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Abstract 

I provide an overview of the evolution of Statistical Disclosure Control (SDC) research over the last decades and how it has 

evolved to handle the data revolution with more formal definitions of privacy. I emphasize the many contributions by Chris 

Skinner in the research areas of SDC. I will review his seminal research, starting in the 1990’s with his work on the release 

of UK Census sample microdata. This led to a wide-range of research on measuring the risk of re-identification in survey 

microdata through probabilistic models. I also focus on other aspects of Chris’ research in SDC. Chris was the recipient of 

the 2019 Waksberg Award and sadly never got a chance to present his Waksberg Lecture at the Statistics Canada International 

Methodology Symposium. This paper follows the outline that Chris had prepared in preparation for that lecture, and provided 

to me by his son, Tom Skinner.
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1. Introduction 

A special memorial session was held in honour of Chris Skinner at the 2021 Statistics Canada International 

Methodology Symposium with many moving contributions from friends and colleagues to celebrate Chris’ life and 

achievements. Chris was the 2019 Waksberg Award recipient and was planning on attending the 2019 International 

Methodology Symposium to deliver his lecture. Unfortunately his illness took a turn for the worse and he sadly passed 

away on February 21st, 2020. I had the great privilege of presenting this work on Statistical Disclosure Control (SDC), 

from its early inception and where we are at today with an emphasis on Chris’ contributions to the field. The outline 

of the talk was based on a set of notes that Chris had drawn up in preparation for his 2019 Waksberg Lecture provided 

to me by his son, Tom Skinner.  

In this proceedings paper, I summarize the lecture that I gave in the memorial session. I discuss early SDC 

developments in Section 2, and move to the situation today based on the Data Revolution in Section 3. Section 4 

describes Chris’ contributions and his seminal research in SDC. Section 5 presents current research in SDC and data 

privacy, and one of Chris’ final contributions of embedding Differential Privacy into the SDC tool-kit at government 

agencies. We close in Section 6 with some final words on the impact of Chris’ research in government and social 

statistics and survey methodology.  
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2. Early SDC Developments and History

Since the 1960’s there has been public awareness around confidentiality and privacy which initiated public opposition 

to data collection, particularly for censuses within Europe. For example, there were many objections against the 

collection of information about the population living in the Netherlands and their last traditional census was held in 

1971. This opposition led to a need by government agencies to respond to public concerns about privacy and 

confidentiality (Dunn 1967) as well as discussed in other early work in Barabba (1975), Cox (1976), Fellegi (1972) 

and Dalenius (1974). Fellegi (1972, p. 8) wrote: ‘National Statistical Institutes (NSIs) live by the good will and trust 

of the public so that to maintain this trust is literally a question of life or death to them”. Based on the research carried 

out in Sweden, Dalenius (1977) was one of the first to formally define and formalize a framework for Statistical 

Disclosure Control (SDC) as follows: “An unauthorized party should not be able to learn something about an 

individual through the release of a statistics f(�) that cannot be learned without access to f(�)”.  

The work by Dalenius and others provided the framework for researching and developing SDC within government 

agencies and the establishment of formal governance boards on the release of statistical data. The research being 

carried out in the United States included, for example the Subcommittee on Disclosure-Avoidance Techniques that 

was established in 1976 by the Federal Committee on Statistical Methodology, and sponsored by the Statistical Policy 

Division of OMB as reported in Jabine, et al. (1977) ( see also the 1978 report and Appendix A on Statistical Disclosure 

Avoidance Practices in Selected Federal Agencies). In this Appendix there are five sections with recommendations: 

the concept of SDC; what to release; disclosure avoidance techniques; effects of disclosure on data subjects and users; 

and needs for research and development. There were also general rules that were put in place, for example no regional 

areas that could be published with less than 100,000 individuals.  

