## Research Paper

# Analytical Studies Branch Research Paper Series <br> Differences in the Distribution of High School Achievement: The Role of Class Size and Time-in-term 

by Miles Corak and Darren Lauzon
Family and Labour Studies Division
24th floor, R.H. Coats Building, Ottawa, K1A 0T6
Telephone: 1800 263-1136


# Differences in the Distribution of High School Achievement: The Role of Class Size and Time-in-term 

by Miles Corak* and Darren Lauzon**

11F0019 No. 270
ISSN: 1205-9153
ISBN: 0-662-42176-0
*Family and Labour Studies
Statistics Canada
Ottawa K1A 0T6
**Family and Labour Studies
Statistics Canada
Vancouver V6B 6C7
How to obtain more information:
National inquiries line:1 800 263-1136
E-Mail inquiries: infostats@statcan.ca
The paper is available on Internet: (www.statcan.ca)
November 2005

Earlier versions of this paper were presented at Symposium 2002: Using Survey Data for Social and Economic Research (Ottawa) and the Canadian Employment Research Forum session "Education Schooling and the Labour Market", Canadian Economics Association meetings May $29^{\text {th }}-30^{\text {th }} 2003$, Carleton University, Ottawa. The authors thank participants at these events for useful comments and suggestions.

Published by authority of the Minister responsible for Statistics Canada
© Minister of Industry, 2005
All rights reserved. Use of this product is limited to the licensee and its employees. The product cannot be reproduced and transmitted to any person or organization outside of the licensee's organization.

All rights reserved. The content of this publication may be reproduced, in whole or in part, and by any means, without further permission from Statistics Canada, subject to the following conditions: that it is done solely for the purposes of private study, research, criticism, review, newspaper summary, and/or for non-commercial purposes; and that Statistics Canada be fully acknowledged as follows: Source (or "Adapted from", if appropriate): Statistics Canada, name of product, catalogue, volume and issue numbers, reference period and page(s). Otherwise, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopy, for any purposes, without the prior written permission of Licensing Services, Marketing Division, Statistics Canada, Ottawa, Ontario, Canada K1A 0T6.

## Cette publication est disponible en français.

## Note of appreciation:

Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued cooperation and goodwill.

## Table of Contents

I. Introduction ..... 5
II. Class size and time-in-term ..... 7
III. The DFL decomposition ..... 9
IV. The data ..... 12
V. Results ..... 14
V. 1 The contribution of differences in student-teacher ratios and time-in-term ..... 15
V. 2 The contribution of differences in other school factors ..... 16
V. 3 The contribution of differences in student background factors ..... 16
V. 4 Decomposition of selected statistics: Reading distribution ..... 16
V. 5 The effect of the dual language systems in Nova Scotia and New Brunswick. ..... 18
V. 6 The order of decomposition ..... 19
V. 7 The remaining provinces ..... 20
VI. Summary and conclusion. ..... 20
Figures ..... 21
Tables ..... 29
References ..... 40


#### Abstract

This paper adopts the decomposition technique of DiNardo, Fortin and Lemieux (DFL, 1996) to decompose provincial differences in the distribution of Programme for International Student Assessment (PISA) test scores and assesses the relative contribution of provincial differences in the distribution of "class size" and time-in-term, other school factors and student background factors. Class size and time-in-term are both important school choice variables and we examine how provincial achievement differences would change if the Alberta distribution of class size and time-in-term prevailed in the other provinces. Results differ by province, and for provinces where mean achievement gaps would be lower, not all students would benefit.


Keywords: Educational economics, Human capital, Input-output analysis
JEL: 122

## I. Introduction

Variation in school outcomes across jurisdictions raises important questions about equal access to good education and the effectiveness of policy alternatives. Provincial variation has been a consistent feature of recent assessments of high school achievement in Canada over the 1990s. ${ }^{1}$ Though not directly comparable, the general pattern in these assessments is one in which the central and western provinces do better, according to summary measures like mean test scores, than the eastern provinces. Québec and Alberta consistently perform well in tests of mathematics and science. Results from the 2000 Programme for International Student Assessment (PISA) confirmed this pattern.

It is natural to ask to what extent provincial variation in school inputs and the composition of student populations contributes to these differences. The widely cited reviews by Hanushek (1986, 1996) suggest to many that "schools don't matter" in explaining test score variation. Specifically what is meant is that the variation in test scores explained by school inputs such as per pupil funding, class size and teacher qualifications is small relative to family background (usually family income) and other "home environment" variables. School effects tend to be small, statistically insignificant and often the wrong sign. ${ }^{2}$ The implication of this is that variation in student backgrounds across provinces would explain more of the observed provincial gaps. Hanushek and Taylor (1990) find this in a study of variation between U.S. states in educational outcomes.

The conclusion that schools do not matter can and has been challenged on many grounds. We focus on two in this paper. ${ }^{3}$ First, school inputs are choice variables and so observed levels reflect in part the features of the student population. This is not often accounted for in studies of student achievement and simply adding student and school input variables into a linear regression model can be problematic. Lazear (1999) shows that puzzling findings in the literature on class size can be explained by considering a simple public-goods model of classroom learning and its implications for optimal class size. Second, the vast majority of papers employ variations of a linear parametric regression model of an education production function. Specification issues involving such models have been well documented (Hanushek, 1979, 1986). Recent panel data in the United States have allowed improved estimation, particularly by allowing one to estimate value-added models so that "innate ability" is better controlled for, but omitted variables and measurement error remain important. These are especially relevant in the context of random effects and higher-order error components models, like the hierarchical linear model (HLM),

1. See Corak and Lauzon, 2002.
2. This is of course in contrast to the literature that shows school inputs do matter in explaining labour market outcomes such as earnings and employment (see Card and Krueger, 1992).
3. Card and Krueger (1992) argue that there are too many positive findings in the literature to be due merely to chance and cite meta-analyses such as those of Hedges, Laine and Greenwald (1994) that come to different conclusions reviewing the same studies as Hanushek. Loeb and Bound (1996) find evidence that cohorts and data aggregation explain the divergence in the two literatures; "studies finding positive effects of school inputs typically use aggregate data on cohorts educated before 1960 while studies finding no effects tend to use micro-level data on more recent cohorts".
where strong assumptions about the correlation between omitted variables and included regressors are required to obtain desirable statistical properties. ${ }^{4}$

Despite these concerns, surprisingly few studies have addressed the use of the linear parametric regression framework and its emphasis on average outcomes. School systems do not uniformly impact students. If the role of schools is to bring all students to a minimum standard of achievement, regardless of initial cognitive endowments, the expected impact of schooling inputs would be greater for the least skilled (or most at-risk) students. For example, where smaller sizes have had a positive effect, it has tended to be greatest for disadvantaged students (Lazear, 1999). Alternatively, school resources may be more productively used on students with greater learning potential. Vulnerable students may fall through the cracks and so changes in school inputs would have greater effect for higher achievers. Some papers have examined the distribution of school outcomes (Levin, 2001, Bedard, Brown and Helland, 1999, Eide and Showalter, 1998) but continue the use of parametric forms (quantile regression in the case of Eide and Showalter and Levin and ordered probit in the case of Bedard et al.).

Lastly, many studies emphasize the marginal effects of school inputs on an achievement variable. While the marginal effect of a small change in class size might be small, large variation between policy jurisdictions in the distribution of class sizes could contribute a large amount to observed differences in achievement. They could even contribute more than the variation in family background characteristics if these do not differ substantially between regions even if family background characteristics have larger marginal effects. The same is true of variations in achievement over time. Cook and Evans (2000) find a small contribution for both student background and school factors in explaining the black-white achievement convergence in the United States. In such cases, decomposition of differences provides another source of evidence on the relative importance of school and student inputs.

In this paper we use the semi-parametric approach developed by DiNardo, Fortin and Lemieux (DFL, 1996) to decompose differences in provincial achievement distributions into components attributable to student background and school factors. This paper extends previous work (Corak and Lauzon, 2002) which explored the relative role of school inputs and student background factors in explaining provincial variation in achievement distributions using the 1999 PISA data for Canada. We focus here on the role of "class-size" and time-in-term, the latter referring to the total amount of instructional time and how it is distributed through the year. These are important control variables for school administrators. Much has been written on class size and public debate on the merits of class size reduction continues. Reductions cost money but (it is argued) the benefit is higher student performance. Reallocating time-in-term is also becoming a serious policy option and is being discussed in the popular press. Recently, school districts in the U.S. and Canada (the Grand Forks District in British Columbia) have adopted four-day school weeks and report significant cost savings and increased student performance.

We examine differences between Alberta, the highest performing province in the PISA assessments, and the Atlantic provinces in reading, mathematics and science achievement distributions. The Atlantic provinces are the only provinces whose mean scores are statistically

[^0]significantly lower than Alberta's in all three subject domains. Two provinces, Nova Scotia and New Brunswick also have dual language school systems. We therefore do a separate analysis for these provinces for the English language sector (the majority sector in both) and use this to infer the contribution of within province differences between the language sectors to the gap with Alberta. We get quite different results depending on which provincial difference we analyze, for what part of the distribution and for which subject domain. In some cases, differences in class size and time-in-term do not explain differences in mean or median performance because of offsetting changes in the upper and lower parts of the achievement distribution. In most cases, it is clear that differences in class size and time-in-term do account for differences in mean or median performance but that this can mask the fact that these differences might actually reduce differences between the provinces in particular parts of the distribution. For example, we find that differences in the distribution of class size and time-in-term between Alberta and New Brunswick explain a large part of the difference in average reading performance between these two provinces but these differences actually reduce differences in the proportion of students performing below the lowest proficiency standard in reading. This observation is an important one. Policy makers influenced by an analysis of average differences might seek policies that could disadvantage the most vulnerable students.

