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Abstract

Recent developments in questionnaire administration modes and data extraction have favored the use of nonprobability 
samples, which are often affected by selection bias that arises from the lack of a sample design or self-selection of the 
participants. This bias can be addressed by several adjustments, whose applicability depends on the type of auxiliary 
information available. Calibration weighting can be used when only population totals of auxiliary variables are available. If 
a reference survey that followed a probability sampling design is available, several methods can be applied, such as 
Propensity Score Adjustment, Statistical Matching or Mass Imputation, and doubly robust estimators. In the case where a 
complete census of the target population is available for some auxiliary covariates, estimators based in superpopulation 
models (often used in probability sampling) can be adapted to the nonprobability sampling case. We studied the combination 
of some of these methods in order to produce less biased and more efficient estimates, as well as the use of modern prediction 
techniques (such as Machine Learning classification and regression algorithms) in the modelling steps of the adjustments 
described. We also studied the use of variable selection techniques prior to the modelling step in Propensity Score 
Adjustment. Results show that adjustments based on the combination of several methods might improve the efficiency of the 
estimates, and the use of Machine Learning and variable selection techniques can contribute to reduce the bias and the 
variance of the estimators to a greater extent in several situations 
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1.  Introduction

Traditional survey methods are facing important drawbacks, in terms of response rates, costs, and coverage errors, 
and new questionnaire administration methods could fix those gaps. Among these new methods, we could mention 
online and smartphone surveys. Passive data sources often used in the so-called Big Data analyses (such as GPS, web 
scrapping, mobile apps) can also be considered as new methods to obtain samples from a population. 

The new methods constitute tools to obtain more timely samples at cheaper costs and with many more possibilities 
regarding questionnaire design or even targeting non-demographical strata that can be reach using online tools. 
However, they also entail non-sampling errors that should be taken into account. For example, Internet connection or 
questionnaire computerization problems can involve measurement error, and the absence of an interviewer may 
enhance survey satisficing behaviors. The most relevant source of error in new survey methods is selection bias, which 
comes from three different mechanisms: coverage error, response error and self-selection bias. 

All of these mechanisms may lead to important amounts of bias if the individuals that participate in the samples differ 
on their characteristics to those that do not participate in the samples (Elliott and Valliant, 2017). The error formula 
developed by Meng (2018) shows that the estimation error has three sources: the amount of data drawn from the 
population, the variability of the data itself and the correlation between the selection mechanism and the variable of 
interest. If there are differences in the values of the variable of interest between sampled and non sampled individuals, 
there will be a high correlation that will lead to a larger estimation error. According to Meng (2018), the most efficient 
way to reduce the estimation error is not to increase the sample size, which will provide very slow improvements, but 
to reduce this correlation. For this reason, some adjustments have been proposed in literature to reduce selection bias. 
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These adjustments are described in Section 2. In Section 3, some recent advances are described, and some future 
research lines are considered in Section 4.

2.  Adjustments for nonprobability samples

2.1 Framework 

Let � be a target population of size �, and ��� ⊂ � a potentially covered population which is composed by those that 

can belong to the nonprobability sample. Let ��  be a probability sample of size �� drawn from � with a given sampling 
design, with design weights ��, and let ��  be a nonprobability sample of size �� drawn from ��� with no sampling 

design. Let � be a variable of interest which has been measured in the nonprobability sample but not in the probability 
sample, and � a set of auxiliary variables that have been measured in both samples. Consider an indicator variable �
which measures the inclusion of an individual in the nonprobability sample, such that 

�� =  �
1 � ∈ ��
0 � ∉ ��

2.2 Calibration 

An adjustment that does not actually require a probability sample is calibration. This approach was originally 
developed by Deville and Särndal (1992) to obtain more efficient estimates but then was adapted to correct for survey 
nonresponse, and it only requires to know the population totals of �. This method is based in obtaining a new vector 
of weights, �, which minimizes a distance function �(. , . ) with respect to the design weights � of a given sample �, 
while respecting the calibration equations 

���
�∈�

�� = ���
�∈�

according to which, when estimating the population totals of the auxiliary variables with the new weights, they should 
be exactly the same as the actual population totals. Given that there is no design in nonprobability samples, there are 
no design weights to which the distance should be minimized. The usual choice is to assume uniform weights in this 
context, such that � = �/��. A simulation study by Bethlehem (2010) showed good results with this setup. 