Further work into the 1980’s placed an emphasis on SDC for survey outputs as it was originally and erroneously 

thought that sampling provided protection against disclosure risks (Dalenius 1988). Paass (1988) was one of the first 

to estimate the fraction of identifiable records in survey microdata and took into account the sampling and additive 

noise as well as prior knowledge under an assumed ‘attack’ on the data. In his paper, Paass (1988) wrote: “Where 

there is large knowledge, the requirement for privacy protection and high-quality data perhaps may be fulfilled only 

if the linkage of such files with extensive additional knowledge is prevented by appropriate organizational and legal 

restrictions.” In addition, Bethlehem et al. (1990) was one of the first papers to use probabilistic modelling to estimate 

the risk of re-identification in survey microdata by estimating the number of population uniques given sample uniques 

on a set of cross-classified quasi-identifiers. More on this methodology and the contributions of Chris will be presented 

in Section 4.1. 

Into the 1990’s there was much more demand for detailed outputs particularly with the availability of better 

technological solutions and personal computers. There were also rising concerns by users of the data on having to 

work with protected or perturbed outputs. This coincided with large-scale SDC developments through a scientific 

evolution of the methodology and the international interchange of theoretical and practical developments, for example, 

the International Symposium on Statistical Disclosure Avoidance held in the Netherlands in 1990 (as reported in a 

special issue of Statistica Neerlandica, 1993). There were also cross-collaborations within the European Union through 

the 4th Framework research project Statistical Disclosure Control(SDC) (1996-1998) and many other EU projects 

following on from the initial project, including the development of SDC software: mu-ARGUS for microdata and tau-

ARGUS for tabular data (specifically cell suppression for magnitude tables containing business statistics). See 

https://research.cbs.nl/casc/index.htm for more details of the research projects across Europe. A special issue of the 

Journal of Official Statistics, (Vol 14(4), 1998) titled ‘Disclosure Limitation Methods for Protecting the 

Confidentiality of Statistical Data’ was particularly impactful and highlighted the large-scale research undertaken in 



SDC. In addition, a book and training course were developed (see: Willenborg and De Waal (1996) with contributions 

by Chris Skinner, and later a second edition in 2001). Continuing work was happening at the same time in the US and 

Canada, for example the Federal Committee on Statistical Methodology (1994); the Committee on Maintaining 

Privacy and Security in Health Care Applications of the National Information Infrastructure (1997); Disclosure 

Control Issues at Statistics Canada (Yeo and Robertson 1995) including the software package CONFID that also 

carried out cell suppression for magnitude tables. 

Throughout the 1990’s, there was growing focus on the development of access and governance arrangements and 

legislation, and the notion of tiered data access. Data Archives and Research Data Centres were set up along with data 

governance approaches and frameworks for making effective use of statistical data , for example the ‘5 Safes’ 

Framework shown in Table 1 and put in practice at the ONS in 2002 (Ritchie 2009) and later the Anonymization 

Decision-Making Framework (Elliot, et al. 2016 and available at https://ukanon.net/framework/ ). 

Table 1 

The 5 Safes Framework 

Safe Projects Is this use of the data appropriate? 

Safe People Can the users be trusted to use the data in an appropriate manner? 

Safe Settings Does the access facility limit unauthorised use? 

Safe Data Is there a disclosure risk in the data itself? 

Safe Outputs Are the statistical results non-disclosive?  

3. Data Revolution 

Since the latter half of the 2000’s, there has been more open and accessible data in the public domain, including open 

data and big data, leading to greater risks of breaches of privacy and confidentiality since these data sources can 

potentially be used to compromise released statistical data. In addition, more advanced technological tools are 

available that enable better data linkages and data manipulation to increase the likelihood of re-identification in 

statistical data. Government agencies started to become more aware that SDC methods may not be sufficient to protect 

the confidentiality of statistical units and therefore initiated tighter restrictions and more controlled access to the data. 

This also manifested in changes to the legislation, particularly, the 2016 EU General Data Protection Regulation 

(GDPR) which provided provisions and requirements related to the processing of personal data of individuals. There 

was also more focus on privacy concerns in health data (El Emam, et al. 2011) and genetic data (Homer, at al. 2008, 

Gymrek, et al. 2013) where the latter were shown to be of high-risk and had implications on the dissemination of DNA 

databases. In the commercial domain, there were many examples of breaches of privacy: AOL search keywords 

(Barbaro, et al. 2006), New York City (NYC) taxi trips (Douriez, et al. 2016), Cambridge Analytica and Facebook 

(Meredith 2018), and others.  

