2. The Basic Model  

The basic model we start from represents the sequential 
random drawing of n units from a population U formed by 
N such units, and may be stated as follows. Let N and n be 
two positive constants such that ,Nn ≤  and let V represent 
an nN ×  matrix, whose components are each distributed as 
Bernoulli random variables with, possibly, different para-
meters. Then,  
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Also part of the model is the restriction imposed on each 
column of V to add to one. In other words, we require that  

nk
N

I
Ik ...,,1for,1

1

==ϑ∑
=

 (1.2) 

be satisfied. 
This is required because if the thj  draw results in 

population unit I being selected, then entry (I, j) takes the 
value of one while all other entries of column j are equal to 
zero. Note that this is equivalent to imposing a non-
stochastic constraint on the behavior of all components of 
the thi  column of V, regardless of the sampling scheme. 
Therefore, entries belonging to the same column do not 
behave independently.  

When sampling takes place with replacement (WR), the 
sum of the elements of the thI  row of the above matrix is 
distributed as a Binomial ),( Ipn  since each column is 
distributed independently of other columns. On the other 
hand, when sampling takes place without replacement 
(WOR), the total of row I can take only two values: one, if 
the thI  unit is drawn at some stage, or zero, otherwise, 
bringing us back to the Bernoulli case.  

Disjoint subsets of rows may be formed according to 
different criteria. For instance, when rows are grouped with 
regard to their spatial vicinity, one could speak about 
clusters or primary sampling units. When one or more 
statistical indicators form the basis for the groupings, the 
term strata is usually used.  
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Let us now define the inclusion probabilities as 
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Note that ,)(
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n
I π=π  commonly refered to as the 

inclusion probability for unit I. 
Now let joϑ  represent the thj  column and oIϑ  the thI  

row of matrix V. Therefore, based on the following 
expression,  
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we can write the joint probability function of the elements of 
V as: 
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and here ,)(k
Ip  defined as ),( )1()()( −π−π= k

I
k

I
k

Ip  stands for 
the probability that population unit I is included in the 
sample at the thk  draw. The above function is useful for 
calculating the probability of any ordered sample of size n. 
Clearly, when the order of inclusion can be ignored, the 
probability of a given sample would be obtained by adding 
the n! values obtained through (4).  

 
3. The Implications of Sampling on the Stochastic 

      Properties of Population Units  
Consequently, 
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From here, step-by-step inclusion probabilities, in WOR 
sampling situations, may be recursively computed, as is 
shown in (7), below. 
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Note that (7) enables us to compute the desired probabi-
lities at two different moments: first, when no draw has 
actually occurred, which explains why we average over the 
whole population, and secondly, when the result of the 
previous draw is known, at which time the probability of the 

thJ  population unit, say, entering the sample equals one and 
all other probabilities for that draw are equal to zero. Hence, 
at least in theory, we can compute the inverse of the so 
called expansion factors or weights for one stage sampling, 
or stage by stage in multistage sampling. Clearly, 
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If we define the joint inclusion probabilities as 
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then we have that they can also be computed as follows: 
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For example, in simple random sampling WR 
(SRS/WR), expressions (7), (8) and (10) result in (7.1), (8.1) 
and (10.1),  
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While in SRS/WOR we get expressions (7.2), (8.2) and 
(10.2), instead.  
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Let us now consider the row vectors oIϑ . Then, for the 
covariance matrix between different rows, we get  
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whenever I is different from J. 
When sampling takes place WR, and therefore, =)( j

Ip  
,...,,1 njpI =∀  the covariance matrix for the thI  row 

vector is given by 
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In a WOR setting the above covariance matrix becomes 
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Let ϑ  represent the N – dimensional vector which results 
from adding the columns of V. Clearly, the components of 
this vector may be expressed as the product of oIϑ  by a 
vector whose components are all equal to one. In other 
words,  
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Some distributional properties of these sums may be then 
obtained directly from those of the rows or the columns of 
matrix V.  

