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Abstract

Record linkage aims at identifying record pairs related to the same unit and observed in two different data sets, say A and B. 
Fellegi and Sunter (1969) suggest each record pair is tested whether generated from the set of matched or unmatched pairs. 
The decision function consists of the ratio between m() and u(),probabilities of observing a comparison  of a set of k>3 
key identifying variables in a record pair under the assumptions that the pair is a match or a non-match, respectively. These 
parameters are usually estimated by means of the EM algorithm using as data the comparisons on all the pairs of the Cartesian 
product Ω=A×B. These observations (on the comparisons and on the pairs status as match or non-match) are assumed as 
generated independently of other pairs, assumption characterizing most of the literature on record linkage and implemented 
in software tools (e.g. RELAIS, Cibella et al. 2012). On the contrary, comparisons  and matching status in Ω are 
deterministically dependent. As a result, estimates on m() and u() based on the EM algorithm are usually bad. This fact 
jeopardizes the effective application of the Fellegi-Sunter method, as well as automatic computation of quality measures and 
possibility to apply efficient methods for model estimation on linked data (e.g. regression functions), as in Chambers et al. 
(2015). We propose to explore Ω by a set of samples, each one drawn so to preserve independence of comparisons among 
the selected record pairs. Simulations are encouraging. 

Key Words:  Probabilities of error in record linkage; matching variable quality; sampling pairs of units.

1.  The record linkage problem and the role of independence

1.1 Description and notation

Assume A and B are two data sets whose list of observed units is overlapping, at least partially. Record linkage aims 
at identifying which records in the two data sets could be linked (and the corresponding variables juxtaposed) in order 
to get a new data (sub)set of linked units with a richer set of information that can be statistically studied and analyzed. 

Fellegi and Sunter (1969) suggest to base the decision on whether a pair is a match or not by comparing a set of k
variables (k>3) that are jointly able to identify units (usually named matching variables) but with the problem that 
they can be affected by quality issues or stability over time. Hence, it is not ensured that the same unit reports the 
same matching variables values in the two data sets. Assuming that the status of a pair of records from the two data 
sets is represented by the random variable C (with values 1 if the pair is a match and 0 otherwise) while the comparison 
between the k matching variables is represented by a k-valued random vector  where each component is either 1 (if 
the corresponding variable is the same on the two units) or 0 (otherwise), Fellegi and Sunter consider the following 
probability distributions: 
𝑚(𝛾) = 𝑃(Γ = 𝛾|𝐶 = 1), 𝑢(𝛾) = 𝑃(Γ = 𝛾|𝐶 = 0),   ∀ 𝛾.
                                                                                         (1) 
Furthermore, they adopt the likelihood ratio 

𝑟(𝛾) =
𝑚(𝛾)

𝑢(𝛾)
, ∀ 𝛾,

as the decision function for declaring each pair as a match (if 𝑟(𝛾) is larger that a fixed threshold) or not. Fellegi and 
Sunter show how to estimate the distributions in (1) in a simple case by the method of moments. More complex 
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situations have been solved by means of the EM algorithm applied on the Cartesian product Ω=A×B (Winkler, 1988). 
Anyway, the EM algorithm is applied over all the pairs in Ω. Hence, the observed likelihood function takes the form: 

∏ (𝑚(𝛾𝑎𝑏)𝑝)𝑐𝑎𝑏(𝑢(𝛾𝑎𝑏)(1 − 𝑝))
1−𝑐𝑎𝑏

𝑎𝑏∈Ω (2) 

where p  is the probability that C=1 and the status of each pair 𝑐𝑎𝑏 is not observed. The product implies that the 
bivariate replicates (C, ) on the pairs in Ω are independent. Anyway, if 𝑐𝑎𝑏  is equal to 1 for the pairs a’b’, a’b’’ and 
a’’b’, then the pair a’’b’’ is not free to assume any value but 1, so that C  is not independent for all pairs. The same 
can be stated for . Hence, the product in the observed likelihood is wrong and the good quality characteristics of the 
parameter estimators based on maximizing (2) are jeopardized.  