The paper is organized as follows. Section II discusses some recent literature on class size reduction and time-in-term. Section III details our use of the DFL decomposition approach. Section IV describes the Canadian PISA data and the factors we consider. Results are in Section V and Section VI concludes.

## II. Class size and time-in-term

The large literature on class sizes notwithstanding, public debate on the subject continues. The debate centres on the extent to which smaller classes improve student achievement and whether this benefit (if it exists) is cost effective. The spectrum is wide. Hanushek (1998) argues that evidence about the achievement improvements from smaller class sizes is "meager and unconvincing". Referring to the STAR experiment in Tennessee, Hanushek further argues that "widely cited experimental evidence actually offers little support for reductions in class size." Examining the data from the same experiment, Krueger (1997) concludes the opposite. ${ }^{5}$ Ehrenberg et al. (2001) find that in other studies, "quasi experimental" findings tend to support the Tennessee results. Debate is still open. Even studies that carefully identify truly exogenous variation in class size can find different results; Hoxby (2000) in the negative and Angrist and Lavy (1999) in the positive.

Lazear (1999) suggests that many of these "puzzling" findings in the literature can be explained by a simple model of education production that treats classroom learning as a public good. Consumption of the public good is disrupted if the teacher must focus attention on an individual student. This can occur not only if a student is disruptive, but if a student asks a question to which everyone else in the class knows the answer. If $p$ represents the probability that any one

[^1]student is not disrupting the class at a given time, then the public good is being consumed with probability $p^{n}$ in a class of size $n$. This is the key parameter of the Lazear model and the comparative statics of this simple model reveal that optimal class size varies directly with this (smaller $p$ implies a higher optimal level of teachers which in turn implies smaller class sizes). Inconclusive test score results reported in the literature can follow from two sources. First, the magnitude of any improvement in overall class learning from a reduction in class size can be quite small depending on the values of $p$, the costs of teacher time, the productivity of a moment of teacher time, the returns to a moment of teacher time and the current class size. Second, because $p$ is negatively related to the optimal choice of teaching input, smaller classes have students with lower $p$ in them (i.e., have more "disruptive" students). Lazear shows that the positive effect of reducing class size is insufficient to overcome this deficiency. For this reason, positive class size effects in cross-sectional studies are not so surprising. More importantly, these inconclusive results do not mean there is no potentially large class size effect. If any group of students with a fixed $p$ were placed in a larger class, educational output would fall. This is why experiments that leave $p$ constant find expected results (as examples, he cites Krueger, 1997 and Angrist and Lavy, 1999). ${ }^{6}$ Hoxby (2000), however, did not find any significant advantage to class size reduction in her study of a natural experiment in Connecticut.

Lazear's model also introduces the important idea that classroom learning is a public good. This conceptually connects the notion of class size with time-in-term. Class size in a public goods setting refers to the number of "consumers" of the good. Time-in-term refers to the total amount of the good that is available to consume. ${ }^{7}$ Time-in-term is typically not studied because of little variation in most available data sets. Schools have begun considering both the total amount of instructional time and how it is allocated. In Arizona, several school districts have switched to a four-day school week, as has The Grand Forks district in British Columbia. In the context of the Lazear model, both class size and time-in-term are directly related to the choice of teacher inputs. It makes sense to treat these inputs as closely related.

A final note on the meaning and definition of class size is necessary. Many studies use the student-teacher ratio rather than an actual count of students in a particular class and this is often criticized as not reflecting the experience of individual students whose performance is the focus of study. Individual class sizes vary within schools for a number of reasons. One important reason is that secondary school students typically take different subjects and these are sometimes taught in multiple classrooms by different teachers. Thus, class size as reported by students in a particular classroom is a result not only of optimal teaching inputs determined by school administrators but also the selection of particular classes by students. The relevant class size to relate to a particular achievement outcome in this case is not always clear and selection by students should be accounted for. Student-teacher ratios are a useful measure of the overall amount of teaching resources per student in the school. The kind of variable that is most
6. Hoxby (2000) suggests that Hawthorne effects and other "reactive behaviour" could explain why her results differ from those of policy experiments like STAR; school administrators "make good use of smaller class sizes because full enactment of the policy depends on a successful evaluation". In her data, school staff were unaware of the natural experiment.
7. Alternatively, if longer academic years are devoted to a larger array of topics, rather than more detailed attention paid to the same topics taught in shorter academic years, there is a greater spectrum of related public goods to consume.
appropriate depends on the intended analysis. This study considers variations in class size to be a reflection of variations in the optimal level of an input variable so the student-teacher ratio is the desired measure. It turns out that there is more interprovincial variation in this variable than in student-reported class size.

## III. The DFL decomposition

This section describes the DFL approach, in the context of achievement differences between provinces. Let $(y, p, z)$ be a jointly distributed random vector of test scores, provinces, and school and family background covariates respectively. The goal is to decompose the difference in marginal test score densities $f_{1}(y)-f_{0}(y)$ into parts attributable to differences between the two provinces in the distribution of different components of $z$. Therefore, we require counterfactual density functions that depict the distribution of test scores in a given province (province 1) if the school or family background characteristics were distributed as they are in a baseline province (province 0 ) and students are otherwise educated as they would be in province 1. This is a generalization of the familiar Oaxaca decomposition (Oaxaca, 1973) to differences in distributions. The central insight of DFL is that these counterfactual densities are obtained simply by re-weighting the actual density.

For ease of notation, we write out the steps for deriving the weights as though there were just two factors being considered (say "school" factors $x$ and "student" factors $w$ ). With $z=(x, w)$, the actual marginal test score density for province $i$ can be written

$$
\begin{align*}
f_{i}(y) & =\int_{z \in \Omega} d F\left(y, z \mid p_{y}=p_{z}=i\right) \\
& =\int_{z \in \Omega} f\left(y \mid z, p_{y}=i\right) d F\left(z \mid p_{z}=i\right)  \tag{1}\\
& =f\left(y ; p_{y}=p_{z}=i\right) \\
i & =1,0
\end{align*}
$$

where $\Omega$ is the covariate support. ${ }^{8}$ This provides the notational convention for expressing for which province the distribution of test scores and covariates is being considered and separates out the distribution of covariates.

This marginal density can be estimated by means of the kernel density estimator:
$\hat{f}_{1}(y)=\sum_{i \in p_{y}=1} \frac{\theta_{i}}{h} K\left(\frac{y_{0}-y_{i}}{h}\right) \equiv \kappa\left(K, h, \theta_{i}\right)$
8. If $Y$ were discrete with values $y$ in the rows of a table and $Z$ were a single discrete variable with values $z$ in the column of a table, the first equality is just the sum of the cell proportions across columns in each row. The second is just the product of the column proportion times the proportion with $\mathrm{Z}=\mathrm{z}$ (i.e., the column marginal proportion) summed over the columns.

The kernel density estimator has been discussed in several papers (DiNardo, Fortin and Lemieux, 1996; Blundell and Duncan, 1998; Yatchew, 1998; DiNardo and Tobias, 2001. Here $\theta_{i}$ is the sample weight, normalized to sum to one. The function $K$ is the kernel and gives decreasing weight to points of greater distance from $y_{0}$. The kernel estimator is a generalization of the familiar histogram which can be obtained from (2) with a suitably chosen kernel. Generally, estimates are robust to choices of $K$ but not to different choices of $h .{ }^{9}$ The tradeoff is one of variance versus bias. If $h$ is too large, the density will be over-smoothed relative to the true density and if $h$ is too small, the true shape of the density will be estimated imprecisely. The choice of $h$ remains an open subject of research. DFL use the "plug-in" method of Sheather and Jones (1991) as this has been shown to be a better selection in cases of complex, multi-modal densities (Park and Turloch, 1992). Since the underlying plausible value estimates used in this paper are drawn from symmetric probability distributions, this is less of a concern with this data. In this study, we use the "rule-of-thumb" estimator suggested by Silverman (1986), $h=0.9(\min \{\hat{\sigma}, I Q R / 1.34\}) n^{-1 / 5}$, where $\hat{\sigma}$ is the sample standard deviation, $I Q R$ is the inter-quartile range (the difference between the $75^{\text {th }}$ and $25^{\text {th }}$ percentiles) and $n$ is the sample size.

The weights used to obtain the counterfactual densities follow directly from the expression for the actual density. Controlling first for differences in school characteristics, we can adjust the actual density as follows:

$$
\begin{align*}
f_{1}\left(y ; p_{y}\right. & \left.=1, p_{x}=0, p_{w}=1\right) \\
& =\int_{x} \int_{z} f(y \mid x, w) d F\left(x \mid w, p_{x}=0\right) d F\left(w \mid p_{z}=1\right)  \tag{3}\\
& =\int_{x} \int_{z} f(y \mid x, w) \psi_{x \mid w}(x, w) d F\left(x \mid w, p_{x}=1\right) d F\left(w \mid p_{z}=1\right)
\end{align*}
$$

where

$$
\begin{align*}
\psi_{x \mid w}(x, w) & \equiv \frac{d F\left(x \mid w, p_{x}=0\right)}{d F\left(x \mid w, p_{x}=1\right)} \\
& =\left(\frac{p r\left(p_{x}=0 \mid x, w\right)}{\operatorname{pr}\left(p_{x}=1 \mid x, w\right)}\right)\left(\frac{\operatorname{pr}\left(p_{x}=1 \mid w\right)}{\operatorname{pr}\left(p_{x}=0 \mid w\right)}\right) \tag{3'}
\end{align*}
$$

The last equality follows from Bayes rule, and the ratios are easily estimated by means of a logit model. ${ }^{10}$ With an estimate of $\widehat{\psi}_{x \mid w}(x, w)$ in hand, the counterfactual density can be estimated as $\kappa\left(K, h, \theta_{i}^{\prime}\right)$ with $\theta_{i}^{\prime}=\theta_{i} \widehat{\psi}_{x \mid w}^{j}(x, w)$.