For instance, their expected values are given as  
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From (1.2), we get the non-stochastic restriction:  
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From (14) and (15), well known propositions (16) and 
(17) follow immediately,  
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For the second order moments, we get  
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which clearly indicates that the covariance is never positive. 
In turn, the variances are given by  

⎩
⎨
⎧

π−π
=

ϑ′=ϑ′=ϑ

.WOR)1(

WR

1)(Cov1)1(Var)(Var

)()( n
I

n
I

II

III

qnp
oo

 
(19)

 

Another important consequence of (15) has to do with 
the second order moments of the stochastic vector ϑ . 

.111)Cov(1)1Var()Var(0 Cn ′=ϑ′=ϑ′==  (20) 

Clearly, the diagonal elements of matrix C, the 
covariance matrix of ϑ , are not all equal to zero. Therefore, 
randomly drawing a fixed-size simple introduces a 
dependency in the population units which results in non-null 
covariances implying that matrix C is singular. Otherwise, it 
is impossible for (20) to be satisfied.  

As a matter of fact, it is possible to prove that the sum of 
any row (or column) of C must be equal to zero, which is a 
stronger statement. Given that the covariance between a 
random variable and a constant equals zero, we get  
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We have thus proven that in WOR sampling (22.1) holds.  
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The same statement can be proven algebraically by noting 
that  
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which is obvious once we realize that the conditional 
probability involved represents the probability that popu-
lation unit J enters a sample of size 1−n  for which (19) 
also applies. Additionally, using (19) again, note that  
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and therefore,  
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For WR sampling (21) implies: 
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which is immediately seen to apply. 
In any case, the most important implication of the above 

results is that regardless of the sampling scheme, the 
correlation matrix of the population random variables 

Nϑϑϑϑ ...,,,, 321  is singular. For the practical situations 
described in the introduction, the most important impli-
cation of this fact lies mainly in the use made by many 
model fitting and estimation procedures of the inverse of the 
covariance matrix.  

 
4. The First Two Moments of Sample Units  

Once the first and second order moments of the vector ϑ  
have been established, we are in a position to determine the 
corresponding moments for sub-vectors of different sizes 
and whose components are randomly chosen, i.e., the 
sample. To this end, let us define the random variables 

,,,,,
321 rIIII ϑϑϑϑ K  where r represents the number of 

different population units in the sample, and whose indices 
,1, nrkIk ≤≤≤  can take the value I with probability 

.)(n
Iπ  In other words, under the above conditions, we are in 

the presence of a set of random variables whose indices are 
random themselves.   
4.1 Mean and Variance for WR Sampling  

For this case, the probability function of 
iIϑ  is given by  
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The first two moments may also be obtained via a condi-
tional argument. The mean of its distribution is given by  
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In turn, its variance is computed using the well known 
formula  
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and therefore  
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For the case of SRS, (24) above results in 
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4.2 Mean and Variance for WOR Sampling  

For this case, the probability function of 
iIϑ is given by  
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and therefore  
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Using (25) again, we note firstly that  
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Hence, the variance is given by  
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Once again, in order to exemplify these results, let us turn 
to SRS. Expression (30) becomes 
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Whereas (31) results in  
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4.3 The Covariance Between Sample Units  
In order to establish the covariance between different 

sample units we resort to a simple extension to (25),  
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In this case, we have that 
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while the covariance between brackets on the right-hand 
side of (34) is easily seen to equal  
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From (35) and (36), we obtain  
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whereas from (37) we get  
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Finally, adding these last two expressions we arrive at the 
desired covariance  
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In the SRS/WR (40) results in  
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while for the WOR case the covariance can be seen to equal  
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It should be stressed that for SRS, regardless of whether 

it takes place with or without replacement, the correlation 
coefficients are given by  
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independently of the sample size.  
Furthermore, we have that, as the value of n approaches 

that of N in WOR sampling, both )(n
Iπ  and )(n

IJπ  approach 
one. In particular, when ,Nn =  the values of expressions 
(31) and (40) become zero.  