The consequences are different. First of all, the decision function 𝑟𝑎𝑏 depends on the estimates of the distributions m 
and u, consequently it can be questioned whether the decisions taken with a wrongly estimated decision function are 
correct. There are results (Tuoto, 2016) that state that decisions are not much dependent on the parameter estimates 
obtained by means of the EM algorithm, anyway improvements can be expected. Secondly, given the inaccuracy of 
the estimates obtained by the EM algorithm, it is impossible to assume as a measure of record linkage accuracy the 
probability 𝛼 and 𝛽 of wrong decisions, where 𝛼 and 𝛽 are equal to: 

𝛼 = ∑ 𝑢(𝛾𝑎𝑏)𝑎𝑏: 𝑟𝑎𝑏>𝜆 , 𝛽 = ∑ 𝑚(𝛾𝑎𝑏)𝑎𝑏: 𝑟𝑎𝑏<𝜇 ,

where 𝜆 is a threshold over which all the pairs with 𝑟𝑎𝑏 > 𝜆 are declared as matches and µ is the threshold under which 
the pairs with 𝑟𝑎𝑏 < 𝜇 are declared non matches. Finally, the linked data set can be used for further statistical analyses 
whose objective is to estimate model parameters of variables observed distinctly in the two files A and B. Chambers 
and Kim (2015) show that knowledge of the distributions m and u allow the definition of more efficient estimators 
than the traditional ones that do not assume the existence of linkage errors. 

For these reasons, the estimation of the record linkage parameters is an issue that, in our opinion, needs to be addressed. 

2.  The proposal

2.1 How to preserve independence between pairs (as much as possible) 

As already written in Section 1, the problem we are tackling is in the lack of independence of C for the pairs in Ω, as 
well as  for the pairs in Ω, due to the fact that we are considering observations based on pairs of units. Indeed, 
observations on units, e.g. for the key variables X1,…Xk, can be considered as generated independently on different 
units. Hence, we propose to explore Ω (for the distribution m estimation) sampling pairs in Ω so that independence 
between pairs can be preserved as much as possible. Sampling from Ω has already been proposed by Yancey (2004) 
in order to increase the percentage of matches in Ω when these are just a few, and in Fortini (2020), in order to reduce 
the comparison space without imposing constraints as blocks or filters. 

A very simple idea is to take the data set with smallest size, say A, and follow these steps: 
1. For each unit in A select randomly a unit in B, until all records in A create a pair with a corresponding record 

in B. If selection on B is performed without repetitions, the set of variables (C, ) on the selected pairs will 
be independent because pairs are formed by distinct units. 

2. Iterate steps 1 for a number T of times. 
Selection can be in many different ways: 

a. As already stated, records in B can be selected with or without repetition. 
b. Selection on B can follow a uniform distribution on the units in B, or privilege the selection of units so that

m can be explored in the quicker and most efficient way. 
Finally, the T samples can be either analyzed separately in order to draw estimates of m that should finally be 
aggregated, or the T samples can be composed in just one big sample to be analyzed. The idea is to use the same 
procedure as described in Section 1, with the difference that the observed likelihood (2) is computed over the pairs in: 
i) each selected sample t, t=1,…,T; ii) the overall sample obtained composing the T samples. 

Each approach has its pros and cons.  

Selection without repetition preserves independence and the form of the likelihood in each sample t, while 
independence is further allowed in the composition of the T samples if already selected pairs are not allowed to get in 



a new sample; anyway, it is computationally more cumbersome given the necessary restrictions to introduce. Selection 
with repetition from B may introduce some dependences among pairs, anyway they are far less than in Ω. Hence, the 
use of the product over all the pairs in the selected samples in the observed likelihood function is a better approximation 
of the true likelihood. 

