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Abstract

Non-probability samples are being increasingly explored by National Statistical Offices as a complement to 
probability samples. We consider the scenario where the variable of interest and auxiliary variables are observed in 
both a probability and non-probability sample. Our objective is to use data from the non-probability sample to 
improve the efficiency of survey-weighted estimates obtained from the probability sample. Recently, Sakshaug, 
Wisniowski, Ruiz and Blom (2019) and Wisniowski, Sakshaug, Ruiz and Blom (2020) proposed a Bayesian approach 
to integrating data from both samples for the estimation of model parameters. In their approach, non-probability 
sample data are used to determine the prior distribution of model parameters, and the posterior distribution is 
obtained under the assumption that the probability sampling design is ignorable (or not informative). We extend this 
Bayesian approach to the prediction of finite population parameters under non-ignorable (or informative) sampling 
by conditioning on appropriate survey-weighted statistics. We illustrate the properties of our predictor through a 
simulation study. 

Key Words:  Bayesian prediction; Gibbs sampling; Non-ignorable sampling; Statistical data integration. 

1.  Introduction

Non-probability samples are being increasingly considered by government agencies as a means of reducing survey 
costs and obtaining more timely estimates than most probability surveys. In particular, following the COVID-19 
pandemic, Statistics Canada has launched a series of online volunteer surveys, called crowdsourcing surveys, to obtain 
information on different aspects of the life of the Canadian population. However, it has been known for decades that 
the use of non-probability samples alone, such as crowdsourcing samples, may lead to estimates that suffer from 
significant selection bias. There has been a growing amount of research in recent years on methods that use auxiliary 
data from a probability sample to reduce the selection bias of non-probability sample estimators. These methods are 
applicable in the scenario where the variables of interest are observed only in the non-probability sample, but common 
auxiliary variables are observed in both samples. Propensity score weighting (e.g., Chen, Li and Wu, 2020) provides 
one approach for integrating data from both samples. It consists of weighting the non-probability sample participants 
by the inverse of their estimated participation probability. Statistical matching or sample matching (e.g., Yang, Kim 
and Hwang 2021; or Rivers, 2007) is an alternative. It consists of imputing the missing variables of interest in the 
probability sample using non-probability sample data. Recent reviews on statistical data integration under this scenario 
are given in Beaumont (2020), Elliot and Valliant (2017), Rao (2021) and Valliant (2020). 

We consider a different data integration scenario, where the variables of interest and the auxiliary variables are 
observed in both samples. We do not assume the population totals of the auxiliary variables to be known, or the 
indicator of participation in the non-probability sample to be observed in the probability sample. The literature on this 
scenario is scarce. Elliott and Haviland (2007) proposed a composite estimator, which is simply a weighted average 
of the non-probability and probability sample estimators. They pointed out that their proposed estimator requires a 
relatively large probability sample in order to estimate with sufficient precision the bias of the non-probability sample 
estimator. More recently, Bayesian estimators that integrate the two samples have been proposed by Sakshaug, 
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Wisniowski, Ruiz and Blom (2019), Wisniowski, Sakshaug, Ruiz and Blom (2020) and Nandram and Rao (2021).  
Assuming an ignorable probability sampling design, Sakshaug et al. (2019) and Wisniowski et al.  (2020) proposed 
and assessed through simulation studies an interesting Bayesian approach to integrating data from both samples for 
the estimation of model parameters. Their approach involves some intriguing prior distributions for the model 
parameters: non-probability sample data are used to determine the prior mean, but data from both samples are used to 
determine the prior variance. Indeed, the estimated bias of the non-probability sample estimator is used to inflate the 
prior variance. In this paper, we extend their Bayesian approach to the estimation of finite population means under a 
non-ignorable probability sampling design and evaluate it in a simulation study. 

2.  Estimation problem

Suppose that we are interested in estimating the population mean � = ���∑ ���∈� , where ��  is the value of the variable 
of interest y for unit i of the finite population U of size N. A probability sample � of size n is drawn from U using 
some probability sampling design, and the variable of interest y is observed for all units � ∈ �. The survey-weighted 

estimator of the population mean is ��� = ����∑ �����∈� , where �� = ∑ ���∈�  and ��  is a survey weight for sample 
unit i. The survey weight can be the basic design weight �� = 1 ��⁄ , where �� is the probability that unit i is selected 
in �, or it can be a calibration weight (e.g., Deville and Särndal, 1992). The variable of interest y is also observed for 
all units of a non-probability sample ��� of size ���. In addition, we observe a vector of q auxiliary variables, ��, for 
all units in both � and ���. We suppose that �� includes an intercept.   