 
5. The Correlation Matrix for Sample Units  

Once we realize that none of the expressions in (28), (31) 
and (40) depend on any of the arbitrary indices used to 
differentiate population units, it should become clear that the 

rr ×  correlation matrix for the random vector =θ  
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It should be noted that the elements of )(ρrR  in (44) 
depend only on the inclusion probabilities which, for any 
sample size, may be fully computed from recursion (7), and 

expressions (8) and (10). In other words, they do not depend 
on any unknown population parameters to be estimated nor 
on the values of the variables to be measured on the sample 
units. 

 
6. Final Remarks  

In theory, the efficiency of every estimation procedure 
will experience some gain whenever explicit allowance for 
the correlation between sample units is made. This would 
certainly be the case for linear as well as for some instances 
of maximum-likelihood estimation.  

On the other hand, it should be emphasized that )(ρnR  
may become singular as the sample size n approaches the 
population size N; this is the case for SRS ( ))1/(1( −− NRN  
as well as for WOR sampling in general. Therefore, numeri-
cally, many estimation procedures which rely on the inverse 
or the determinant of R, rather than on the correlation matrix 
itself, may also benefit from replacing the simplifying 
assumption of independence between observations by a 
more realistic one of correlated observations whenever 
sample sizes are large relative to population sizes. Instances 
where this can happen are given by some stages in multi-
stage sampling (e.g., number of households in a block) and 
by large country-wide surveys. 
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Algorithms and R Codes for the Pseudo Empirical Likelihood  
Method in Survey Sampling 
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Abstract 

We present computational algorithms for the recently proposed pseudo empirical likelihood method for the analysis of 
complex survey data. Several key algorithms for computing the maximum pseudo empirical likelihood estimators and for 
constructing the pseudo empirical likelihood ratio confidence intervals are implemented using the popular statistical 
software R and S-PLUS. Major codes are written in the form of R/S-PLUS functions and therefore can directly be used for 
survey applications and/or simulation studies. 
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1. Introduction  
One of the major challenges in applying advanced and 

often sophisticated statistical methods for real world surveys 
is the computational implementation of the method. Prac-
tical considerations often rule out the use of methods which 
are theoretically sound and attractive but are computa-
tionally formidable.  

The empirical likelihood method first proposed by Owen 
(1988) is one of the major advances in statistics during the 
past fifteen years. In addition to its data driven and range 
respecting feature in estimation and testing, its non-
parametric and discrete nature is particularly appealing for 
finite population problems. Indeed an early version of the 
method, the so-called scale-load estimators, was used in 
survey sampling by Hartley and Rao back in 1968. The 
more recent investigation of the method in survey sampling 
has resulted in a series of research papers and generated 
noticeable interests among survey statisticians to further 
explore the method. Wu and Rao (2004) contains a brief 
summary on the recent development of the pseudo empirical 
likelihood (PEL) method in survey sampling. 

Progress on algorithmic development for the PEL 
method has also been made. A modified Newton-Raphson 
procedure for computing the maximum PEL estimators 
under non-stratified sampling was proposed by Chen, Sitter 
and Wu (2002). The procedure was further modified by Wu 
(2004a) to handle stratified sampling designs.  

In this article we present computational algorithms for 
computing the maximum PEL estimators and for construc-
ting the related PEL ratio confidence intervals for complex 
surveys under a unified framework, with particular interest 
in implementing those algorithms using R and PLUS.-S  
The software package R, a friendly programming 

environment and compatible to the popular commercial 
statistical software S-PLUS, is attracting more and more  
users from the statistical community. What is advantageous 
about using R is that it is available free for research use and 
the package may be easily downloaded from the web. It is 
hoped that this article will bridge the current gap between 
theoretical developments and practical applications of the 
PEL method and will generate more research activities in 
this direction to make fully practical use of the PEL method 
a reality. 