With greater technological advancements and the possibility to link data sources, this led to the development of trusted 

third parties to carry out linkages and secure multi-party computing that was originally developed in the computer 

science literature and had a cross-over to the statistical literature on how to run advanced statistical modelling under 

this approach (Slavkovic and Nardi 2007, Snoke et al. 2018). In addition, collaborations between computer scientists 

and the statistical community grew and led to important developments on database privacy within government 

agencies (see Section 5 for more details). In the privacy literature, Dwork, et al. (2017) wrote: “Beginning in the mid-

2000s, the field of privacy-preserving statistical analysis of data has witnessed an influx of ideas developed some two 

decades earlier in the cryptography community”.   



4. Contributions of Chris Skinner to SDC research

Chris’s formal research in Statistical Disclosure Control (SDC) started with his collaborations at the University of 

Manchester to argue for the release of sample microdata (the SARs) from UK Census (Marsh, et al. 1991, Skinner, et 

al. 1994, Marsh, et al. 1994). This led to his interest on measuring the risk of re-identification in survey microdata 

through probabilistic modelling first published in Skinner (1992) and described in Section 4.1. He also started his long 

career of advising for government statistics and data access committees, for example: UK Census Design and 

Methodology Advisory Committee Statistical Disclosure Control (SDC) Subgroup (2008-2010); Understanding 

Society Data Access Committee (2010-2013); Expert Advisory Group on Data Access, Wellcome Trust, MRS, ESRC 

and Cancer Research UK (2012-2014).  

4.1 Measuring the Risk of Re-identification in Survey Microdata and Extensions 

The disclosure risk scenario for the release of sample microdata containing records from a survey where the sample 

is drawn randomly from a finite population is based on the following assumptions: (1) there is an ‘intruder’ (someone 

with malicious intent to discredit the statistical office) who has access to the microdata and other auxiliary information 

about the population that allows him/her to link data sources in order to identify individuals in the sample microdata; 

(2) there is no ‘response knowledge’ meaning that the intruder does not know who was drawn into the sample of the 

survey. The basic definition of the risk of re-identification is therefore the probability of correctly being able to make 

this match. Chris was among the first to develop a statistical modelling framework to estimate the probability of re-

identification, conditional on the released data and assumptions about how the data is generated (knowledge of the 

sampling process). The model is with respect to key variables defined as a set of quasi-identifiers in both data sources 

and typically categorical such as age, sex, location, ethnic group. Cross-classifying the key variables leads to large 

contingency tables of sample counts, where many of the cells of the table have a value of zero or a value of one, and 

we particularly focus on the disclosure risk from the cells of size one, i.e. the sample uniques. The risk of re-

identification is based on the notion of population uniqueness in the contingency table: given an observed sample 

unique in a cell of a table generated from cross-classifying the key variables, what is the probability that the cell is 

also a population unique? Individual per-record risk measures in the form of a probability of re-identification are 

estimated. These per-record risk measures are then aggregated to obtain global risk measures for the entire file which 

are useful to make informed decisions about the level of access. 

The probabilistic modelling developed by Chris takes a simplified approach that restricts the information that would 

be known to intruders (Skinner and Holmes 1998, Elamir and Skinner 2006). Denoting �� the population size in cell 

k of a table spanned by key variables having K cells and �� the sample size and ∑ �� = ��  and ∑ �� = ��  . The set of 

sample uniques, is defined: �� = {�: �� = 1} since these are the potential high-risk records with the potential to be 

population uniques. Two global disclosure risk measures (where I is the indicator function) are the following:  

1. Number of sample uniques that are population uniques:  

�� = ∑ �(�� = 1,�� = 1)�

2. Expected number of correct matches for sample uniques assuming a random assignment within cell k

(the match probability) �� = ∑ �(�� = 1) 1/ ���

We assume that the population frequencies �� are unknown and need to be estimated from a probabilistic model where 

the risk measures are then:  



�̂� = ∑ �(�� = 1)��( �� = 1|�� = 1)�  and �̂� = ∑ �(�� = 1)��(1/ ��  |�� = 1)� (1)  

Chris assumed a Poisson distribution and a log-linear model to estimate disclosure risk measures in (1). In this model, 

he and his co-authors assume that ��~����(��) for each cell k. A sample is drawn by Poisson or Bernoulli sampling 

with a sampling fraction �� in cell k: ��|��~���(��,��). It follows that:  

��~����(����) and ��|��~����(��(1 − ��)) (2) 

where the population cell counts �� are assumed independent given the sample cell counts �� .