We postulate the linear model 
��|�� ,�,�� → �(����,��), � ∈ �,                                                     (1) 

where � and �� are unknown model parameters. The idea in Sakshaug et al. (2019) and Wiśniowski et al. (2020) is 
to use the non-probability sample to obtain the prior mean of �. Like these authors, we consider the following prior 
distribution for �:  

� → ������ ,���,                                                                    (2) 

where ���� = �∑ ���
�
��∈��� �
��
∑ �����∈���  is the maximum likelihood estimator of �, assuming non-probability 

sample selection is ignorable (see Rubin, 1976) with respect to model (1), and �� is a known specified variance-
covariance matrix. Greater detail on the choice of �� is given in Section 3.3. We assume a non-informative prior for 
��, with the probability density function proportional to ���.  

Assuming the probability sampling design is ignorable for model-based inferences (e.g., the probability sample is 
selected using simple random sampling), Sakshaug et al. (2019) and Wiśniowski et al. (2020) estimate � from its 
posterior mean given the observed data, �� = {�� , � ∈ �}. Our objective is different. We are interested in predicting 
the finite population mean � = ���∑ ���∈� . Assuming �� is available for the entire population U as well as ignorable 
sampling, we can compute the posterior mean of � as          

�� = �(�|��) = ����∑ ���∈� + ∑ ������∈��� � = ����∑ ������∈� + ∑ ��� − �������∈� �,          (3) 

where �� = �(�|��) is the posterior mean of �. The posterior mean of �, given in (3), is computable provided N and 
∑ ���∈�  are known. In many applications, this is not the case. The unknown population quantities in (3) can be replaced 
with survey-weighted estimators to obtain    

�� = �����∑ ���
�
����∈� + ∑ ��� − �������∈� �.                                       (4) 

If the sampling fraction � = � �⁄  is small, the left-hand side of (4) can be approximated as  

���(��) = ����∑ ���
�
����∈� .                                                                    (5) 



The pseudo maximum likelihood estimator of � based on the probability sample data is 

��� = (∑ �����
�
��∈� )��∑ �������∈� . 

Under regularity conditions, ��� is consistent for � under model (1) and the sampling design. It is straightforward to 

show that ���(���) reduces to the survey-weighted estimator ��� = ����∑ �����∈�  , provided an intercept is included 
in ��. Therefore, the estimator (5) is expected to achieve non-negligible gains in efficiency over the survey-weighted 

estimator ��� only when data from both samples are combined for the estimation of �. The Bayesian approach that we 
consider accomplishes this data integration by using data from the non-probability sample to determine the prior mean 

of �. From (4) and (5), we also observe that both �� and ��� are expected to be close to ��� when the linear model (1) 

has a strong predictive power (small ��) so that �� ≈ �′���. This begs the question: Should any auxiliary variable be 
used for the estimation of finite population parameters? 

3.  Bayesian inference

3.1 Ignorable probability sampling design

Under certain conditions (see Rubin, 1976), the probability sampling design can be ignored when making model-
based inferences (conditional on s). In that case, standard results on Bayesian linear regression can be used to obtain 
the conditional posterior distributions of � and ��. The conditional posterior distribution of � is given by  

�|��,�� → ����� ,����
��� ,                                                     (6) 

where �� = ∑ ���
′
��∈� + ����

�� and ��� = ��
���∑ �����∈� + ����

������� . 

The estimator ��� reduces to the unweighted estimator ���� = (∑ ���
′
��∈� )��∑ �����∈�  when a non-informative prior 

for � is used (e.g., when ��
�� is specified close to 0). The estimator ���� is the maximum likelihood estimator of �

under the assumption that the sampling design is ignorable.   