2.3 Propensity Score Adjustment 

Other adjustment, based in a very popular method developed by Rosenbaum and Rubin (1983) to make inference from 
non-randomized experiments, is Propensity Score Adjustment (PSA). The original theoretical development for online 
surveys was done by Lee (2006) and has continued to develop since then. In PSA, we assume that inclusion 
probabilities for �� , �, are unknown but related to a set of covariates, such that 

�� = �(� = 1 | ��),    � ∈ �

This assumption allows us to estimate those propensities using a predictive model � (usually logistic regression) by 
fitting it to predict the indicator variable using both pooled samples. 

���
∗ = ��[�∗ = 1 | ��],   � ∈ �� ∪ �� ,

where �∗ is equivalent to the indicator variable � but only considering the pooled samples such that 

��
∗ =  �

1 � ∈ ��
0 � ∈ ��



The variable �∗ can be considered a measurement of �. The estimated propensities can be transformed into weights 
afterwards, using the inverse probability approach �� = 1/��  or the modified version �� = (1 − ��)/�� considered 
in Schonlau and Couper (2017) which takes into account the fact that ��  does not belong to the target population of 
�� . Other alternatives involve the stratification of propensities, in order to classify individuals with similar propensities 
into a same stratum. Some alternatives have been presented in Lee and Valliant (2009) and Valliant and Dever (2011). 

2.4 Superpopulation modeling estimators 

Both of the adjustments described in previous sections are design-based adjustments, focused on modeling the 
participation propensities, but some model-based approaches have been also developed in literature. In such 
approaches, we assume that the population � is a realization of a superpopulation random variable which is related to 
some covariates via a given function with a model � and an error term:  

�� = �(��) + �� ,   � ∈ �,  � ~�(0,  ��)

For the class of estimators described in this subsection, we assume that a complete census of � is available for �, 
meaning that we can consider that the probability sample ��  observed in our study is a census. In this situation, we 
can use data from the nonprobability sample ��  to fit a predictive model �� on the variable of interest �, and then use 
it to predict its values for the whole population, such that we obtain the vector of new predicted values, ��: 

��� = ����������,   � ∈ �

The predicted values can be used to obtain estimates of the population total of �, �, using several formulas, by 
replacing the original probability samples, for which these estimators were developed, with the nonprobability sample: 

 The model-based estimator (Royall, 1970): 

���� = ��� + � ���
�∈�����∈��

 The model-assisted estimator (Cassel et al., 1976): 

���� = ���� + ���
�∈��

(�� −  ���)

�∈�

 The model-calibrated estimator (Wu and Sitter, 2001): 

���� = ����

�∈��

�� ,

where ���  are calibration weights which minimize the distance with the design weights of ��  while 
respecting the calibration equations 

1

�
����

�∈��

= 1,   ����

�∈��

��� = ����
�∈�

The restriction 
�

�
∑ ���
�∈�� = 1 can be dropped out, leading to an alternative estimator ��∗

�� . 

2.5 Sample Matching (Mass Imputation) 

In the case where the probability sample ��  is not the complete census but only a subset of the population (drawn 
according to a probability sampling design), we can apply the same approach based on predicting the values of � in 



�� , which is known in literature as Statistical Matching, Sample Matching or Mass Imputation. This approach was 
firstly introduced by Rivers (2007) and Vavreck and Rivers (2008), and it is based on fitting a predictive model ��
using data from the nonprobability sample ��  and apply it in the probability sample ��  to predict the unobserved values 
of the variable of interest �: 

��� = ��������� ,���,   � ∈ ��

The predicted values can be treated as true values in the usual estimators of the population mean, ��, and population 
total with the design weights of the probability sample: 

���� = ���
����

�∈��

,   �����
�� =

1

�
���

����
�∈��

,   ����
�� =

∑ ��
�����∈��

∑ ��
�

�∈��

2.6 Doubly Robust estimation 

A recent approach by Chen et al. (2020) considers the combination of both the design-based and the model-based 
approach in their doubly robust estimator. In this estimation, we predict the values of the target variable in the 
probability sample and use it as in Sample Matching, but we add a term that takes into account the prediction errors, 
as observed in the nonprobability sample, and each prediction error is elevated by weighting it with the inverse 
propensity estimated with PSA. The Doubly Robust estimator of the population mean can be defined as follows: 

����� =
1

�
�

�� − ���
���

�∈��

+
1

�
���

����
�∈��

,

where � can be substituted by �� = ∑ ��
�

�∈��  to obtain the Hajek estimator. This approach is doubly robust because it 

is robust to misspecifications in the prediction of ��  done in PSA or in the prediction of �� done in Sample Matching. 