As already said, independence on C and on  is ensured for the pairs in each sample t, t=1,…,T: anyway, we already 
know that the number of pairs in Ω is not so large and expected number of matches in the samples is very low. This 
fact may jeopardize the efficiency of the EM algorithm in finding the components of the mixture between the 
distributions m and u, in each sample t. Given that m is the most difficult distribution to estimate, the proposal is to 
inflate the possibility to include matches in the selection procedure. One possibility is to select the units in B in step 1 
according to a distribution that depends on the comparisons : given a in A, the higher the number of equal key 
variables, the higher the probability to select b in B. Our simulations take into account all these situations 

2.2 Estimation of the other parameters 

The distribution u can be computed from the distinct data sets A and B. In general, considering just one of the key 
variables and assuming it is categorical with k categories, it is possible to say: 

𝑢𝑗(1) = 𝑃 (Γ𝑋𝑗
(𝑎, 𝑏) = 1|𝐶 = 0) = ∑ 𝑃𝐴(𝑋𝑗 = 𝑘)𝑃𝐵(𝑋𝑗 = 𝑘)

𝐾

𝑘=1

for the independence between units (a is not b). Assuming independence between the key variables on distinct units 
(non matches) allows us to estimate the overall u for the whole vector of K key variables. 
As far as p is concerned, this is the proportion of expected matches in the T samples as a whole. This percentage may 
be inflated if selection of b privileges the domain of  with a large number of concordances between key variables. 
Anyway, it can still be computed, by means of the Bayes theorem, the probability of having a match given a specific 
: 

𝑃(𝐶 = 1|Γ = 𝛾) =
𝑝𝑚(𝛾)

𝑝𝑚(𝛾) + (1 − 𝑝)𝑢(𝛾)

This probability can be applied on the set of records with each specific  in order to derive the matches in A and B. 

As a matter of fact, estimation of m and p by means of the EM algorithm on the selected pairs as suggested in Section 
2.1 and of u on the key variables as estimated in A and B respectively completes the estimation of the probability of 
errors and the posterior probability of being a match given a comparison by a simple plug in.  

2.3 Interaction with other problems

As already remarked elsewhere in the literature (Yancey (2004), Fortini (2020)), one prominent problem in parameter 
estimation is the fact that Ω consists of an asymmetric partition in matched and non-matched pairs: when a record can 
be matched with at most one record of the other file, the relative frequency of matched pairs in Ω cannot be more than 
the inverse of the largest file size. Hence, matched pairs become very rare the larger are the files, if compared to the 
size of Ω. When there is such a disproportion in the partition of Ω between matches and non-matches, estimation of 
the distribution m can be extremely inaccurate. How this problem interacts with the use of the likelihood function (2) 
affected by lack of independence in some of the pairs?  

3. Exercise on real data 

3.1 Description of the data 

We have considered two files for which we already know the real exact matches: the size of the two files are 25343 
and 24613. The common variables are of different nature: there are high quality variables with a scarce discriminant 
power (gender) and others with less quality but high discriminant power (surname, year of birth, day of birth) and 
variables with intermediate discriminant power (month of birth). 



3.2 Description of the simulation 

We have selected files A and B of size 50 (for both) and 200 (for both), with an overlap of matching units equal to 
20% for both sizes or 80%. Hence, we have investigated a total of 4 different combinations between file size and file 
overlap. The selected matching variables follow this schema:  

 Schema 1: surname, sex, month and year of birth. 
 Schema 2: name, surname, sex and month of birth. 
 Schema 3: name, surname, sex and year of birth. 
 Schema 4: name, surname, month and year of birth.  

Hence, the 4 schema can be considered as ordered from the less (schema 1) to the most (schema 4) discriminating 
set of matching variables. This means that schema 1 can admit more equalities between the matching variables, that 
induce a larger number of dependencies in Ω. 

3.2.1 Experimental outcomes 

Table 3.2.1-1 shows the actual m distribution, known in advance, for Schema 2 in the different scenarios. The EM 
algorithm applied on Ω gives results far from the truth, especially in the case of files sized 200 and 20% of overlap 
(this is the case when matches are rare in Ω, resulting in a very poor performance of the EM algorithm). 