The parameters �� are estimated using log-linear modeling. The sample frequencies �� are independent Poisson 

distributed with a mean of �� = ����. A log-linear model for the �� is expressed as: log(��) = ��′� where �� is a 

design vector which denotes the main effects and interactions of the model for the key variables. The maximum 

likelihood (MLE) estimator �� are obtained by solving the score equations: 

∑ (� �� − ��exp(��
��))�� = 0   (3)  

The fitted values are then calculated by: �̂� = exp(��
���) and ��� = �̂�/��. Individual disclosure risk measures for cell 

k are: 

�( �� = 1|�� = 1) = exp (��(1 − ��))

�(1/ �� |�� = 1) = (1 − exp (��(1 − ��)))/ (��(1 − ��)) (4) 

Plugging ���for �� in (4) leads to the estimates ��( �� = 1|�� = 1) and ��(1/ ��  |�� = 1) and then to �̂� and �̂� of (1).  

Skinner and Shlomo (2008) develop a method for selecting the main effects and interactions for the log-linear model 

based on estimating and (approximately) minimizing the bias of the risk estimates �̂� and �̂�. Defining ℎ(��) =

�( �� = 1|�� = 1) for �� and ℎ(��) = �(1/ �� |�� = 1) for ��, they consider the expression:  

� = ∑ �(�(�� = 1))(� ℎ����� − ℎ(��)).  

A Taylor expansion of h leads to the approximation  

� ≈ ∑ �� ��exp (−��)(� ℎ�(��)���� − ���+ ℎ��(��)���� − ���
�
/2)

and the relations �(��) = �� �� and �(��� − ������
�

− ��) = ��
� �(��� − ��)�  under the hypothesis of a Poisson 

distribution fit lead to a further approximation of � of the form:  

�� ≈ ∑ ���exp (−�����)(� −ℎ�(��)��� − ������ + ℎ��(��)(��� − ������
�

− ��)/(2��)) (5) 

For example, for ��:  

��� ≈ ∑ ��� exp�−���� (1 − ��){� ��� − ������ + (1 − ��)[��� − ������
�

− ��]/(2��)} (6)  



The method selects the model using a forward search algorithm which minimizes the standardized bias estimate 

���/���� for �̂� , � = 1,2, which is used as the goodness-of-fit criteria where ��� are variance estimates of ���. The 

goodness-of-fit criteria ���/���� have an approximate standard normal distribution under the hypothesis that the 

expected value of ��� is zero.  

Skinner and Shlomo (2008) also address the estimation of disclosure risk measures under complex survey designs 

with stratification, clustering and survey weights. While the method described assumes that all individuals within cell 

k are selected independently using Bernoulli sampling, i.e. (�� = 1|��) = ����(1 − ��)����, this may not be the case 

when sampling clusters (households). In practice, key variables typically include variables such as age, sex and 

occupation that tend to cut across clusters. Therefore the above assumption holds in practice in most household surveys 

and does not cause bias in the estimation of the risk measures. Inclusion probabilities may vary across strata, the most 

common stratification is on geography. Strata indicators should always be included in the key variables to take into 

account differential inclusion probabilities in the log-linear model. Under complex sampling, the �� can be estimated 

consistently using pseudo-maximum likelihood estimation (Rao and Thomas 2003), where the estimating equation in 

(3) is modified as:  

∑ (� ��� − exp(��
��))�� = 0  (7)  

and ��� is obtained by summing the survey weights in cell k: ��� = ∑ ���∈� . The resulting estimates �� are plugged into 

expressions in (4) and �� is replaced by the estimate ��� = ��/���. The goodness-of-fit criteria ��  is also adapted to the 

pseudo-maximum likelihood method. See Skinner and Shlomo (2008) for a simulation and real application 

demonstrating this approach for both a simple random sample and a survey with a complex design. 