The algorithm for computing the maximum PEL 
estimator under non-stratified sampling and some notes on 
its implementation in R/S-PLUS are presented in section 2. 
The algorithm of Wu (2004a) for stratified sampling is 
discussed in section 3. Construction of the PEL ratio 
confidence intervals involves profiling the pseudo empirical 
likelihood ratio statistic and is detailed in section 4. All R 
functions or sample codes are included in the Appendix. 
They can also be downloaded from the author’s personal 
homepage http://www.stats.uwaterloo.ca/~ cbwu/paper. html. 
These functions and codes had been tested in the simulation 
study reported in Wu and Rao (2004) and were observed to 
perform very well.  

2. Non-Stratified Sampling 
 

Consider a finite population consisting of N  identifiable 
units. Associated with the thi  unit are values of the study 
variable, 

,iy

 and a vector of auxiliary variables, .

i

x

 The 
vector of population means ∑ =

−= N
i iN 1

1 xX  is known. Let  
}),,{( siy ii ∈x  be the sample data where s  is the set of 

units selected using a complex survey design. Let 
)( siPi ∈=π  be the inclusion probabilities and iid π= /1  

be the design weights.  
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The pseudo empirical maximum likelihood estimator of 
the population mean ∑ =

−= N
i iyNY 1

1  is computed as =PELŶ  
∑ ∈si ii yp̂  where the weights ip̂  are obtained by maxi-
mizing the pseudo empirical log likelihood function 

)(log)( **
i

si
ins pdnl ∑

∈
=p  (2.1) 

subject to the set of constraints 

.and1,10 Xx ==<< ∑ ∑
∈ ∈si si

iiii ppp  (2.2) 

The original pseudo empirical likelihood function proposed 
by Chen and Sitter (1999) is .)(log)( isi i pdl ∑ ∈=p  The 
pseudo empirical likelihood function )( pnsl  given by (2.1) 
was used by Wu and Rao (2004), where ∑ ∈= si iii ddd /*  
are the normalized design weights and *n  is the effective 
sample size. The point estimator ∑ ∈= si ii ypY ˆˆ

PEL  remains 
the same for either version of the likelihood function. The 
rescaling used in )( pnsl  facilitates the construction of the 
PEL ratio confidence intervals. 

Using a standard Lagrange multiplier argument it can be 
shown that  
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where the vector-valued Lagrange multiplier, ,λ  is the 
solution to 
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λ
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The major computational task here is to find the solution to 
.0)(1 =λg  This can be done using the modified Newton-

Raphson procedure proposed by Chen et al. (2002). The 
modification involves checking at each updating stage that 
the constraint 0)(1 >−′+ Xxiλ  )0,( >ipi.e.  is always 
satisfied. Without loss of generality, we assume 0=X  (if 
not, replace ix  by Xx −i  throughout). The modified 
procedure is as follows. 
 
Step 0: Let .0 0λ =  Set 1,0 0 =γ=k  and .10 8−=ε  
 
Step 1: Calculate )(1 kλΔ  and )(2 kλΔ  where 
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If ,||)(|| 2 ε<kλΔ  stop the algorithm and report ;kλ  
otherwise go to Step 2.  
Step 2: Calculate ).(2 kkk λΔδ γ=  If 0)(1 ≤′−+ ikk xδλ  
for some ,i  let 2/kk γ=γ  and repeat Step 2.  
Step 3: Set 1,1 +=−=+ kkkkk δλλ  and =γ +1k  

.)1( 2/1−+k  Go to Step 1. 

In the original algorithm presented by Chen et al. (2002), 
their step 2 also checks a related dual objective function. 
While this is necessary for the theoretical proof of 
convergence of the algorithm, it is not really required for 
practical applications.  

The R function Lag2(u,ds,mu) can be used for finding 
the solution to 0)(1 =λg  when the vector of auxiliary 
variables x  is of dimension m  and .2≥m  When x  is 
univariate, an extremely simple and stable bi-section 
method to be described shortly should be used. Let n  be the 
sample size. The three required arguments are the mn×  
data matrix u, the 1×n  vector of design weights ds and the 

1×m  population mean vector mu. The output of the 
function Lag2(u,ds,mu) returns the value of λ  which is the 
solution to .0)(1 =λg  

The function Lag2(u,ds,mu) will fail to provide a 
solution if (i) the mean vector X  is not an inner point of the 
convex hull formed by },,{ sii ∈x  or (ii) the matrix 
∑ ∈ ′si iiid xx  is not of full rank. In case (i) the pseudo 
empirical maximum likelihood estimator does not exist. 
This happens with probability approaching to zero as the 
sample size n  goes to infinity; in case (ii) one may consider 
to remove some components of the x  variables from the set 
of constraints (2.2) to eliminate the collinearity problem. 