Table 3.2.1-1 
Distribution of 𝒎(𝜸) in the 4 simulated scenarios and corresponding estimates by the EM algorithm on Ω, 
Schema 2 

Files size 50 200 
Overlap 20% 80% 20% 80% 

 𝑚(𝛾) 𝑚Ω̂(𝛾) 𝑚(𝛾) 𝑚Ω̂(𝛾) 𝑚(𝛾) 𝑚Ω̂(𝛾) 𝑚(𝛾) 𝑚Ω̂(𝛾)

(0 0 0 0) 0 0,00000 0 0,00001 0 0,00679 0 0,00006
(0 0 0 1) 0 0,00191 0 0,00006 0 0,00157 0 0,00043
(0 0 1 0) 0,05 0,00000 0 0,00035 0,025 0,26015 0,00625 0,00480
(0 0 1 1) 0 0,02493 0 0,00264 0 0,05999 0,0125 0,03222
(0 1 0 0) 0 0,00000 0 0,00007 0 0,00098 0 0,00024
(0 1 0 1) 0 0,00953 0 0,00052 0,05 0,00023 0,00625 0,00164
(0 1 1 0) 0 0,00000 0 0,00283 0 0,03746 0,03125 0,01839
(0 1 1 1) 0,15 0,12425 0,05 0,02136 0,15 0,00864 0,11875 0,12358
(1 0 0 0) 0 0,00000 0 0,00030 0 0,01128 0 0,00029
(1 0 0 1) 0 0,00999 0 0,00223 0 0,00260 0 0,00192
(1 0 1 0) 0 0,00000 0 0,01222 0,025 0,43212 0 0,02165
(1 0 1 1) 0,1 0,13027 0,025 0,09225 0,05 0,09965 0,06875 0,14544
(1 1 0 0) 0 0,00000 0 0,00239 0 0,00162 0 0,00110
(1 1 0 1) 0,05 0,04979 0,025 0,01801 0,025 0,00037 0,0125 0,00738
(1 1 1 0) 0 0,00000 0,1 0,09883 0,05 0,06221 0,075 0,08303
(1 1 1 1) 0,65 0,64932 0,8 0,74594 0,625 0,01435 0,66875 0,55783

The sampling strategy on Ω, where the unit in B to be attached to a unit in A is selected according to a distribution 
whose probability increases with the number of 1s in , and unit from B can be selected with replacement, gives the 
estimates in Table 3.2.1-2  and 3.2.1-3. The EM algorithm applied on the whole sample obtained with the union of all 
the performed iterations gives satisfactorily results gives satisfactorily results when the overlap between A and B is 
80%, while confirms to be poor when the overlap is 20%, no matter the number of iterations. This figures can suggest 
the hypothesis that the rareness of matches in Ω is more important than the lack of independence for C and . 

As an overall measure of divergence between the estimates and known m distribution, the chi-square indicator has 
been computed. Under schema 2, for both file sizes, the estimator on a sample of  pairs seems to be better than the 
one computed on the overall , with the exception of a situation where matches are rare in .  



This approach has been replicated 8 times, in order to investigate whether the additional variability due to sampling 
from  affects results. A chi-square distance between the true and estimated m distributions for all schemas, when file 
size is 200 and 80% of the records in A or B forms a match, is represented in Table 3.2.1-5. This example shows that 
the estimation on the whole  is generally good. Indeed, the one based on a sample of independent pairs needs a larger 
number of iterations in order to beat the one computed on the whole . 

Table 3.2.1-2 
Estimates by the EM algorithm on a sample of independent pairs, files size 50, under schema 2 

Overlap 20% 80%
Number T 
of samples 

30 50 80 
𝑚(𝛾)

30 50 80 
𝑚(𝛾)

 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾)