The counterfactual density for differences in student background characteristics is similarly obtained.
9. Restricting $K$ to a certain class of functions.
10. That is the ratios are just odds ratio of being in province 1 or 0 conditional on $x$ and $w$. Though DFL used the probit, we used the logit for computational convenience and because the average of the predicted success probabilities is the sample mean proportion if the model contains a constant term.

$$
\begin{align*}
f_{1}\left(y ; p_{y}\right. & \left.=1, p_{x}=0, p_{w}=1\right) \\
& =\int_{x} \int_{z} f(y \mid x, w) d F\left(x \mid w, p_{x}=0\right) d F\left(w \mid p_{z}=0\right)  \tag{4}\\
& =\int_{x} \int_{z} f(y \mid x, w) \psi_{x \mid w}(x, w) d F\left(x \mid w, p_{x}=1\right) \psi_{w}(w) d F\left(w \mid p_{z}=1\right)
\end{align*}
$$

where $\psi_{x \mid w}(x, w)$ is defined as before and

$$
\begin{equation*}
\psi_{w}(w)=\frac{d F\left(w \mid p_{w}=0\right)}{d F\left(w \mid p_{w}=1\right)}=\left(\frac{\operatorname{pr}\left(p_{w}=0 \mid w\right)}{\operatorname{pr}\left(p_{w}=1 \mid w\right)}\right)\left(\frac{\operatorname{pr}\left(p_{w}=1\right)}{\operatorname{pr}\left(p_{w}=0\right)}\right) \tag{4'}
\end{equation*}
$$

Again, the last equality follows from Bayes rule and the ratios can be estimated with logit models. With an estimate $\widehat{\psi}_{w}(w)$, we estimate the counterfactual for both school and family background differences as $\kappa\left(K, h, \theta_{i}^{\prime \prime}\right)$ with $\theta_{i}^{\prime \prime}=\theta_{i}^{\prime} \bar{\psi}_{w}^{i}(w)$.

In this paper, we distinguish the contribution of student-teacher ratio and time-in-term. Thus by the same process, isolate from the school vector $x$, a subset $s$ representing the distribution of student-teacher ratios, time-in-term variables and their interactions (leaving the remaining school factors as part of $x$ ). Applying the same steps would yield the weighting function (if $s$ were considered first)

$$
\begin{align*}
\psi_{s \mid x, w}(s, x, w) & \equiv \frac{d F\left(s \mid x, w, p_{s}=0\right)}{d F\left(s \mid x, w, p_{s}=1\right)} \\
& =\left(\frac{\operatorname{pr}\left(p_{s}=0 \mid s, x, w\right)}{\operatorname{pr}\left(p_{s}=1 \mid s, x, w\right)}\right)\left(\frac{p r\left(p_{s}=1 \mid x, w\right)}{\operatorname{pr}\left(p_{s}=0 \mid x, w\right)}\right) \tag{5}
\end{align*}
$$

Finally, simplifying the notation $\hat{f}\left(y ; p_{y}=i, p_{s}=i, p_{x}=i, p_{w}=i\right)$ to $\hat{f}_{i i i i}$, we decompose the differences in densities as follows:

$$
\begin{equation*}
\hat{f}_{1111}-\hat{f}_{0000}=\hat{f}_{1111}-\hat{f}_{1011}+\hat{f}_{1011}-\hat{f}_{1001}+\hat{f}_{1001}-\vec{f}_{1000}+\hat{f}_{1000}-\hat{f}_{0000} \tag{6}
\end{equation*}
$$

The differences to the right of the "equals" sign represent in order, the contribution of differences in student-teacher ratio and time-in-term, the contribution of other school factors, the contribution of student background factors and a residual. The order of decomposition could potentially be important so we also decompose the difference in densities in reverse order as a point of comparison.

The clustered nature of the data does not present any direct issues for estimation as it would in the linear regression context. The clustering suggests that outcomes are correlated within schools, which, in the regression context, violates an assumption of the classical linear regression model. This is a widely cited reason for using estimation approaches like the HLM to estimate regression parameters. Kernel estimates of the density function do not require assumptions about the independence of observations. Inference, however, is affected by the correlation. As indicated above, variance estimation for non-parametric regression and density estimates is an
open discussion in the literature. Replication methods like the bootstrap or the jackknife are often recommended. ${ }^{11}$ Replication methods are advantageous when using complex survey data (like the Canadian YITS/PISA data) if the sample selection processes are applied in producing the replicate samples and survey weighs are recalculated accordingly. For PISA, balanced repeated replication was used to provide 80 replicate samples for variance estimation. Each sample is represented by a unique weight and these weights can be used to calculate the sampling variation of a statistic estimated from the data.

## IV. The data

We use the Canadian results from the Programme for International Student Assessment (PISA) conducted by member OECD countries in April and May of 2000. The PISA is based on a twostage design with about 1200 schools sampled at a first stage then a random sample of 15 year old students within the schools taken in the second stage. ${ }^{12}$ Students were administered a twohour written test to assess their knowledge of reading, mathematics and science. The primary subject domain of the 2000 PISA was reading meaning that about two-thirds of the test items were reading related. Surveys were administered to students who participated in the test as well as principals of their schools. In Canada, the PISA was integrated with the Longitudinal Youth in Transition Survey (YITS), so participating students also completed the YITS questionnaire. The resulting sample size for Canada was about 30,000 , much larger than for those of other countries, enabling analysis at the provincial level.

There are two class size measures available on the data. The first is self-reported by students and is their estimate of the average number of students in their language, mathematics and science classes (i.e., there is one variable for each). These variables vary within schools and reflect the different course-taking experiences of individual students. The second is the student-teacher ratio. Both variables have advantages, but as discussed earlier, we focus on the student-teacher ratio.

Time-in-term data come from the school questionnaire. These data are provided by principals and give the number of weeks in the academic year, the usual number of classes per week and the usual number of minutes per class. Days per week are not collected. Still, the data provide insight into the organization of instructional time by school administrators.

The first factor in the decompositions is the distribution of class size, the three time-in-term variables, total hours of instructional time per year and the interaction of these with the student-

[^2]teacher ratio. ${ }^{13}$ These variables provide the most complete picture available from this data on provincial variation in the allocation of teacher resources.

It should be noted that there is information from the school questionnaire on the proportion of teachers with various educational qualifications in reading, science, mathematics and education. These variables had many missing values and reduced significantly the sample available for estimation and so were not used. Unlike TIMSS, PISA did not sample intact classrooms and so there is no teacher survey.

Student variables were chosen to reflect those factors that are best considered exogenous to the school system. For that reason, we focus on indicators of birth origin (of students and parents), single-parent status, parental education and occupation, parental labour force attachment at the time of the survey, and the degree to which the student uses the language of testing at home. ${ }^{14}$ In choosing school variables, we wanted to capture variation between the provinces in characteristics receiving a lot of attention in the academic literature and public debate. Data on other school factors come from the school questionnaire. Variables include dummy variables for population of the school community, dummies that capture the degree to which the school uses standardized tests and how student evaluations are used by school administrators and measures of teacher morale reported by school principals.

The dependent variable in this paper is the reading test results. There are actually five variables for each student that reflect their performance on the test. These "plausible values" are a means of estimating aggregate population statistics (such as mean performance) that do not suffer from biases inherent in other estimation methods, particularly with tests of relatively few items. ${ }^{15}$ Aggregate statistics can be estimated with any one set of plausible values. It is recommended, however, to use all five values. In the case of the density estimates used here, this means that the reported density (in the notation of equation (7) ) is
$\widehat{f}_{i i i i}=\frac{1}{J} \sum_{j} \widehat{f}_{i i i i, j}$
where $j$ indexes the J plausible values. The use of plausible values introduces another source of variation associated with the process used to estimate them. If $v_{j}$ is the sampling variation of $\hat{f}_{\text {iiii,j }}$, then

$$
\begin{equation*}
v=\frac{1}{J} \sum_{j=1}^{J} v_{j}+\left(1+\frac{1}{J}\right)\left(\frac{1}{J-1}\right) \sum_{j=1}^{J}\left(\hat{f}_{i i i i, j}-\hat{f}_{i i i i}\right)^{2} . \tag{8}
\end{equation*}
$$

13. Total hours per year of instruction is equivalent to the interaction of the weeks/year, classes/week and minutes/class variables.
14. At the time this analysis was done, variables from the YITS parents' questionnaire were not available.
15. For a discussion of plausible values see Mislevey (1991). For more general discussions in the context of the PISA achievement data see OECD (2002).

As mentioned previously, in this analysis, the sampling variances $v_{j}$ are obtained using the balanced repeated replication (BRR) weights provided with the PISA data.

Proficiency cutoff values were provided on the data to make more concrete the scoring metric used for the test results. These proficiency levels (1 to 5) reflect specific skills a student performing at that level has acquired. For details see (OECD, 2002).

## V. Results

Table 1 shows the mean student-teacher ratio, total annual hours of instruction, number of weeks per year, number of classes per week and minutes of instructional time per class by province. Both student-weighted and school-weighted data are shown. We see that on average, Alberta classes are bigger (as measured by the student-teacher ratio) and that students receive more annual instructional time than in other provinces. The average numbers however, mask some important features of the class size distribution and the organization of teaching time. Table 2 shows the distribution of class size in size categories by province. It can be seen that there are very few schools with extremely small classes (less than 10) and that Alberta's proportion of these is comparable to other provinces. Alberta has a much smaller share of schools in the 10 to 19 size category and a much larger share of schools in the 20-29 size category. Alberta also has a large share of schools in the greater than 30 category but this share is comparable to that in some other provinces such as Nova Scotia, Manitoba and Quebec. Table 3 shows the modal weeks per year, classes per week and minutes per class as well as the percentage of schools below the modal value. Most Canadian schools have 40 or fewer weeks in their academic year though there are more Alberta schools at the modal value of 40 than other provinces. The most notable differences in the organization of instructional time are in the number and duration of classes. In the rest of Canada, there are fewer classes per week: 84 percent of schools have 30 or fewer classes. In Alberta, the modal number of classes per week is 40 . As a consequence, typical class duration is 75 minutes in the rest of Canada whereas in Alberta there is much greater variation. 17 percent of schools have classes of 40 minutes and about $2 / 3$ of schools have classes less than 1 hour in length. In summary, while Alberta has a larger student-teacher ratio than other provinces on average, students there receive more total time in instruction broken up in more frequent, shorter classes per week.