The probabilistic modelling presented here and in other related work in the literature assume that there is no 

measurement error in the way the data is recorded. Besides typical errors in data capture, key variables can also 

purposely be misclassified as a means of masking the data, for example through record swapping or the post 

randomization method (PRAM) (Gouweleeuw, et al. 1998). Shlomo and Skinner (2010) adapt the estimation of the 

risk of re-identification to take into account measurement errors. Denoting the cross-classified key variables in the 

population and the microdata as X and assuming that X in the microdata have undergone some misclassification or 

perturbation error denoted by the value �� and determined independently by a misclassification matrix M: 

��� = �(�� = �|� = �) (8) 

The record-level disclosure risk measure of a match with a sample unique under measurement error is:  

���(�������)

∑ ��� ���/(�������)
≤

�

��
(9) 

Under assumptions of small sampling fractions and small misclassification errors, the disclosure risk measure can be 

approximated by:���/ ∑ ��� ��� or ���/ ��� where ��� is the population count with �� = �. Aggregating the per-

record disclosure risk measures, the global risk measure is:  

�� = ∑ �(�� = 1) ���/ ���� (10) 



Note that to calculate the measure only the diagonal of the misclassification matrix needs to be known, i.e. the 

probabilities of not being perturbed. Population counts are generally not known so the estimate in (10) can be obtained 

by probabilistic modelling on the misclassified sample as shown above:  

�̂� = ∑ ����� = 1���� ��(1/ ���|���� ) (11)  

In more recent work with Chris and presented for the first time in Shlomo and Skinner (forthcoming), a new direction 

is explored to measure the risk of re–identification for non-probability data sources. More specifically, there are 

registers in the public domain, where the membership of the register is not known and is sensitive. Examples of 

registers are of persons with a medical condition, such as Cancer or HIV, or registers that include membership to a 

loyalty card scheme. The approach can also be extended to the case where samples are drawn from the registers and 

more generally to non-probability samples, such as those arising from web-surveys. Extending the framework above, 

the microdata from a random sample can still be used to estimate population parameters under the probabilistic 

modelling framework for estimating the risk of re-identification, however the complication is to also estimate the 

propensity of membership for the individuals in the register.  

More specifically, let � and �� denote the population and the register population, respectively, with �� ⊂ �. Let Ri

be the register indicator variable for individual i with Ri =1 if � ∈ �� and Ri =0 otherwise. As mentioned, we suppose 

that membership Ri is a sensitive variable for which disclosure is undesirable.  

We denote the register population frequencies in cell k by ��
�. The most risky records are for cells with ��

� = 1 and, 

analogous to the derivation presented in Skinner and Shlomo (2008), a risk measure is given by 

��
∗ = ∑ �(�� = 1|��

�
� = 1)�(��

� = 1) (12) 

There is no way that these measures can be estimated consistently from the register microdata alone. The microdata 

provide information about the ��
� but not about the �� in U and distribution of X in �� may be quite different to that 

in � so the microdata carries no direct information about the �� . Therefore, we use the random sample microdata file 

in which the values of X are recorded for a probability sample s from �. Let �� denote the frequency in cell k in s . 

Note that the �� and ��
� are observed, but the �� are not. If the intruder has access to the sample microdata file, then 

it may be advantageous to restrict attention to cells with �� = 1, leading to the following risk measure  

�� = ∑ �(�� = 1|��
�

� = 1, �� = 1)�(��
� = 1, �� = 1) (13) 

Following Skinner and Shlomo (2008), suppose that �� is Poisson distributed, ��~����(��) where the parameter ��
obeys the log-linear model:  

log(��) = ��′� (14) 

Suppose that within cell k the unknown membership variable Ri takes the value 1 with probability ��, independently 

for each of the �� units, so that ��
�~����(��) where �� = ���� , and the ��

� are binomially distributed 

��
� |��~���(��, ��) conditional on the ��. Further, we assume that �� follows the logistic model: 

�����(��) = ��′� (15) 

As shown in Shlomo and Skinner (forthcoming), the risk measure �� is estimated by:  



�(�� = 1|��
� = 1, �� = 1) =

��� (�(����)(�����))

��(����)(�����)

 and to evaluate ��
∗ , we use 

�(�� = 1|��
� = 1) = �(�� − ��

� = 0) = exp (−(�� − ��)) (16)  

since �� − ��
�~����(�� − ��) .