When the x  variable is univariate, so is the involved 
Lagrange multiplier .λ  In this case we need to solve 

∑ ∈ =λ+=λ si iii xxdg 0)1/()( *
2  for a scalar ,λ  as-

suming .0=X  A unique solution exists if and only if 
}.,{max0},{min sixsix ii ∈<<∈  The solution, if 

exists, lies between },{max/1 sixL i ∈−=  and =U  
}.,{min/1 sixi ∈−  Noting that )(2 λg  is a monotone 

decreasing function for ),,( UL∈λ  the most efficient and 
reliable algorithm for solving 0)(2 =λg  is the bi-section 
method. The function Lag1(u,ds,mu) does exactly this, 
where the required arguments are u  ),...,,( 1 nxx=  ds =  

)...,,( 1 ndd  and mu  .X=  The output returns the solution 
to .0)λ(2 =g  

The function Lag1(u,ds,mu) can be used in conjunction 
with the model-calibrated pseudo empirical likelihood 
(MCPEL) approach of Wu and Sitter (2001) to handle cases 
where the x  variable is high dimensional. The MCPEL 
approach involves only a single dimension reduction 
variable derived from a multiple linear regression model and 
the related Lagrange multiplier problem is always of 
dimension one.  

3. Stratified Sampling  
Let }...,,1,),,{( Hhsiy hhihi =∈x  be the sample 

data from a stratified sampling design. Let =*
hid  

∑ ∈ hsi hihi dd /  be the normalized design weights for stratum 
....,,1, Hhh =  The pseudo empirical likelihood function 
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under stratified sampling defined by Wu and Rao (2004) is 
given by  

∑ ∑
= ∈

=
H

h si
hihihHst

h

pdWnl
1

**
1 ),(log)...,,( pp  (3.1) 

where NNW hh /=  are the stratum weights and *n  is the 
total effective sample size as defined in Wu and Rao (2004). 
The value of *n  is not required for point estimation but this 
scaling constant is needed for the construction of confidence 
intervals. Let X  be the known vector of population means 
for auxiliary variables. The maximum pseudo empirical 
likelihood estimator of the population mean =Y  
∑ =

H
h hh YW1  is defined as ∑ ∑= ∈= H

h si hihih h
ypWY 1PEL ˆˆ  

where the hip̂  maximize )...,,( 1 Hstl pp  subject to the set 
of constraints 

∑
∈

==>
hsi

hihi Hhpp ...,,1,1,0  

and 
.∑ ∑

∈
=

h si
hihih

h

pW Xx  (3.2) 

The major computational difficulty under stratified 
sampling is caused by the fact that the subnormalization of 
weights (i.e., 1=∑ ∈ hsi hip ) occurs at the stratum level while 
the benchmark constraints (i.e., Xx =∑ ∑ ∈ hih si hih h

pW ) 
and the constrained maximization of the PEL function are 
taken  at the the population level. The algorithm proposed 
by Wu (2004a) for computing the hip̂  proceeds as follows: 
let hix  be augmented to include the first 1−H  stratum 
indicator variables and X  be augmented to include 

)...,,( 11 −HWW  as its first 1−H  components. In the case of 
no benchmark constraints involved, the augmented x  
variable will consist of the 1−H  stratum indicator 
variables only and )....,,( 11 −= HWWX  It follows that the 
set of constraints (3.2) is equivalent to  