3.  Recent advances 

3.1 Combination of PSA and calibration 

Considering this theoretical framework, some contributions have been done based on several methodologies. The first 
one (Ferri-García and Rueda, 2018) studies the combination of PSA and calibration, substituting design weights in 
calibration by the propensity weight obtained with PSA. This combination had been studied in literature (Lee and 
Valliant, 2009) but in this contribution we considered the use of estimated population totals in calibration, instead of 
actual ones, such that the calibration equations are 

���
�∈��

�� = ���
�∈��

We also considered two different procedures to transform propensities into weights: the inverse probability weighting 
�� = (1 − ���

∗)/���
∗, � ∈ ��  and the propensity stratification proposed in Lee and Valliant (2009). The simulation 

featured a fictitious population with four covariates and a variable of interest representing the vote to three fictitious 
political parties. The estimation of the voting percentage to each one of them was subject to Missing Completely At 
Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) mechanisms. Several 
configurations for the covariates were also considered. 

Results of the mean root mean square error (RMSE) observed in the simulation can be consulted in Table 3.1-1. RMSE 
of the combination of methods for MAR data was slightly lower than using PSA alone, although the error varied 
significantly across the scenarios considered in the simulation. The results suggest that using estimated totals can work 
as well as using actual population totals, and that the combination is helpful if the right covariates are used. 



Table 3.1-1 
Mean RMSE of the estimates in the scenarios considered in Ferri-García and Rueda (2018) 

RMSE of estimates Unweighted PSA PSA + calib. (real totals) PSA + calib. (estimated totals)
MAR variable 0.0367 0.0226 0.0224 0.0225

MNAR variable 0.1171 0.1013 0.1023 0.1023

3.2 Combination of PSA and Matching 

The combination of PSA and Sample Matching has been also considered (Castro-Martín et al., 2021) in a slightly 
different way than the Doubly Robust estimator, by using the estimated propensities to build weighted models (where 

the input weights are �� =
�

���
∗ , � ∈ ��) which could then be used for predicting the values of the target variable. This 

means that the estimator is the same as in Sample Matching, but the model used for prediction is trained using weights 
already obtained in PSA. Our simulation study involved three pseudo-populations with two different sampling 
schemes to obtain ��  in each one of them. More details can be consulted in Castro-Martín et al. (2021). The results 
regarding Mean Square Error (MSE) observed in the simulations are summarized in Table 3.2-1, suggesting that the 
described combination of PSA and Matching could achieve the same levels of efficiency than the doubly robust 
estimator or even slightly higher. 

Table 3.2-1 
Mean and median efficiency (%) of each method and times it has been among the best (MSE less than 1% 
greater than the minimum MSE) in the simulations performed in Castro-Martín et al. (2021) 

Method Mean Median Best
PSA + Matching 65.8 66.4 18

Doubly Robust 64 65.2 18
Matching 61.8 64.2 14

PSA 46.6 53.9 6

3.3 Machine Learning in PSA 

Regarding PSA, we studied the use of Machine Learning (ML) classification algorithms for the estimation of 
propensities as an alternative to logistic regression (Ferri-García and Rueda, 2020). Two simulation studies were 
performed for the matter using the same fictitious population as in Ferri-García and Rueda (2018) and a pseudo-
population based in real data from the Spanish Living Conditions Survey. In both studies, propensities were estimated 
with a wide range of predictive algorithms. 

Results of MSE from the first simulation study can be consulted in Table 3.3-1. When the selection mechanism is 
MCAR, decision trees offer better results in terms of mean square error, especially the Classification And Regression 
Trees (CART) algorithm. When the selection mechanism is MAR, it can be observed that, although logistic regression 
achieves good results, K-nearest neighbors (K-NN) and especially Gradient Boosting Machines (GBM) could be 
helpful in a range of situations. Finally, when the selection mechanism is MNAR, the best choice for estimation of 
propensities is Random Forest. 