Figures 1 to 3, show the differences between Alberta and each of the other provinces in the achievement distributions for reading, mathematics and science respectively. The vertical bars represent an indicator function that takes non-zero values at points where the two densities are statistically significantly different at the 95 percent level. The two densities are significantly different at a given point if their confidence intervals at that point do not overlap. The confidence intervals are computed using the Balanced Repeated Replication (BRR) weights provided with the data. The patterns are consistent with those when examining only the mean performance. The eastern provinces differ the most from Alberta as noted by the larger test score region in which the densities significantly differ.

An advantage of the kernel density estimator and the DFL decompositions is that they permit an easy, graphical depiction of the impact of various factors on the observed differences in test
scores. We present and discuss the graphical results first. Throughout this section, the term "class size" refers to the student-teacher ratio.

## V. 1 The contribution of differences in student-teacher ratios and time-in-term

Figure 4 shows the effect of fixing the distribution of class size and time-in-term at the Alberta level on the reading achievement distributions of the Atlantic provinces. The graphs show noticeable improvements in the distribution for Newfoundland and Labrador and New Brunswick. In Newfoundland and Labrador, many more students would be performing at or near the level 4 proficiency. In New Brunswick, more students would perform above the level 5 proficiency. In Prince Edward Island a larger proportion of students would perform between the level 1 and 2 proficiency and between the level 3 and 4 proficiency. In Nova Scotia there would be virtually no change.

Looking more closely at the proportion of students below level 1 proficiency, we see that there would be little improvement in New Brunswick but some improvement in Nova Scotia. Thus, the contribution of differences in student-teacher ratios and time-in-term is not constant throughout the achievement distribution. The Alberta student-teacher ratio and time-in-term distribution would disadvantage the poorest performing students in reading in these provinces.

Similar results are observed for the mathematics assessment. The OECD provided no proficiency intervals for the mathematics or science assessment results, unlike the reading assessment. Figure 5 shows the achievement distribution in the Atlantic provinces if the student-teacher ratios and time-in-term were distributed as they are in Alberta. The vertical line indicates the international average test score (500). In Newfoundland and Labrador more students would perform above the international average. In Prince Edward Island, the reverse is true. There would be virtually no change in the achievement distribution of Nova Scotia and the achievement distribution in New Brunswick would be shifted to the right, except for the lower tail, where a similar proportion of students would perform.

Figure 6 shows the results for the science assessment. For Newfoundland and Labrador, more students would be performing below the international average. For Prince Edward Island, more students would perform at or just below the international average, but at the expense of higher test scores, not lower ones. Nova Scotia would see a small improvement above the international mean at the expense of lower scores. New Brunswick shows a clear benefit-the distribution is shifted almost entirely to the right.

The graphical results suggest that if Alberta's distribution of class size and time-in-term prevailed in the Atlantic provinces, the resulting distribution of test scores would depend on the province and assessment being considered. In most cases, some students would benefit while others would not. This is probably most clear in the case of New Brunswick where students in the lowest reading proficiency gain would not benefit.

## V. 2 The contribution of differences in other school factors

Student-teacher ratios and time-in-term are just two of the school factors considered in this study. When we further fix the distribution of other school factors to reflect their distribution in Alberta, we see little difference in the counterfactual distributions for Newfoundland and Labrador and Prince Edward Island, a slight reduction in the proportion of students performing between level 1 and level 3 proficiency in Nova Scotia, and a very slight increase in the proportion of students performing below level 1 proficiency in New Brunswick.

When we look at the mathematics assessment, we see little change for New Brunswick and Nova Scotia and more evenly distributed test scores in Newfoundland and Labrador. Here, many more students would be performing below the international average. Lastly, Figure 9 shows the effect of further fixing the distribution of student-teacher ratios and time-in-term for the science assessment. Here, we see an improvement in the proportion of students performing above the international mean for Newfoundland and Labrador and fewer students performing in the lower tail in Nova Scotia.

## V. 3 The contribution of differences in student background factors

Differences in the distribution of student population characteristics seem to have their impact at the lower tail of the distribution. Figure 10 shows the effect on differences in reading of fixing student background factors so that they are distributed as in Alberta. We see that these differences tend to contribute to the gaps with Alberta. In Newfoundland and Labrador, more students are performing at the level 4 proficiency, in Prince Edward Island, more people are performing at the level 3 proficiency. There is little impact for Nova Scotia. In New Brunswick, more students are performing near level 5 proficiency and, perhaps more importantly, fewer students are performing below level 1 proficiency. Similar patterns are observed for the mathematics assessment (Figure 11.) Lastly, the same is observed in the science assessment. Fixing student background factors to be distributed as in Alberta could mean that more students perform at the international mean score in Newfoundland and Labrador and Prince Edward Island. Fewer students would perform below the international mean in Nova Scotia and in New Brunswick.

## V. 4 Decomposition of selected statistics: Reading distribution

The estimated densities can be used to compute various statistics including mean performance. We present decompositions of selected achievement statistics in Tables 4 to 6 for the Atlantic provinces. There were no statistically significant differences between provinces in measures of achievement inequality (such as the ratio of the 80th to 20th percentile or the 90th to 10th percentile). Therefore, we do not provide decompositions of measures of inequality as was done by DFL. We decompose differences in the mean and standard deviations of the achievement distributions for all assessments. For the Reading assessment, we also decompose differences in the proportions of students scoring within the various proficiency intervals. Corresponding intervals are not available for the Mathematics and Science assessments. For these, we decompose differences in deciles.

For each province, the "Actual" row refers to statistics from the actual density estimated for the province. The next rows refer to the three counterfactual density functions. The first is the effect of fixing student-teacher ratios and time-in-term to have their Alberta distribution, the next further fixes other school factors to be distributed as in Alberta and the last refers to the case where student background factors are also distributed as in Alberta.

Fixing the student-teacher ratios and time-in-term to be distributed as in Alberta, average performance in New Brunswick would increase to be equal to that of Alberta at 550 . We see that this comes primarily from a reduction in the proportion of students performing between level 1 and 3 proficiency and an increase in the proportion performing above level 5 proficiency. Holding other school factors at their Alberta distribution results in an increase in the proportion of students performing at the lower proficiency levels and a decrease in the proportions performing above level 4 . The result is a mean that is lower than the class size only case but higher than the original mean. New Brunswick would do better on average with the class size and time-in-term distribution and these differences contributed most it seems to differences between New Brunswick and Alberta in mean achievement. The relative contribution, however, of student-background and school factors to the total achievement gap differs across the achievement distribution. Class size and time-in-term matter more in the upper part of the distribution. Student background differences matter more at the low end of the achievement distribution.

These patterns, though, are not true throughout the Atlantic provinces, as the graphical results suggest. In Nova Scotia, differences in the distribution of class size and time-in-term actually contribute to differences in the lower tail of the distribution; in their absence, fewer students would perform below level 2 proficiency. The result is a small increase in mean performance, suggesting that class size and time-in-term differences contribute less to the mean achievement gap between Nova Scotia and Alberta than they do to that between New Brunswick and Alberta. In Newfoundland and Labrador, differences in the distribution of class size and time-in-term contribute to differences in mean achievement as well, but to a lesser extent than for New Brunswick; in the absence of these differences, mean achievement in Newfoundland and Labrador would be higher. This comes from a larger proportion of students performing at the level 3 to 4 proficiency range. Thus, these differences contribute most to the gap here. They reduce the gap in the number of students performing in the lower proficiency ranges in Newfoundland and Labrador. In their absence, more students would perform between level 1 and 2 proficiency. Interestingly, student background factors work in the same part of the achievement distribution for Newfoundland and Labrador.

Tables 5 shows the statistics for the mathematics assessment. As mentioned, there were no proficiency intervals defined for the mathematics nor science assessments. We decompose differences in the $10^{\text {th }}, 25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$ and $90^{\text {th }}$ percentiles of the achievement distributions. Again, no inequality measures are computed because there were not significant differences in measures of inequality between the provinces. For Newfoundland and Labrador, fixing studentteacher ratio and time-in-term at their Alberta distribution results in higher mean and median performance which seems to be driven by better performance at the lower end of the distribution. When other school factors are also distributed as in Alberta, these gains are apparently undone. Student background differences appear to drive the math differences between Newfoundland and

Labrador and Alberta. Once these are eliminated, mean and particularly median performance is up but this appears to be due to improvements at the upper end of the achievement distribution.

For Prince Edward Island, there is little change in mean or median performance when the differences in the distribution of class size and time-in-term are eliminated. But there are improvements in the lower half of the distribution which are masked by a lowering of performance at the upper end. When all school factors are fixed at their Alberta distribution, there are still notable improvements in the lower half of the distribution but mean and median achievement is lower. In contrast, New Brunswick would see large improvements in mean and median performance driven mostly by improvements in the upper tail of the distribution. When all school factors are fixed at their Alberta level, there is little change in mean and median performance but this is due to an improvement at the upper half of the distribution that is offset by a fall in the lower half of the distribution. For Nova Scotia, there is little impact of changing the class size and time-in-term variables to be distributed as in Alberta. Fixing all school factors at their Alberta distribution generally improves things throughout the distribution. Differences in student background factors seem to drive differences at the lower half of the distribution.