∑∑
∈=

=>
hsi

hi

H

h
hhi pWp 1,0

1

 

and 

,
1

∑∑
∈=

=
hsi

hihi

H

h
h pW Xx  (3.3) 

where the x  variable is now augmented. Let =hiu  
.Xx −hi  It is straightforward by using a standard Lagrange 

multiplier argument to show that  

,
1

ˆ
*

hi

hi
hi

d
p

uλ′+
=  

with the vector-valued λ  being the solution to  

∑ ∑
∈

=
′+

=
h si hi

hihi
h

h

d
Wg .0

1
)(

*

3 u
u
λ

λ  

The modified Newton-Raphson procedure of section 2 for 
solving 0λ =)(1g  can be used for solving .)(3 0λ =g  The 

key computational step under stratified sampling designs is 
to prepare the data file into suitable format so that the R 
function Lag2(u,ds,mu) for non-stratified sampling can 
directly be called. Sample R codes for doing this are 
included in the Appendix. 

 
4. Construction of PEL Ratio  

     Confidence Intervals  
While the computational algorithms for the maximum 

PEL estimator under non-stratified and stratified sampling 
designs are somewhat different, the search for the lower and 
the upper boundary of the pseudo empirical likelihood ratio 
confidence interval for Y  involves the same type of profile 
analysis. Under non-stratified sampling designs, the 

−α− )1( level PEL ratio confidence interval of Y  is 
constructed as 

)},()(|{ 2
1 αχ<θθ nsr  (4.1) 

where )(2
1 αχ  is the α−1  quantile from a 2χ  distribution 

with one degree of freedom. The pseudo empirical log 
likelihood ratio statistic )(θnsr  is computed as  

)},ˆ()~({2)( pp nsnsns llr −−=θ  

where the p̂  maximize )( pnsl  subject to the set of 
“standard constraints” such as (2.2) and the p~  maximize 

)( pnsl  subject to the “standard constraints” plus an 
additional one induced by the parameter of interest, ,Y  i.e. 

∑
∈

θ=
si

ii yp .  (4.2) 

To compute p~  one needs to treat (4.2) as an additional 
component of the “standard constraints” for each fixed 
value of θ  so that the maximization process is essential the 
same as before. 

Let )ˆ,ˆ( UL  be the interval given by (4.1). Our proposed 
bi-section method in searching for L̂  and Û  is based on 
following observations:  

i) The minimum value of )(θnsr  is achieved at =θ  
.ˆˆ PELYypsi ii =∑ ∈  In this case pp ˆ~ =  and =θ)(nsr  

.0   
ii) The interval )ˆ,ˆ( UL  is bounded by ),( )()1( nyy  where 

},{min)1( siyy i ∈=  and }.,{max)( siyy in ∈=    
iii) The pseudo empirical likelihood ratio function 

)(θnsr  is monotone decreasing for )ˆ,( PEL)1( Yy∈θ  
and monotone increasing for ).,ˆ( )(PEL nyY∈θ  

 
Conclusion iii) can be reached by noting that )ˆ( pnsl  does 
not involve θ  and ∑ ∈= si iins pdnl )~(log)~( **p  is typically a 
concave function of .θ  It is also possible to show this by 
directly checking ./)( θθ ddrns  For instance, in the case of 
no auxiliary information involved, the “standard con-
straints” are 0>ip  and ∑ ∈ =si ip .1  The ip̂  are given by 

*
id  and ∑ ∈= si ii ydY .ˆ *

PEL  The ip~  are computed as 
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,
)(1

~
*

θ−λ+
=

i

i
i y

d
p  (4.3) 

where the λ  is the solution to  

∑
∈

=
θ−λ+

θ−
si i

ii

y

yd
.0

)(1

)(*

 (4.4) 

Using (4.3) and (4.4), and noting that ∑ ∈si id /*  
,1))(1( =θ−λ+ iy  it is straightforward to show that  

∑
∈

λ−=
θ−λ+

λ−θ−θλ=θ
θ si i

ii
ns n

y

yddd
nr

d

d
.2

)(1

})()/{(
2)( *

*
*  

By re-writing )(* θ−ii yd  as )(* θ−ii yd )}(1[{ θ−λ+ iy  
)]( θ−λ− iy  and after some re-grouping in (4.4) we get  

∑ ∑
∈ ∈

θ−=
θ−λ+

θ−λ
si si

ii
i

ii yd
y

yd
.