Therefore, the estimation of these measures requires both the estimation of � from ��~����(����), and in a second 

step, the estimate �, fixing �� at the value implied by (14). We then use (16) and the fact that �� = ���� to write 

����� = �����+��
� � − ��� (1 + exp(��

� �)) (17) 

and estimate � from the fact that ��
�~����(��) using maximum likelihood estimation and treating �� as known. 

Alternative approaches of estimation are also proposed in Shlomo and Skinner (forthcoming). 

Another type of design-based estimator for measuring disclosure risk in sample microdata is called the DIS measure 

and was developed in Skinner and Elliot (2002) and extended in Skinner and Carter (2003) for more complex survey 

designs. The disclosure risk is based on a different disclosure risk scenario where an intruder draws a unit at random 

from the population, checks if the unit is in the sample, and if so, estimates the probability that there will be a correct 

match to the unit in the sample (this is known as a ‘fishing scenario’). Notice that this scenario is quite different than 

the scenario mentioned under the probabilistic modelling where the intruder has access to a unit in the released 

microdata and attempts to match the unit to the population. The advantage of this ‘fishing scenario’ is that the measure 

can be estimated easily without the need for probabilistic modelling. The DIS measure is defined as 

� = ∑ �(�� = 1)/ ∑ �(�� = 1)���� (18) 

and estimated by:  

�� =  ���/[��� + 2(1 − �)��] (19)  

where �� are the uniques and �� are the doubles. Skinner and Shlomo (2012) extend this approach to estimate 

frequencies of frequencies in finite populations beyond sample uniques. 

4.2 Separating Disclosure risk and Harm 

Chris provided a conceptual framework in Skinner (2012) for separating potential disclosure 

risk from harm, thus linking earlier papers by Duncan and Lambert (1986) and Lambert (1993). The framework is 

based on decision theory where the actors are the agency, the intruder and the user and they are analysed with respect 

to their actions and loss functions. Chris emphasized the importance of separating out what can be measured by 

statistical theory (potential disclosure risk) and what aspects of decision- making requires other inputs, such as policy 

judgements (potential disclosure harm). This work was also motivated by the Disclosure Risk-Data Utility framework 

in Duncan, et al. (2001) and the Economics of Privacy in Abowd and Schmutte (2009).  



As can be seen from these examples, Chris expanded the depth and breadth of SDC research. Other areas of research 

where Chris had considerable impact was on the associations between measuring disclosure risks in SDC with other 

related areas of research, such as record linkage (Skinner 2009) and forensic science (Skinner 2007). Chris’ more 

recent work on disclosure risk and privacy will be the topic of the next sections.  

5 Disclosure Risk and Privacy 

In the computer science privacy literature, there are more formal definitions of privacy via privacy models that protect 

against a class of attacks, where the models are parameterized by a threshold of disclosure risk determined a priori 

through a privacy budget. Generally, the privacy literature requires more perturbative techniques and a greater loss of 

information to meet the thresholds of the privacy model. The class of attacks are typically based on dealing with 

inferential disclosure which encompasses both identity and attribute disclosure risks, although the privacy model of 

k-anonymity (Sweeny 2002) aims to avoid linkage attacks similar to the SDC literature described in Section 4. We 

note that there is always continuing importance of measuring identity disclosure through the risk of re-identification 

given the legislation and possible linkage attacks although in the privacy literature there is no distinction between 

identifying and sensitive variables. 

It is important to point out, however, that many concepts in the privacy literature are not new to SDC. For example, 

the reconstruction attacks mentioned in Garfinkel, et al. (2018) in arguing for more stringent SDC protection for the 

2021 US Census have the same considerations as complementary cell suppression developed in the 1980’s for 

protecting magnitude tables of business data, including the calculation of lower/upper bounds on the suppressed cells. 

Indeed, the reconstruction attack is not about linkage rather it is concerned with attribute disclosure through small cell 

counts, particularly on the margins. As mentioned the privacy literature mainly focuses on attribute and inferential 

disclosures although the SDC literature have also covered these topics, for example the predictive disclosure risk 

mentioned in Fuller (1993). Another privacy model is tracing attacks where one can infer whether an individual is in 

a sensitive dataset, eg. Homer et al. (2008), but the SDC literature has also focused on whether a data subject is visible 

in the dataset. The difference between the privacy literature and the SDC context is that the statistical unit consents to 

providing their data for statistical purposes and the government agency thus has a legal and ethical obligation to protect 

against breaches of disclosures. 