(0 0 0 0) 0,00000 0,00000 0,00132 0 0,00000 0,00009 0,00002 0
(0 0 0 1) 0,00519 0,00000 0,00248 0 0,00000 0,00065 0,00013 0
(0 0 1 0) 0,00000 0,00000 0,01603 0,05 0,00008 0,00284 0,00034 0,00625
(0 0 1 1) 0,02158 0,00000 0,03009 0 0,00176 0,02017 0,00273 0,0125
(0 1 0 0) 0,00000 0,00000 0,00099 0 0,00000 0,00034 0,00047 0
(0 1 0 1) 0,04630 0,04178 0,00185 0 0,00000 0,00241 0,00380 0,00625
(0 1 1 0) 0,00000 0,00000 0,01198 0 0,00101 0,01048 0,00970 0,03125
(0 1 1 1) 0,19261 0,15062 0,02248 0,15 0,02266 0,07452 0,07788 0,11875
(1 0 0 0) 0,00000 0,00000 0,01384 0 0,00000 0,00073 0,00016 0
(1 0 0 1) 0,01434 0,00000 0,02597 0 0,00000 0,00521 0,00127 0
(1 0 1 0) 0,00000 0,00000 0,16775 0 0,00301 0,02259 0,00323 0
(1 0 1 1) 0,05966 0,00000 0,31482 0,1 0,06731 0,16074 0,02597 0,06875
(1 1 0 0) 0,00000 0,00000 0,01034 0 0,00000 0,00270 0,00451 0
(1 1 0 1) 0,12796 0,17538 0,01941 0,05 0,00000 0,01924 0,03620 0,0125
(1 1 1 0) 0,00000 0,00000 0,12536 0 0,03869 0,08347 0,09230 0,075
(1 1 1 1) 0,53236 0,63222 0,23527 0,65 0,86548 0,59382 0,74129 0,66875

Table 3.2.1-3 
Estimates by the EM algorithm on a sample of independent pairs, files size 200, under schema 2 

Overlap 20% 80%
Number T 
of samples 

50 100 300 
𝑚(𝛾)

50 100 300 
𝑚(𝛾)

 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾) 𝑚Î(𝛾)

(0 0 0 0) 0,00000 0,00000 0,00000 0 0,00018 0,00006 0,00006 0
(0 0 0 1) 0,00000 0,00000 0,00000 0 0,00061 0,00043 0,00066 0
(0 0 1 0) 0,54281 0,36497 0,32086 0,025 0,00831 0,00397 0,00199 0,00625
(0 0 1 1) 0,14359 0,07971 0,06513 0 0,02809 0,02814 0,02244 0,0125
(0 1 0 0) 0,00000 0,00000 0,00000 0 0,00052 0,00031 0,00033 0
(0 1 0 1) 0,00000 0,00000 0,00000 0,05 0,00174 0,00217 0,00369 0,00625
(0 1 1 0) 0,05219 0,07755 0,04227 0 0,02385 0,02008 0,01111 0,03125
(0 1 1 1) 0,01381 0,01694 0,00858 0,15 0,08063 0,14220 0,12522 0,11875
(1 0 0 0) 0,00000 0,00000 0,00000 0 0,00107 0,00025 0,00030 0
(1 0 0 1) 0,00000 0,00000 0,00000 0 0,00361 0,00174 0,00334 0
(1 0 1 0) 0,17864 0,31194 0,41363 0,025 0,04942 0,01616 0,01004 0
(1 0 1 1) 0,04725 0,06813 0,08396 0,05 0,16708 0,11444 0,11314 0,06875
(1 1 0 0) 0,00000 0,00000 0,00000 0 0,00306 0,00124 0,00165 0
(1 1 0 1) 0,00000 0,00000 0,00000 0,025 0,01036 0,00881 0,01861 0,0125
(1 1 1 0) 0,01718 0,06628 0,05450 0,05 0,14186 0,08168 0,05602 0,075
(1 1 1 1) 0,00454 0,01448 0,01106 0,625 0,47963 0,57832 0,63140 0,66875



Table 3.2.1-4 
Divergence between the true and the estimated m distributions under schema 2, when file sizes are 50 (number 
of drawn samples 80 for 𝒎�̂�(𝜸)) and 200 (number of iteration 300 for 𝒎�̂�(𝜸))

Files size 50 200 
Overlap 20% 80% 20% 80% 

Estimator 𝑚Ω̂(𝛾) 𝑚Î(𝛾) 𝑚Ω̂(𝛾) 𝑚Î(𝛾) 𝑚Ω̂(𝛾) 𝑚Î(𝛾) 𝑚Ω̂(𝛾) 𝑚Î(𝛾)