)(1

)( *
2*

 

It follows that 02/)( * <λ−=θθ nddrns  if <θ  
∑ ∈ =si ii Yyd PEL

* ˆ  and 0/)( >θθ ddrns  otherwise.  
Sample codes for finding )ˆ,ˆ( UL  where no auxiliary 

variable is involved are included in the Appendix. In this 
case *ˆ ii dp =  and ∑ ∈ == si Hii YydY ˆˆ *

PEL  is the Hajek 
estimator for .Y  The profiling process involves finding λ  
for each chosen value of θ  and evaluating the PEL ratio 
statistic )(θnsr  against the cut-off value from the 2

1χ  
distribution under the desired confidence level .1 α−  With 
auxiliary information, one needs to modify the computation 
of )(θnsr  for each fixed .θ  The bi-section search algorithm 
for finding L̂  and Û  remains the same. 

The value of the effective sample size *n  is required for 
computing the PEL ratio statistic ).(θnsr  For non-stratified 
sampling designs it is computed as )(ˆ/ˆ 2* yVSn y=  where  

∑ ∑
∈ > π

−
−

=
si ij ij

ji
y

yy

NN
S ,

)(

)1(

1ˆ
2

2  

and 

∑ ∑
∈ >

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
−

ππ
π−ππ

=
si ij j

j

i

i

ij

ijji ee

N
yV ,

1
)(ˆ

2

2
 

where HTŶye ii −=  and ∑ ∈
−= si ii ydNY .ˆ 1

HT  See Wu and 
Rao (2004) for further detail. Computation of *n  involves 
the second order inclusion probabilities ijπ  which  may 
impose a real challenge if a psπ  sampling scheme is used. 
In the simulation study reported in Wu and Rao (2004), the 
Rao-Sampford psπ  sampling method was used. R 
functions for selecting a psπ  sample using this method as 
well as for computing the related second order inclusion 
probabilities can be found in Wu (2004b). Similar R 
functions are also available in an add-on R package called 
“pps”, written by J. Gambino (2003), which can be 
downloaded from the R homepage http://cran.r-project.org/ 
by clicking the packages option. 
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Appendix: R/S-PLUS Codes  

A1. R Function for solving 0)(1 =λg . 
 

Let m  be the number of auxiliary variables involved and 
.2≥m  There are three required arguments in the function 

Lag2(u,ds,mu):  
 

(1) u: the mn×  data matrix with ix  as its thi  row, 
....,,1 ni =  

 
 (2) ds: the 1×n  vector of design weights consisting of 

....,,1 ndd  
 

 (3) mu: the 1×m  population mean vector .X  
 
The output of the function is the solution to .0)(1 =λg  
 
Lag2<-function(u,ds,mu) 
{ 
   n<-length(ds) 
   u<-u-rep(1,n)%*%t(mu) 
   M<-0*mu 
   dif<-1 
   tol<-1e-08 
   while(dif>tol){ 
      D1<-0*mu 
      DD<-D1%*%t(D1) 
      for(i in 1:n){ 
         aa<-as.numeric(1+t(M)%*%u[i,]) 
         D1<-D1+ds[i]*u[i,]/aa 
         DD<-DD-ds[i]*(u[i,]%*%t(u[i,]))/aa^2 
                   } 
      D2<-solve(DD,D1,tol=1e-12) 
      dif<-max(abs(D2)) 
      rule<-1 
      while(rule>0){ 
         rule<-0 
         if(min(1+t(M-D2)%*%t(u))<=0) rule<-rule+1 
         if(rule>0) D2<-D2/2 
                   } 
      M<-M-D2 
   } 
   return(M) 
} 
 
A2. R Function for solving 0)λ(2 =g . 
 