Since 2005, there have been four collaborative meetings between the SDC community and the computer science 

privacy community and this has led to substantial understanding of the different approaches both with respect to 

guarantying privacy and maintaining sufficient utility in the data. For example, in Nissim, et al. (2017, p. 5), it is 

mentioned: “Privacy is a property of an informational relationship between input and output not a property of output 

alone”, and this has led to some relaxations of the strict privacy guarantees in the privacy literature. On the other hand, 

the SDC community have recognized the need to have more formal privacy guarantees, particularly with the demand 

to allow for accessing the statistical data via web-based dissemination applications. The collaborations between the 

SDC community and the computer science privacy community have also led to a journal that was initiated in 2005, 

titled the Journal of Privacy and Confidentiality ( https://journalprivacyconfidentiality.org ) of which Chris served as 

one of the first co-editors (Abowd, et al. 2009).  



5.1 Differential Privacy 

Dwork and Naor (2010) show that the Dalenius (1977) definition of a privacy breach presented in Section 2 is 

impossible to prevent and proposed that instead of comparing information with and without f(�), they compare f(�) 

and f(��) where �� is the database � without a single unit. The privacy model is known as Differential Privacy (Dwork 

et al. 2006).  

In Differential Privacy, a ‘worst case’ scenario is allowed for, in which the potential intruder has complete information 

about all the units in the database except for one unit of interest. The definition of a perturbation mechanism � satisfies 

�-differential privacy if for all queries on neighbouring databases �,�� ∈ � differing by one individual and for all 

possible outcomes defined as subsets �������(�) we have:  

�(�(�)��) ≤ ���(�(�′)��)

A relaxation is offered by the definition of (�, �)-differential privacy: 

�(�(�)��) ≤ ���(�(��)��) + �

This means that observing a perturbed output �, little can be learnt (up to a degree of ��) and the intruder is unable to 

determine whether the output was generated from database � or ��. In other words, the ratio �(�(�)��)/

�(�(�′)��) is bounded and the probability in the denominator cannot be zero. Thus, Differential Privacy formally 

bounds increased disclosure risk from participating in the database. Under the(�, �)-differential we allow a small 

amount of slippage to this constraint.  

The solution to guarantee Differential Privacy in the computer science literature is by adding noise/perturbation to the 

outputs of the queries under specific parameterizations and in the privacy literature the noise is generated from the 

Laplace Distribution (and for count data, a discretized Laplace Distribution can be used).  

Shlomo and Skinner (2012) first looked at whether standard SDC methods are differentially private mechanisms 

according to the definition above. They found that sampling as an SDC method is not differentially private since a 

person may be observed in the (protected) sample but if the person is removed from database � to obtain ��, this 

causes an impossible situation where the sample count is greater than the population count. In fact, any non-

perturbative SDC method, such as coarsening variables, is not differentially private because one can always find a 

case where the denominator in the ratio is zero due to the deterministic nature of the data protection. Perturbative 

methods in the SDC tool-kit can be made differentially private if the perturbation mechanisms do not have zero 

probabilities of perturbation. As an example, SDC methods traditionally do not perturb zero cells in census tables 

containing whole population counts, rather stochastically induces more zeros through the perturbation, for example 

through random rounding. However, to make this perturbation approach differentially private, the (random) zeros of 

the table also need to be perturbed.  

5.2 Online Flexible Table Builders 

There has been much interest by government agencies to develop online flexible table builders for generating census 

tables which allows users to define and download their own census tables, typically through a dedicated website with 

a predefined set of variables and their categories selected through drop-down lists. Light disclosure checks are carried 

out on the generated tables prior to their release. One such application was developed at the Australian Bureau of 



Statistics (ABS) (see: https://www.abs.gov.au/statistics/microdata-tablebuilder/tablebuilder). The application uses a 

perturbation vector to change values of cell counts depending on the original cell value, where the perturbation 

mechanism have the properties of being bounded, unbiased, have maximal entropy, only allow for non-negative 

perturbations and zero cells are not perturbed. Shlomo and Young (2008) introduced an approach to transform the 

perturbation vectors in such a way that the marginal counts are preserved in expectation by introducing the property 

of invariance into the perturbation mechanism. 