Table 6 shows the results for the science test. We see that New Brunswick would experience very large improvements in achievement if class size and time-in-term were distributed as in Alberta. These would be offset little by fixing all school factors at their Alberta distribution. For Nova Scotia, fixing class size and time-in-term at their Alberta distribution would yield small improvements in mean and median performance which would come largely from the lower half of the distribution.

For both the mathematics and science assessments we tend to see varied results across provinces. Fixing the distribution of class size and time-in-term benefits some provinces in terms of mean and median performance but this is driven by improvements in either the upper or lower half of the distribution (depending on the province and the assessment). In some cases, such as the mathematics assessment in Nova Scotia, there is no change in mean or median performance but this effect masks noticeable effects at the upper and lower half of the distribution which cancel each other out.

## V. 5 The effect of the dual language systems in Nova Scotia and New Brunswick

Our analysis of the difference between Nova Scotia, New Brunswick and Alberta is complicated by the fact that these two provinces have dual language (English and French) school sectors while Alberta does not. In both provinces and for the reading and science assessments, the English sectors had better mean and median performance than the French sectors. This was not the case in mathematics where the English sector had a slightly better performance in New Brunswick and a worse mean performance in Nova Scotia. In this section, we focus on the English sectors of Nova Scotia and New Brunswick. The selected statistics estimated from the counterfactual distributions are compared to those in the previous sections to assess the contribution of the French sectors to the results observed there. Tables 7, 8 and 9 depict the results for these provinces for reading, mathematics and science respectively.

For reading, we see a nearly opposite effect of fixing class size and time-in-term at its Alberta distribution for New Brunswick when we consider just the English sector. When considering both sectors (Table 1), there was a large increase in mean performance driven by a substantial improvement in all but the bottom proficiency bracket of the achievement distribution. In Table 7, mean performance is much lower with the Alberta class size and time-in-term distribution and we see large proportions of students performing in the bottom 3 proficiency brackets. Reverse effects are observed also for other school factors and student background factors. Thus, it is important to distinguish between the French and English sectors in New Brunswick as both respond differently in our analysis to the kinds of "experiments" being conducted here. A similar result is observed for Nova Scotia.

For the mathematics assessment in New Brunswick, on the other hand, we see a similar pattern when fixing class size and time-in-term for just the English sector-improvement in mean performance driven by larger improvements in the upper 90-80 percent of the distribution. The effects for the other factors is similar. The same can be said for Nova Scotia. For Science, English only and total population results seem similar for both Nova Scotia and New Brunswick.

## V. 6 The order of decomposition

We noted earlier that the order in which we consider the factors in the decompositions has an effect on the estimated contribution of the factors we are considering. In our decompositions thus far, we have assessed differences in school characteristics before controlling for differences in student background. We do this because the policy experiment we have in mind is what would happen if the (apparently) successful school characteristics of Alberta were adopted by other provinces given their specific populations. One of our primary hypotheses is that school systems organize themselves in a way that is optimal given the student population they must serve. While some may be tempted to argue that other provinces may benefit by taking on some of the characteristics of Alberta's school system, we show that this may not be optimal for all students in the other province. Indeed, we saw that Alberta's school characteristics would benefit higher achieving students in New Brunswick but might hurt the lowest achieving students. Such observations raise important considerations for policy makers and for those comparing school systems across policy boundaries without considering that school systems are designed to address the features of local populations.

Nevertheless, we reverse the order in which we consider the factors as a sensitivity check. We assess differences in the student-teacher ratio and time-in-term after fixing other school factors and student background factors to be distributed as they are in Alberta. We focus here on the reading assessment only as this was the principle focus of the 1999 PISA. Table 10 provides the decomposition of the selected reading statistics discussed above in reverse order.

Considering New Brunswick (the largest inter-provincial achievement difference) we see that fixing class size and time-in-term to be distributed as in Alberta increases mean performance by reducing the proportion of students in the bottom three proficiency brackets after already fixing student background and other school factors to their Alberta distribution. Other school factors reduce mean performance in the reverse order analysis as well, and as in Table 4. This is due primarily to a greater number of students performing in the lowest proficiency levels. For Nova

Scotia and Newfoundland and Labrador, the reverse order results for class size and time-in-term are similar to the primary order effects noted in Table 4.

## V. 7 The remaining provinces

Lastly, we consider briefly the results of our decomposition analysis applied to the remaining provinces and their difference with Alberta in the Reading assessment. Fixing class size and time-in-term to be distributed as they are in Alberta reduces the proportion of students performing in the bottom two proficiency cutoffs for Quebec, Ontario, and Manitoba, but improves mean performance only for Quebec and Manitoba. For Saskatchewan and British Columbia, mean performance would be worse and this would be driven by changes around the lower end of the achievement distribution where a much greater proportion of students would be performing in the 1 to 2 proficiency range. When all school factors are fixed at their Alberta distribution, fewer students perform in the bottom two proficiency brackets in all provinces except British Columbia.

## VI. Summary and conclusion

This paper examines the contribution of various school and student background characteristics to the differences in high school achievement distributions for 15-year olds in Canada. It focuses on differences between the province of Alberta and the Atlantic provinces as these were the largest observed in the 2000 PISA data. Our approach considered the entire distribution of test scores and not simply the mean. Our interest was on differences in the distribution of student-teacher ratios and time-in-term, defined as the allocation of minutes per class, classes per week and weeks per academic year of instruction.

We find evidence that school factors did underlie observed differences in the achievement distributions between Alberta and the Atlantic provinces. More importantly, we find that removing differences in the distribution of class size and time-in-term had a number of effects depending on which province was being considered, the assessment being considered and which part of the distribution. In some cases, the difference in mean or median performance was not attributable to differences in class size and time-in-term but this lack of noticeable effect masked some noticeable effects in the different parts of the distribution. In cases where differences in class size and time-in-term did contribute to mean or median differences, it was not always because the counterfactual distribution was shifted entirely to the right. In many cases, the differences in class size and time-in-term reduced the gap with Alberta in a particular part of the distribution. An example was the reading assessment in New Brunswick. Here, our analysis suggests that eliminating the differences in class size and time-in-term would explain the gap in mean performance but the proportion of students performing in the lowest reading proficiency level would increase. Such an observation might be due to the way in which New Brunswick schools optimally structure themselves to address the needs of the local population. It also underscores the important tradeoffs facing policy makers who seek to introduce reforms that improve average test score performance. Such reforms may not benefit all students equally and may even hurt lower performing students.

Figure 1
Provincial differences relative to Alberta (thick line) in achievement distributions, Reading


Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Figure 2
Provincial differences relative to Alberta (thick line) in achievement distributions, Mathematics


Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Figure 3

## Provincial differences relative to Alberta (thick line) in achievement distributions, Science

Newfoundland and Labrador


New Brunswick



Prince Edward Island


Quebec


Saskatchewan


Nova Scotia


Ontario
0048
British Columbia


Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Figure 4
The contribution of student-teacher ratios and time-in-term: Reading assessment, Atlantic provinces ${ }^{\text {a }}$

${ }^{\text {a }}$ Vertical lines depict proficiency level cutoffs.
Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).
Figure 5
The contribution of student-teacher ratios and time-in-term: Mathematics assessment, Atlantic provinces ${ }^{\text {a }}$


[^3]Figure 6
The contribution of student-teacher ratios and time-in-term: Science assessment, Atlantic provinces ${ }^{\text {a }}$

${ }^{\text {a }}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).
Figure 7
The contribution of other school factors: Reading assessment, Atlantic provinces ${ }^{\text {a }}$


[^4]Figure 8
The contribution of other school factors: Mathematics assessment, Atlantic provinces ${ }^{\mathbf{a}}$

${ }^{\text {a }}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).
Figure 9
The contribution of other school factors: Science assessment, Atlantic provinces ${ }^{\text {a }}$


[^5]Figure 10
The contribution of student background factors: Reading assessment, Atlantic provinces ${ }^{\mathbf{a}}$

${ }^{\text {a }}$ Vertical lines depict proficiency level cutoffs.
Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).
Figure 11
The contribution of student background factors: Mathematics assessment, Atlantic provinces ${ }^{\text {a }}$


[^6]Figure 12
The contribution of student background factors: Science assessment, Atlantic provinces ${ }^{\mathbf{a}}$

${ }^{\text {a }}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 1
Average student-teacher ratio, total instructional hours per academic year, weeks per year, classes per week and minutes per class, by province

|  | Studentteacher ratio | Total instructional hours per academic year | $\begin{array}{r} \text { Weeks } \\ \text { per } \\ \text { academic } \\ \text { year } \\ \hline \end{array}$ | Classes per week | Minutes per class |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Student Weighted ${ }^{\text {l }}$ |  |  |  |  |  |
| Newfoundland and Labrador | 15.9 | 893.9 | 36.8 | 26.0 | 58.7 |
| Prince Edward Island | 18.4 | 986.1 | 39.3 | 21.9 | 71.9 |
| Nova Scotia | 16.6 | 950.5 | 38.3 | 28.1 | 58.4 |
| New Brunswick | 17.7 | 955.8 | 38.8 | 22.7 | 66.3 |
| Quebec | 17.3 | 970.3 | 37.2 | 24.0 | 68.1 |
| Ontario | 16.1 | 937.1 | 38.9 | 19.9 | 74.4 |
| Manitoba | 16.6 | 1027.1 | 38.9 | 26.8 | 64.7 |
| Saskatchewan | 17.6 | 941.7 | 38.2 | 26.7 | 57.5 |
| Alberta | 19.3 | 1054.0 | 39.5 | 25.2 | 68.8 |
| British Columbia | 17.4 | 975.3 | 39.5 | 20.3 | 76.3 |
| School Weighted |  |  |  |  |  |
| Newfoundland and Labrador | 14.8 | 917.9 | 37.3 | 27.8 | 57.7 |
| Prince Edward Island | 17.1 | 975.4 | 39.6 | 27.0 | 59.3 |
| Nova Scotia | 15.5 | 941.9 | 38.3 | 30.9 | 51.6 |
| New Brunswick | 16.8 | 954.3 | 38.9 | 23.5 | 64.1 |
| Quebec | 17.1 | 976.5 | 37.1 | 25.2 | 65.5 |
| Ontario | 14.9 | 939.9 | 38.8 | 20.2 | 73.7 |
| Manitoba | 15.8 | 1025.4 | 39.3 | 30.7 | 58.5 |
| Saskatchewan | 16.1 | 955.7 | 38.3 | 29.5 | 53.1 |
| Alberta | 18.7 | 1039.7 | 39.4 | 31.0 | 55.1 |
| British Columbia | 17.3 | 951.9 | 39.4 | 21.4 | 71.0 |