Table 3.3-1 
Average MSE provided by each algorithm and times it has been among the best (MSE less than 1% greater 
than the minimum MSE) in the simulation using a fictitious population from Ferri-García and Rueda (2020) 

Variable of 
interest

Measure Logistic 
regression

C4.5 C5.0 CART K-NN Naïve 
Bayes

Random 
Forest

GBM 

MCAR variable Mean MSE 1.3 1.2 1.0 0.7 1.5 3.1 11.7 1.0
Best 0 4 3 11 0 0 0 5

MAR variable Mean MSE 3.7 38.0 42.8 61.3 4.5 16.5 67.5 26.6
Best 12 0 0 0 1 0 0 10

MNAR variable Mean MSE 102.9 166.9 175.7 201.3 90.5 73.2 75.3 144.9
Best 0 0 0 0 2 1 19 0



3.4 Machine Learning in superpopulation modeling 

The use of ML in superpopulation modeling was considered in Ferri-García et al. (2021) for the case where a complete 
census of the population is available. These estimators are strongly dependent on the specification of the model, and 
in fact it is observed that the choice of the model was the most important factor, regardless of other factors like sample 
size or the formula used in estimation. In a simulation study using the same pseudo-populations as in Castro-Martín 
et al. (2021), we found that penalized regression models such as Ridge or Elastic Net (Glmnet) were better than other 
alternatives, although some algorithms like K-NN were good for some specific situations. 

Table 3.4-1 
Mean and median efficiency (%) of each method with each algorithm and times it has been among the best 
(MSE less than 1% greater than the minimum MSE) in the simulations performed in Ferri-García et al. (2021). 
MA = Model-assisted; MB = Model-based; MC = Model-calibrated. 

Method Algorithm Mean Median Best Method Algorithm Mean Median Best
MA Ridge 

regression
62.2 64.3 13 MC Glmnet 61.5 63 12 

MB Ridge 
regression

61.9 64.1 12 MB Glmnet 61.3 63 9 

MA GLM 61.7 64.3 12 MC K-NN 59.1 53.1 7
MB GLM 61.7 64.1 12 MA K-NN 58.5 52.7 7
MC GLM 61.7 64.3 12 MC Bayesian 

LASSO
58.5 61.3 10 

MC Ridge 
regression

61.6 62.8 11 MA Bayesian 
LASSO

58.2 61.2 11 

MA Glmnet 61.6 62.8 11 MB Bayesian-
regularized 

neural networks

57.9 61.8 8 

3.5 Automated variable selection prior to PSA 

The importance of the choice of covariates has been stated in literature of propensity score weighting (Hirano and 
Imbens, 2001; Brookhart et al., 2006), concluding that the best choice is to include covariates related to the variable 
of interest. However, we might not always know the associations or the causal relationships prior to the estimation 
procedure, so we must learn from data in order to select some variables and discard others. For this reason, we 
performed a study on the use of automated variable selection algorithms to improve PSA results (Ferri-García and 
Rueda, 2021). We used some selectors for linear regression (StepWise, LASSO), filters (Chi-Square, CFS, OneR) and 
importance measures (Random Forest, Boruta) and applied them in two simulation studies, using fictitious data and 
real data from a survey conducted by the Spanish Centre for Sociological Research. 

Some efficiency results from the second simulation study can be observed in Table 3.5-1. In terms of efficiency, some 
variable selection algorithms, especially OneR or CFS, are associated to more efficient estimates. This advantage can 
be explained by the smaller variance of the estimators, which are even less biased than the case where all variables 
are used when PSA is combined with calibration. 

Table 3.5-1 
Mean and median Efficiency of the estimates (MSE of algorithm/MSE using all vars.) and number of times its 
Efficiency has been below 1 or 0.9 in the simulation study using real performed in Ferri-García and Rueda 
(2021). Raking calibration applied after PSA. 

Algorithm Mean Median Efficiency < 1 Efficiency < 0.9
Boruta 1.028 1.004 22 1

CFS 0.950 0.943 38 11
Chi-Square 0.968 0.942 36 11



Gain ratio 0.983 0.955 37 9
LASSO 0.976 0.956 34 7

StepWise 1.015 1.010 21 2
OneR 0.965 0.943 42 14

Random Forest importance 0.991 0.973 34 4

4.  Future research lines 

Some research lines should be considered in further research on the estimation from nonprobability samples using 
auxiliary information. The inclusion of design weights in predictive models for propensity estimation should be 
studied. Although a consistent estimator involving design weights was developed by Chen et al. (2020) for logistic 
regression, other weighting strategies might be more suitable for other parametric and nonparametric models. 
Another important issue is the mitigation of bias produced by MNAR mechanisms; the bias produced by this 
mechanism is the most difficult to deal with, according to current research. Other research lines include the 
development of theoretical properties and the inclusion of other data preprocessing strategies, such as class 
balancing or hyperparameter tuning, which are common in data science and could be helpful in estimation from 
nonprobability samples.
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