When the x  variable is univariate, the solution to 
0)λ(2 =g  can be found through a simple and reliable bi-

section method. The three required arguments for the 
function Lag1(u,ds,mu) are u ),...,,( 1 nxx=  ds =  

)...,,( 1 ndd  and mu .X=  The output is the solution to 
.0)λ(2 =g  
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Lag1<-function(u,ds,mu) 
{ 
   L<--1/max(u-mu) 
   R<--1/min(u-mu) 
   dif<-1 
   tol<-1e-08 
   while(dif>tol){ 
      M<-(L+R)/2 
      glam<-sum((ds*(u-mu))/(1+M*(u-mu))) 
      if(glam>0) L<-M 
      if(glam<0) R<-M 
      dif<-abs(glam) 
   } 
   return(M) 
}  
 
A3. Sample code for stratified sampling.  

We need to call the function Lag2(u,ds,mu) from 
nonstratified sampling. The key step is to prepare the data 
file into suitable format. Let   

(1) n )...,,( 1 Hnn=  be the vector of stratum sample 
sizes.  

(2) x be the data matrix with hix  as row vectors, 
....,,1,...,,1 Hhni h ==   

(3) ds = ),...,,...,,...,,( **
1

*
1

*
11 1 HHnHn dddd  where *

hid  
are the normalized initial design weights for 
stratum .h   

(4) X be the vector of known population means.  
(5) W )...,,( 1 HWW=  be the vector of stratum 

weights (i.e., NNW hh /= ). 
 
The following sample codes show how the solution to  

0λ =)(3g  is found (M from the second last line of the 
following code) and how the hip̂ ’s are computed (phi from 
the last line).  
 
### 
nst<-sum(n) 
k<-length(n)-1 
ntot<-rep(0,k) 
   ntot[1]<-n[1] 
   for(j in 2:k) ntot[j]<-ntot[j-1]+n[j] 
ist<-matrix(0,nst,k) 
   ist[1:n[1],1]<-1 
   for(j in 2:k) ist[(ntot[j-1]+1):ntot[j],j]<-1 
uhi<-cbind(ist,x) 
mu<-c(W[1:k],X) 
whi<-rep(W[1],n[1]) 
   for(j in 2:(k+1)) whi<-c(whi,rep(W[j],n[j])) 
dhi<-whi*ds 
M<-Lag2(uhi,dhi,mu) 
phi<-as.vector(ds/(1+(uhi-rep(1,nst)%*%t(mu))%*%M)) 
### 
 
A4. Sample code for finding the PEL ratio confidence 

interval.  
The search for the lower boundary (LB) and the upper 

boundary (UB) of the PEL ratio confidence interval needs to 
be carried out separately. The following codes show how 
this is done for the case of no auxiliary information. With 
auxiliary information, one needs to modify the computation 

of the involved pseudo empirical likelihood ratio statistic 
(elratio) accordingly. Let   

(1) a α−= 1  be the confidence level of the desired 
interval.  

(2) ys )...,,( 1 nyy=  be the sample data.  
(3) ds = )...,,( **

1 ndd  be the normalized design 
weights.  

(4) YEL ∑ ∈= si ii yp̂  (in this case ).ˆ *
ii dp =   

(5) nss be the estimated effective sample size .*n  
 
### 
tol<-1e-08 
cut<-qchisq(a,1) 
### 
t1<-YEL 
t2<-max(ys)  
dif<-t2-t1 
while(dif>tol){ 
      tau<-(t1+t2)/2 
      M<-Lag1(ys,ds,tau) 
      elratio<-2*nss*sum(ds*log(1+M*(ys-tau))) 
      if(elratio>cut) t2<-tau 
      if(elratio<=cut) t1<-tau 
      dif<-t2-t1 
            } 
UB<-(t1+t2)/2 
### 
t1<-YEL 
t2<-min(ys)  
dif<-t1-t2 
while(dif>tol){ 
      tau<-(t1+t2)/2 
      M<-Lag1(ys,ds,tau) 
      elratio<-2*nss*sum(ds*log(1+M*(ys-tau))) 
      if(elratio>cut) t2<-tau 
      if(elratio<=cut) t1<-tau 
      dif<-t1-t2 
            } 
LB<-(t1+t2)/2 
### 
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