1. Average school characteristics of the student population.

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 2
Proportion of schools in selected size categories, by province

|  | Less than |  |  | 30 or |
| :--- | ---: | ---: | ---: | ---: |
|  | 10 | $10-19$ | $20-29$ | more |
| Newfoundland and Labrador | 0.051 | 0.753 | 0.000 | 0.135 |
| Prince Edward Island | 0.000 | 0.593 | 0.000 | 0.259 |
| Nova Scotia | 0.026 | 0.734 | 0.018 | 0.174 |
| New Brunswick | 0.000 | 0.738 | 0.052 | 0.131 |
| Quebec | 0.014 | 0.621 | 0.116 | 0.189 |
| Ontario | 0.047 | 0.777 | 0.013 | 0.137 |
| Manitoba | 0.000 | 0.750 | 0.019 | 0.197 |
| Saskatchewan | 0.000 | 0.829 | 0.045 | 0.093 |
| Alberta | 0.032 | 0.410 | 0.197 | 0.240 |
| British Columbia | 0.000 | 0.659 | 0.079 | 0.116 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 3
Modal and other selected values for organization of instructional time Alberta and the rest of Canada

|  |  | Alberta | Rest of <br> Canada |
| :--- | :--- | ---: | ---: |
| Weeks per year | Mode | 40 | 40 |
|  | Proportion at mode | 0.506 | 0.383 |
| Classes per week | Proportion below mode | 0.367 | 0.523 |
|  | Mode | 40 | 20 |
|  | Proportion at mode | 0.307 | 0.406 |
|  | Proportion below mode | 0.658 | 0.065 |
| Minutes per class | Proportion at or below 30 | 0.47 | 0.84 |
|  | Mode | 40 | 75 |
|  | Proportion at mode | 0.172 | 0.322 |
|  | Proportion below mode | 0 | 0.555 |
|  | Proportion less than 60 | 0.667 | 0.284 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 4
Decomposition of selected statistics in reading achievement: Atlantic provinces

| Province/ Distribution | Mean | Standard deviation | Proficiency levels |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Below $1$ | 1 to 2 | 2 to 3 | 3 to 4 | 4 to 5 | 5 and above |
| Alberta |  |  |  |  |  |  |  |  |
| Actual | 550.40 | 98.10 | 0.019 | 0.062 | 0.15 | 0.262 | 0.278 | 0.229 |
| Newfoundland and |  |  |  |  |  |  |  |  |
| Labrador |  |  |  |  |  |  |  |  |
| Actual | 516.77 | 99.66 | 0.040 | 0.10 | 0.21 | 0.28 | 0.23 | 0.14 |
| Student-teacher ratio and time-in-term | 522.83 | 64.82 | 0.01 | 0.06 | 0.17 | 0.49 | 0.23 | 0.04 |
| Other school | 494.86 | 64.68 | 0 | 0.08 | 0.36 | 0.35 | 0.17 | 0.02 |
| Student background | 517.89 | 68.61 | 0.01 | 0.07 | 0.18 | 0.42 | 0.28 | 0.04 |
| Prince Edward Island |  |  |  |  |  |  |  |  |
| Actual | 517.46 | 95.95 | 0.03 | 0.11 | 0.22 | 0.28 | 0.24 | 0.14 |
| Student-teacher ratio and time-in-term | 439.64 | 71.73 | 0.02 | 0.43 | 0.19 | 0.32 | 0.03 | 0.01 |
| Other school | 427.23 | 72.38 | 0.03 | 0.52 | 0.17 | 0.24 | 0.03 | 0.01 |
| Student background | 463.60 | 72.36 | 0.02 | 0.27 | 0.24 | 0.41 | 0.05 | 0.02 |
| Nova Scotia (both sectors) |  |  |  |  |  |  |  |  |
| Actual | 521.17 | 95.74 | 0.03 | 0.09 | 0.21 | 0.29 | 0.24 | 0.14 |
| Student-teacher ratio and time-in-term | 526.02 | 93.59 | 0.01 | 0.10 | 0.22 | 0.26 | 0.27 | 0.15 |
| Other school | 543.59 | 91.59 | 0.01 | 0.06 | 0.18 | 0.27 | 0.29 | 0.18 |
| Student background | 548.92 | 90.64 | 0.01 | 0.05 | 0.16 | 0.28 | 0.31 | 0.19 |
| New Brunswick (both sectors) |  |  |  |  |  |  |  |  |
| Actual | 501.15 | 97.49 | 0.05 | 0.12 | 0.23 | 0.29 | 0.21 | 0.10 |
| Student-teacher ratio and time-in-term | 549.99 | 110.35 | 0.05 | 0.05 | 0.14 | 0.28 | 0.23 | 0.26 |
| Other school | $539.70$ | 118.81 | 0.07 | 0.05 | 0.13 | 0.29 | 0.22 | 0.24 |
| Student background | 553.08 | 104.27 | 0.03 | 0.06 | 0.14 | 0.25 | 0.29 | 0.23 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 5
Decomposition of selected statistics in mathematics achievement, Atlantic provinces

| Province/Distribution | Mean | Standard deviation | Selected percentiles |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (median) } \end{gathered}$ | $75^{\text {th }}$ | $90^{\text {th }}$ |
| Alberta |  |  |  |  |  |  |  |
| Actual | 546.97 | 86.94 | 433.96 | 488.45 | 549.04 | 607.69 | 657.08 |
| Newfoundland and Labrador |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Actual | 509.16 | 81.99 | 403.27 | 454.49 | 510.20 | 565.00 | 612.07 |
| Student-teacher ratio and time-in-term | 559.08 | 81.99 | 430.02 | 568.31 | 580.66 | 591.78 | 598.06 |
| Other school | 482.85 | 81.99 | 394.91 | 417.05 | 460.37 | 552.73 | 589.19 |
| Student background | 517.72 | 81.99 | 412.65 | 453.55 | 534.16 | 573.90 | 600.13 |
| Prince Edward Island |  |  |  |  |  |  |  |
| Actual | 511.77 | 83.90 | 401.56 | 454.6 | 514.37 | 569.69 | 616.73 |
| Student-teacher ratio |  |  |  |  |  |  |  |
| and time-in-term | 508.04 | 83.90 | 423.49 | 466.07 | 513.76 | 549.07 | 593.76 |
| Other school | 494.17 | 83.90 | 424.85 | 457.24 | 486.25 | 531.62 | 578.32 |
| Student background | 489.45 | 83.90 | 434.77 | 454.1 | 472.42 | 520.33 | 561.43 |
| Nova Scotia (both sectors) |  |  |  |  |  |  |  |
| Actual | 512.60 | 85.40 | 400.61 | 454.34 | 513.19 | 571.27 | 621.82 |
| Student-teacher ratio and time-in-term | 512.67 | 85.40 | 400.61 | 450.92 | 512.03 | 569.06 | 625.50 |
| Other school | 524.75 | 85.40 | 412.78 | 465.42 | 526.82 | 577.74 | 632.00 |
| Student background | 534.91 | 85.40 | 431.11 | 480.96 | 535.76 | 583.23 | 637.60 |
| New Brunswick (both sectors) |  |  |  |  |  |  |  |
| Actual | 506.20 | 82.38 | 398.97 | 450.23 | 507.60 | 563.00 | 609.03 |
| Student-teacher ratio and time-in-term | 534.67 | 82.38 | 401.55 | 468.21 | 533.93 | 600.84 | 673.61 |
| Other school | 533.75 | 82.38 | 391.88 | 462.19 | 534.42 | 606.45 | 690.30 |
| Student background | 554.91 | 82.38 | 422.91 | 481.37 | 548.06 | 620.32 | 710.63 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 6
Decomposition of selected statistics in science achievement, Atlantic provinces