In the ABS online flexible table builder, a small random number is assigned to each individual in the census microdata. 

Then, when a table is requested and the individuals are aggregated into the cells of the table, the random numbers of 

the individuals in each cell are also aggregated. This aggregated random number is then used as the seed to determine 

the perturbation (Fraser and Wooton 2005). This means that any time a same cell appears in any requested census 

table, it will always have the same perturbation. Therefore, there is no risk of being able to ‘unpick’ a true cell value 

by averaging out independent perturbations under multiple requests of the same table. In addition, this approach 

ensures that the perturbation is what is known as a ‘non-interactive’ mechanism since essentially all outcomes of 

perturbation on requested census tables within the online flexible table builder are known in advance.  

One of Chris’ last initiatives prior to his illness was to take the lead on setting up a collaborative programme between 

statisticians, computer scientists, social scientists and practitioners held at the Isaac Newton Institute, University of 

Cambridge. Together with Professor David Hand, they successfully launched the Data Linkage and Anonymization 

Programme (supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant no. 

EP/K032208/1) held from July to December 2016. It was during this programme that a group of statisticians looked 

at whether Differential Privacy could be a viable solution for an online flexible table builder for generating census 

tables, resulting in the paper by Rinott, O’Keefe, Shlomo and Skinner (2018). The main difference with the original 

ABS approach was to use a differentially private perturbation mechanism (known as the Exponential Mechanism 

which is essentially a discretized Laplace Distribution) and to perturb the (random) zero cells. Any resulting negative 

perturbations were then pushed to zeros in the census tables. Assuming independent pertubations, the Exponential 

Mechanism is defined as follows: for a given cell count value �, choose ��� (where � is the range of �) with 

probability proportional to exp �
�
�

�
��

∆�
� where � is the perturbation and ∆� is the maximum difference of a cell count 

in database � versus ��, which for the case of a census table of internal cells, take the value of one. Accounting for 

marginals in the census tables raises the complexity of the perturbation vector (see Rinott, et al. 2018 for more 

information about marginals). In order to ensure utility, the perturbations were capped at ±7 thus the mechanism 

satisfied (�, �)-differential privacy. An example of a pertubation vector for � = 1.5 and � = 0.00002 and a 

perturbation cap of ±7 is the following:  

u -7 -6 -5 -4 -3 -2 -1  0 

p(u) 0.00002 0.00008 0.00035 0.00157 0.00706 0.03162 0.14172 0.63516 

u 1 2 3 4 5 6 7 

p(u) 0.14172 0.03162 0.00706 0.00157 0.00035 0.00008 0.00002 

Examples and applications are shown in Rinott, et al. (2018) and in addition, they show how to adjust statistical 

analyses when carried out on the perturbed data given that the perturbation mechanism is known and not secret under 

Differential Privacy.  



Differential Privacy, with more formal by-design privacy guarantees to protect against attribute and inferential 

disclosure risks, may provide solutions to protect statistical data when disseminated as open data and via web-based 

internet applications and may become part of the SDC tool-kit within government agencies. The US Census Bureau 

will be applying Differential Privacy in their 2021 census products (Abowd 2018). Further research is needed on how 

privacy budgets are influenced when combined with other SDC approaches, such as coarsening, sampling and variable 

suppression. There is also ongoing research within the privacy literature to improve the utility of differentially private 

perturbation mechanisms, for example bounded Differential Privacy in Kifer and Machanavajjhala (2014).  

6. Final Words 

In summary, a key feature of Chris’s approach to research on SDC, as well as his other areas of research, was that it 

was based on finding practical solutions to real statistical problems. His research was influential because he was able 

to put theory to practice and to solve real problems to advance the social sciences, government and social statistics 

and survey methodology. His decades of research in SDC and other research areas in survey statistics, including 

missing data and measurement error, data integration, the analysis of complex survey designs, multiple frame 

estimation and more, made him the definitive voice of a generation.  
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