2 0,058732 1,70963 0,11769 0,04513 100,6169 37,17019 0,12716 0,09658 

In order to have a preliminary idea of the variance induced by pairs selection in 
𝑚Î(𝛾) we have also performed 8 different replicates of the estimator when file size is 200, under schema 2 for different 
number of iterations: 50, 100, 200, 300, 400, 450. It seems that, increasing the number of iterations, the variability 
attenuates. Anyway, the range of values of the chi-square distance with respect to the true distribution for   𝑚Î(𝛾) is 
generally quite large, and includes the distance of the true distribution with the estimator based on . The estimator 
based on all pairs in  seems to be subject to improvements, even if the strategies adopted so far are not able to 
constantly make a better work. 

Table 3.2.1-5 
Divergence between the true and the estimated m distributions, when files size is 200 and the overlap between 
A and B is 80%, under schema 2, for different replicates of 𝒎�̂�(𝜸) estimated with 50 and 300 draws of samples 
from   (divergence for 𝒎�̂�(𝜸) is 0,12716037) 

T
2

Replicates of the method based on draws from 
n° 1 n° 2 n° 3 n° 4 n° 5 n° 6 n° 7 n° 8

50 0,135127 0,264034 0,278951 0,424961 0,149647 0,106711 0,046630 0,152528
300 0,096584 0,136924 0,163529 0,162267 0,112410 0,079939 0,137170 0,100193

4. Comments and open issues 

This paper deals with the problem of parameter estimation in a record linkage problem. Pairs of records for two files 
can be either a match or a non match. Knowledge is restricted to a set of matching variables in the two files that can 
be subject to errors or mistakes. The comparison of the matching variables is assumed to be generated by a random 
variable (r.v.) whose distribution is m for matches and u for non-matches. Pairs are generally assumed to be 
independent, and the likelihood function is built accordingly. Anyway, independence between pairs is generally not 
true. For this reason, given that the Cartesian product of the two files  is the only source of information on the status 
of the pairs, we propose to estimate m sampling from  so that the pairs in the sample can be independent. 

The first question is consequently straightforward: is there a formal way to represent the actual likelihood based on 
the whole set of pairs in ? 
The examples represented in this paper show that estimates obtained through the EM algorithm on the whole  can 
be quite distant from the actual ones. Anyway this does not seem to be always true. A first question is to investigate 
under what conditions the traditional estimator  𝑚Ω̂(𝛾) is reliable (following also indications in Yancey (2004) and 
Fortini (2020) for its improvements). 

The experiments suggest some aspects that need to be further investigated in order to be confirmed. These are the 
sentences we wish to investigate in the future.  

 The more identifiable are the variables used as matching variables and the higher is the overlap between the 
two files, the best is  𝑚Ω̂(𝛾). 

 The less the matching variable are identifiable, the more the estimator  𝑚Î(𝛾) (as for schema 1) gives less 
distant results from the truth. Possibly this could be the effect of a larger number of equivalences between 
the matching variables, that induce more dependence between pairs observations. 

 The larger the number of iterations in the estimator based on sampling from ,  𝑚Î(𝛾) , the less distant seem 
to be the estimate from the truth. Is it possible to have results constantly better than  𝑚Ω̂(𝛾) for any replicate 
of the same number of iterations for  𝑚Î(𝛾)? 



Furthermore, there are other aspects that deserve to be tackled. 
 Sampling from  has been performed in just one situation: selection of independent pairs for each a in A, 

iteration of this selection and joint analyses of all the obtained pairs. It would be important to assess what 
happens if estimates are performed in each sample, and then a unique estimate is given. 

 Perform simulation with different number of iterations, also much larger than the ones already computed in 
this paper. 

 Perform simulations with different number of file size for A and B. 
 It was assumed that the comparisons between the matching variables is independent for both matches and 

non-matches. Given the presence of zeros in the m distribution shown in the different tables, this is generally 
not true. Alternative models can be considered. 

This is just a starting point: any comment and additional ideas are very welcome. 
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