| Province/Distribution | Mean | Standard deviation | Selected percentiles |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (median) } \end{gathered}$ | $75^{\text {th }}$ | $90^{\text {th }}$ |
| Alberta |  |  |  |  |  |  |  |
| Actual | 546.32 | 90.49 | 426.77 | 485.81 | 548.68 | 609.81 | 659.19 |
| Newfoundland and Labrador |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Actual | 516.46 | 89.97 | 399.21 | 456.32 | 516.47 | 578.02 | 631.07 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
|  | 493.49 | 89.97 | 403.57 | 430.78 | 474.45 | 561.74 | 608.05 |
| Other school | 507.24 | 89.97 | 412.74 | 444.26 | 506.22 | 570.40 | 604.68 |
| Student <br> background | 505.57 | 89.97 | 415.12 | 450.58 | 506.43 | 557.18 | 595.32 |
| Prince Edward Island |  |  |  |  |  |  |  |
| Actual | 508.07 | 87.24 | 396.62 | 446.59 | 505.27 | 567.15 | 622.09 |
| Student-teacher ratio | 48426 | 87.24 | 403.3 | 440.23 | 482.52 | 52252 | 565.96 |
| Other school | 485.29 | 87.24 87.24 | 388.19 | 429.32 | 486.56 | 539.15 | 565.96 583.18 |
| Student background | 491.55 | 87.24 | 403.71 | 445.22 | 492.96 | 538.02 | 578.56 |
| Nova Scotia (both sectors) |  |  |  |  |  |  |  |
| Actual | 515.95 | 88.11 | 399.41 | 455.14 | 517.28 | 577.08 | 626.18 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
|  | 527.14 | 88.11 | 400.58 | 465.76 | 535.16 | 584.89 | 639.50 |
| Other school | 547.62 | 88.11 | 443.31 | 491.67 | 546.70 | 598.07 | 660.64 |
| Student |  |  |  |  |  |  |  |
| Background | 560.51 | 88.11 | 447.51 | 507.66 | 562.21 | 613.72 | 675.85 |
| New Brunswick (both sectors) |  |  |  |  |  |  |  |
| Actual | 496.73 | 88.41 | 383.79 | 435.28 | 494.52 | 558.89 | 612.42 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
| in-term | 569.65 | 88.41 | 457.85 | 500.02 | 567.84 | 638.66 | 690.23 |
| Other School | 564.74 | 88.41 | 443.19 | 495.61 | 563.63 | 637.48 | 691.92 |
| Student background | 559.05 | 88.41 | 456.61 | 493.01 | 553.76 | 613.91 | 680.83 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 7
Decomposition of selected statistics in reading achievement: English school sectors of Nova Scotia and New Brunswick

| Province/Distribution | Mean | Standard deviation | Proficiency levels |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \hline \text { Below } \\ 1 \\ \hline \end{gathered}$ | 1 to 2 | 2 to 3 | 3 to 4 | 4 to 5 | 5 and above |
| Alberta |  |  |  |  |  |  |  |  |
| Actual | 550.40 | 98.10 | 0.02 | 0.06 | 0.15 | 0.26 | 0.28 | 0.23 |
| Nova Scotia |  |  |  |  |  |  |  |  |
| Actual | 529.16 | 91.53 | 0.02 | 0.07 | 0.20 | 0.29 | 0.27 | 0.14 |
| Student-teacher ratios and time |  |  |  |  |  |  |  |  |
| in-term | 486.16 | 88.11 | 0.05 | 0.16 | 0.26 | 0.28 | 0.20 | 0.05 |
| Other school | 501.35 | 95.45 | 0.04 | 0.14 | 0.24 | 0.28 | 0.20 | 0.10 |
| Student background | 510.34 | 91.61 | 0.03 | 0.13 | 0.20 | 0.32 | 0.23 | 0.10 |
| New Brunswick |  |  |  |  |  |  |  |  |
| Actual | 538.04 | 97.42 | 0.02 | 0.07 | 0.17 | 0.26 | 0.28 | 0.19 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |  |
| in-term | 448.40 | 108.06 | 0.08 | 0.41 | 0.19 | 0.11 | 0.12 | 0.09 |
| Other school | 485.62 | 121.37 | 0.07 | 0.30 | 0.16 | 0.14 | 0.18 | 0.16 |
| Student background | 475.99 | 120.4 | 0.07 | 0.33 | 0.16 | 0.12 | 0.16 | 0.15 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 8
Decomposition of selected statistics in mathematics achievement, English school sectors of Nova Scotia and New Brunswick

| Province/Distribution | Mean | Standard deviation | Selected percentiles |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (median) } \end{gathered}$ | $75^{\text {th }}$ | $90^{\text {th }}$ |
| Alberta |  |  |  |  |  |  |  |
| Actual | 546.97 | 86.94 | 433.96 | 488.45 | 549.04 | 607.69 | 657.08 |
| Nova Scotia |  |  |  |  |  |  |  |
| Actual | 512.70 | 85.68 | 400.33 | 454.19 | 513.23 | 571.69 | 622.31 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
| in-term | 510.82 | 85.68 | 398.91 | 448.81 | 509.91 | 567.20 | 623.51 |
| Other school | 523.32 | 85.68 | 410.51 | 463.50 | 525.59 | 576.78 | 630.43 |
| Student background | 534.76 | 85.68 | 431.26 | 481.92 | 535.91 | 582.39 | 635.87 |
| New Brunswick |  |  |  |  |  |  |  |
| Actual | 504.84 | 83.37 | 397.29 | 447.51 | 505.91 | 562.37 | 609.64 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
| in-term | 526.17 | 83.37 | 397.26 | 476.59 | 538.74 | 587.55 | 627.10 |
| Other school | 523.71 | 83.37 | 379.99 | 475.92 | 541.26 | 588.69 | 627.60 |
| Student background | 532.36 | 83.37 | 416.44 | 482.33 | 541.87 | 586.53 | 625.18 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 9
Decomposition of selected statistics in science achievement, English school sectors of Nova Scotia and New Brunswick

| Province/ Distribution | Mean | Standard deviation | Selected percentiles |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $10^{\text {th }}$ | $25^{\text {th }}$ | $50^{\text {th }}$ (median) | $75^{\text {th }}$ | $90^{\text {th }}$ |
| Alberta |  |  |  |  |  |  |  |
| Actual | 546.32 | 90.49 | 426.77 | 485.81 | 548.68 | 609.81 | 659.19 |
| Nova Scotia |  |  |  |  |  |  |  |
| Actual | 517.04 | 87.85 | 400.88 | 456.40 | 518.40 | 577.90 | 626.93 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
| in-term | 526.60 | 87.85 | 401.14 | 465.59 | 534.23 | 584.40 | 638.31 |
| Other school | 546.29 | 87.85 | 442.72 | 490.42 | 545.09 | 596.83 | 658.91 |
| Student background | 559.06 | 87.85 | 445.35 | 504.76 | 561.16 | 613.13 | 674.97 |
| New Brunswick |  |  |  |  |  |  |  |
| Actual | 502.75 | 86.13 | 394.72 | 442.31 | 498.77 | 563.05 | 616.83 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |
| in-term | 552.49 | 86.13 | 436.40 | 485.32 | 545.29 | 625.69 | 677.35 |
| Other school | 545.72 | 86.13 | 414.51 | 478.58 | 536.95 | 623.61 | 679.49 |
| Student background | 554.12 | 86.13 | 446.47 | 490.46 | 550.39 | 618.82 | 672.88 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 10
Decomposition of selected statistics in reading achievement, Atlantic provinces (reverse order)

| Province/Distribution | Mean | Standard deviation | Proficiency levels |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Below <br> 1 | 1 to 2 | 2 to 3 | 3 to 4 | 4 to 5 | 5 and above |
| Alberta |  |  |  |  |  |  |  |  |
| Actual | 550.40 | 98.10 | 0.019 | 0.062 | 0.15 | 0.262 | 0.278 | 0.229 |
| Newfoundland and Labrador |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Actual | 516.77 | 99.66 | 0.04 | 0.10 | 0.21 | 0.28 | 0.23 | 0.14 |
| Student background | 522.83 | 64.43 | 0.01 | 0.06 | 0.17 | 0.49 | 0.23 | 0.04 |
| Other school | 494.86 | 64.25 | 0 | 0.08 | 0.37 | 0.35 | 0.17 | 0.02 |
| Student-teacher ratio and time-in-term | 517.89 | 68.12 | 0.01 | 0.07 | 0.19 | 0.42 | 0.27 | 0.04 |
| Prince Edward Island |  |  |  |  |  |  |  |  |
| Actual | 517.46 | 95.95 | 0.03 | 0.11 | 0.22 | 0.28 | 0.24 | 0.14 |
| Student background | 515.92 | 95.30 | 0.02 | 0.10 | 0.26 | 0.27 | 0.20 | 0.15 |
| Other school | 463.16 | 71.77 | 0.02 | 0.27 | 0.23 | 0.42 | 0.05 | 0.02 |
| Student-teacher ratio and time-in-term | 463.60 | 72.36 | 0.02 | 0.27 | 0.24 | 0.41 | 0.05 | 0.02 |
| Nova Scotia (both sectors) |  |  |  |  |  |  |  |  |
| Actual | 521.17 | 95.74 | 0.03 | 0.09 | 0.21 | 0.29 | 0.24 | 0.14 |
| Student background | 533.50 | 100.58 | 0.03 | 0.08 | 0.18 | 0.26 | 0.26 | 0.19 |
| Other school | 535.88 | 105.32 | 0.04 | 0.08 | 0.16 | 0.25 | 0.26 | 0.20 |
| Student-teacher ratio and time-in-term | 548.92 | 90.64 | 0.01 | 0.05 | 0.16 | 0.28 | 0.31 | 0.19 |
| New Brunswick (both sectors) |  |  |  |  |  |  |  |  |
| Actual | 501.15 | 97.49 | 0.05 | 0.12 | 0.23 | 0.29 | 0.21 | 0.10 |
| Student background | 489.17 | 86.65 | 0.01 | 0.13 | 0.41 | 0.23 | 0.12 | 0.10 |
| Other school | 485.50 | 102.11 | 0.05 | 0.19 | 0.3 | 0.19 | 0.16 | 0.11 |
| Student-teacher ratio and time-in-term | 553.08 | 104.27 | 0.03 | 0.06 | 0.14 | 0.25 | 0.29 | 0.23 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

Table 11
Decomposition of selected statistics in reading achievement, Central and Western provinces

| Province/Distribution | Mean | Standard deviation | Proficiency levels |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Below } \\ 1 \end{gathered}$ | 1 to 2 | $\begin{gathered} 2 \text { to } \\ 3 \\ \hline \end{gathered}$ | 3 to 4 | 4 to 5 | 5 and above |
| Alberta |  |  |  |  |  |  |  |  |
| Actual | 550.40 | 98.10 | 0.019 | 0.062 | 0.15 | 0.262 | 0.278 | 0.229 |
| Quebec |  |  |  |  |  |  |  |  |
| Actual | 535.78 | 91.27 | 0.02 | 0.07 | 0.17 | 0.29 | 0.29 | 0.16 |
| Student-teacher ratio and time-in-time | 540.05 | 79.40 | 0 | 0.03 | 0.22 | 0.27 | 0.33 | 0.14 |
| Other school | 533.12 | 82.68 | 0 | 0.06 | 0.24 | 0.25 | 0.31 | 0.14 |
| Student background | 475.39 | 85.26 | 0.01 | 0.17 | 0.46 | 0.14 | 0.16 | 0.06 |
| Ontario |  |  |  |  |  |  |  |  |
| Actual | 533.24 | 96.88 | 0.03 | 0.08 | 0.18 | 0.27 | 0.27 | 0.17 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |  |
| in-term | 523.64 | 85.34 | 0 | 0.05 | 0.28 | 0.39 | 0.15 | 0.13 |
| Other school | 527.14 | 86.67 | 0 | 0.05 | 0.26 | 0.38 | 0.17 | 0.14 |
| Student |  |  |  |  |  |  |  |  |
| Background | 525.60 | 71.23 | 0 | 0.03 | 0.21 | 0.50 | 0.17 | 0.09 |
| Manitoba |  |  |  |  |  |  |  |  |
| Actual | 529.37 | 95.74 | 0.02 | 0.09 | 0.19 | 0.29 | 0.25 | 0.16 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |  |
| in-term | 534.21 | 89.42 | 0.01 | 0.06 | 0.20 | 0.35 | 0.21 | 0.17 |
| Other school | 532.48 | 89.94 | 0.01 | 0.06 | 0.21 | 0.35 | 0.20 | 0.17 |
| Student |  |  |  |  |  |  |  |  |
| Background | 535.37 | 89.99 | 0.01 | 0.06 | 0.20 | 0.35 | 0.21 | 0.17 |
| Saskatchewan |  |  |  |  |  |  |  |  |
| Actual | 529.16 | 91.53 | 0.02 | 0.07 | 0.20 | 0.29 | 0.27 | 0.14 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |  |
| in-term | 486.16 | 88.11 | 0.05 | 0.16 | 0.26 | 0.28 | 0.20 | 0.05 |
| Other school | 501.35 | 95.45 | 0.04 | 0.14 | 0.24 | 0.28 | 0.20 | 0.10 |
| Student background | 510.34 | 91.61 | 0.03 | 0.13 | 0.20 | 0.32 | 0.23 | 0.10 |
| British Columbia |  |  |  |  |  |  |  |  |
| Actual | 538.04 | 97.42 | 0.02 | 0.07 | 0.17 | 0.26 | 0.28 | 0.19 |
| Student-teacher ratio and time- |  |  |  |  |  |  |  |  |
| in-term | 448.40 | 108.06 | 0.08 | 0.41 | 0.19 | 0.11 | 0.12 | 0.09 |
| Other school | 485.62 | 121.37 | 0.07 | 0.30 | 0.16 | 0.14 | 0.18 | 0.16 |
| Student <br> background | 475.99 | 120.40 | 0.07 | 0.33 | 0.16 | 0.12 | 0.16 | 0.15 |

Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

## References

Angrist, Joshua and Victor Lavy. 1999. "Using Maimonides" Rule to Estimate the Effect of Class Size on Scholastic Achievement." Quarterly Journal of Economics. 114, 2: 533-575.

Bedard, K., W.O. Brown jr., and E. Helland. 1999. "School Size and the Distribution of Test Scores." Claremont College working papers in Economics, no. 1999-11.

Blundell, R. and A. Duncan. 1998. "Kernel Regression in Empirical Microeconomics." The Journal of Human Resources. 33, 1: 62-87.

Card, D. and A.B. Krueger. 1992. "Does School Quality Matter? Returns to Education and the Characteristics of Public Schools in the United States." The Journal of Political Economy. 100, 1: 1-40.

Cook, Michael D. and William Evans. 2000. "Families or Schools? Explaining the Convergence in White and Black Academic Performance." Journal of Labour Economics. 18, 4: 729-754.

Corak, M. and D. Lauzon. 2002. "Provincial Differences in High School Achievement, for Whom Do Schools Matter?" Paper presented at Symposium 2002: Using Survey Data for Social and Economic Research. Ottawa. November.

Denham, C., and A. Leiberman (eds.). 1980. Time to Learn. (California Commission on Teacher Preparation and Licensing).

DiNardo, J. and J.L. Tobias. 2001. "Nonparametric Density and Regression Estimation." Journal of Economic Perspectives. 15, 4: 11-28.

DiNardo, J., N.M. Fortin, and T. Lemieux. 1996. "Labour Market Institutions and the Distribution of Wages 1973-1992: A Semiparametric Approach." Econometrica. 64, 5: 10011044.

Donald, S.G., D.A. Green and H.J. Paarsch. 2000. "Differences in Wage Distributions Between Canada and the United States: An Application of a Flexible Estimator of Distribution Functions in the Presence of Covariates." Review of Economic Studies. 67, 4: 609-633.

Economic Council of Canada. 1992. A Lot to Learn: Education and Training in Canada, a Statement. Ottawa.

Ehrenberg, R.G., D.J. Brewer, A. Gamoran and J.D. Willms. 2001. "Class Size and Student Achievement." Psychological Science in the Public Interest. 2, 1: 1-30.

Eide, E. and M.H. Showalter. 1998. "The Effect of School Quality on Student Performance: A Quantile Regression Approach." Economic Letters. 58, 3: 345-350.

Hanushek, E. 1979. "Conceptual and Empirical Issues in the Estimation of Educational Production Functions." Journal of Human Resources. 14, 3: 351-388.

Hanushek, E. 1986. "The Economics of Schooling: Production and Efficiency in the Public Schools." Journal of Economic Literature. 24, 3: 1141-1178.

Hanushek, E. 1996. "School Resources and Student Performance." In Does Money Matter? The Effect of School Resources on Student Achievement and Adult Success. G. Burtless, (ed.). Brookings Institute. Washington D.C. 43-73.

Hanushek, E. 1998. "The Evidence on Class Size." Occasional Paper 98-1. W. Allen Wallis Institute of Political Economy. University of Rochester.

Hanushek, E. and L. Taylor. 1990. "Alternative Assessments of the Performance of Schools: Measurement of State Variations in Achievement." Journal of Human Resources. 25, 2 : 179-201.

Hedges, Larry V., Richard Laine and Rob Greenwald. 1994. "Does Money Matter? A Metaanalysis of Studies of the Effects of Differential School Inputs on Student Outcomes." Educational Researcher. 23, 3: 5-14.

Hoxby, C.M. 2000. "The Effects of Class Size on Student Achievement: New Evidence from Population Variation." The Quarterly Journal of Economics. 115, 4: 1239-1285.

Krueger, A. 1997. "Experimental Estimates of Education Production Function." NBER working paper 6051.

Lazear, E. 1999. "Educational Production." NBER working paper 7349.
Levin, J. 2001. "For Whom the Reductions Count: A Quantile Regression Analysis of Class Size and Peer Effects on Scholastic Achievement." Empirical Economics. 26, 1: 221-246.

Loeb, Suzanna and John, Bound. 1996. "The Effect of Measured School Inputs on Academic Achievement: Evidence from the 1920s, 1930s and 1940s Birth Cohorts." The Review of Economics and Statistics. 78, 4: 653-664.

Mislevey, R. J. 1991. "Randomization-based Inferences about Latent Variables from Complex Samples" Psychometrika. 56: 177-196.

Oaxaca, R. 1973. "Male-Female Wage Differentials in Urban Labour Markets." International Economic Review. 14, 3: 693-709.

OECD. 2002. PISA Technical Report. OECD Publications. Paris.
Park, B.U. and B.A. Turloch. 1992. "Practical Performance of Several Data Driven Bandwidth Selectors." Computational Statistics. 7: 251-270.

Raudenbush, S.W. and A.S. Bryk. 1986. "A Hierarchical Model for Studying School Effects." Sociology of Education. 59, 1:1-17.

Raudenbush, S. W. and J.D. Willms. 1995. "The Estimation of School Effects." Journal of Educational and Behavioral Statistics. 20, 4: 307-335.

Sheather, S. and M. Jones. 1991. "A Reliable Data-based Bandwidth Selection Method for Kernel Density Estimation." Journal of the Royal Statistical Society. Series B, 53, 3: 683-690.

Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. London. Chapman and Hall.

Willms, J.D. and S. Raudenbush. 1989. "A Longitudinal Hierarchical Linear Model for Estimating School Effects and Their Stability." Journal of Educational Measurement. 26, 3: 209-232.

Yatchew, A. 1998. "Nonparametric Regression Techniques in Economics." Journal of Economic Literature. 36, 2: 669-721.


[^0]:    4. For examples of the HLM in education research see Raudenbush and Bryk (1986), Willms and Raudenbush (1989) and Raudenbush and Willms (1995).
[^1]:    5. Hanushek did not have access to the data but confined his remarks to published reports about the STAR experiment.
[^2]:    11. Donald, Green and Paarsch (2000) provide an alternative nonparametric estimator of the cumulative distribution function (CDF) that is based on the calculations used to obtain hazard rates. Their approach allows specification of standard errors as well as calculations of marginal effects.
    12. In the final data set, there were 1,117 schools for the reading and science assessments and 1,116 schools for the mathematics assessment. There were 29,687 students for the reading assessment and 16,489 students for the mathematics and science assessments.
[^3]:    ${ }^{\text {a }}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
    Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

[^4]:    ${ }^{a}$ Vertical lines depict proficiency level cutoffs.
    Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

[^5]:    ${ }^{\text {a }}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
    Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

[^6]:    ${ }^{a}$ Vertical line depicts the mean PISA result for the province depicted in the panel.
    Source: Programme for International Student Assessment (PISA) and the Longitudinal Youth in Transition Survey (YITS).