The conditional posterior distribution of �� is given by 

��|��,� → �� �
�

�
,
�

�
���
� (�)� ,                                                     (7) 

where ��(�, �) stands for the inverse gamma distribution with shape parameter a and scale parameter b, and   

���
� (�) = ���∑ (�� − �′��)��∈� . 

Using (6) and (7), the iterative Gibbs sampling procedure for Bayesian inference can be applied to generate a large 
number of values from the posterior distribution �,��|��. These generated values allow for approximating the 
posterior distribution of � and ��. In particular, Bayesian estimation of �  is obtained by approximating the posterior 

mean �� = �(�|��) by the average of the generated values of �, denoted as ��∗. The population mean � is then 

estimated by ���(��∗).  

Under model (1), it is well known that 

������,�� → �(�,��(∑ ���
′
��∈� )��)                                                     (8) 

and

���
� (�)|�,�� → � �

�

�
, 2

��

�
� ,                                                     (9) 



where �(�, �) stands for the gamma distribution with shape parameter a and scale parameter b. Using (8) and (9), it 

is not difficult to show that the distribution �|���� ,�� is identical to the conditional posterior distribution given in (6), 
and the distribution ��|���

� (�),� is identical to the conditional posterior distribution given in (7). This observation is 
key to understanding the main idea behind the extension of this approach to the case of a non-ignorable sampling 
design. In the next section, we will develop a Gibbs sampling procedure for non-ignorable sampling designs using 
survey-weighted analogues of (8) and (9).  

3.2 Non-ignorable probability sampling design 

In practice, from a frequentist model-design perspective, the unweighted estimator ���� is used only when the survey 

weight ��  is the same for all � ∈ �. Otherwise, it is more common to use the survey-weighted estimator ��� as it 
remains consistent under a non-ignorable probability sampling design. We make the usual assumption 

�����,�� → �(�,���) ,                                                                  (10) 

where � = ��� ����������. The subscript m refers to model (1) whereas the subscript p refers to the probability 

sampling design. Regularity conditions for the validity of (10) are given in Fuller (2009). Using standard arguments 
(e.g., Binder and Roberts, 2003), we have  

� ≈ (∑ ���
′
��∈� )�� + ���������������� .                                                   (11) 

Note that the first term on the right-hand side of (11) is negligible when the sampling fraction f is negligible. Under 
an ignorable sampling design, it is straightforward to show that   

� = ���������������� = ��[(∑ �����
′
��∈� )��(∑ ��

����
′
��∈� )(∑ �����

′
��∈� )��] , 

which does not depend on � or ��.  

By analogy with the case of ignorable sampling, we consider the conditional posterior distribution �|��� ,��. This 
simple and clever idea of handling non-ignorable sampling, by conditioning on a consistent estimator, was proposed 
by Wang, Kim and Yang (2018). From assumption (10) and prior distribution (2), we obtain the conditional posterior 
distribution  

�|���,�� → ������ ,�����
��� ,                                                                  (12) 

where ��� = ��� + ����
�� and  ���� = ���

��������� + ����
������� . 

From a frequentist model-design perspective, ���
� (�) is not consistent for ��. A survey-weighted version of ���

� (�)
is ��

� (�) = ����∑ ��(�� − �′��)��∈� . Under regularity conditions, ��
� (�) is asymptotically unbiased and consistent 

for �� under model (1) and the sampling design. We assume that 

��
� (�)|�,�� → � �

�

�
, 2

��

�
� ,                                                                  (13) 

where 2��� = ��� �����[��
� (�)]. The quantity � can be written as � =

�

�
, where � = �

���

�
�
��

�����[��
� (�)] can be 

interpreted as a design effect. Under regularity conditions, we obtain 

2��� ≈
�

�
+ ����������[��

� (�)]� .                                                   (14) 

Again, the first term on the right-hand side of (14) is negligible when the sampling fraction f is negligible. Under an 



ignorable sampling design, we obtain   

2��� = �����{����[��
� (�)]} = 2�� �

∑ ��
�

�∈�

���
� , 

which does not depend on � or ��.  

Similar to the case of ignorable sampling, we consider the conditional posterior distribution ��|��
� (�),�. Using (13) 

and a prior probability density function for �� proportional to ���, we obtain 

��|��
� (�),� → �� �

�

�
,
�

�
��
� (�)� .                                                   (15) 

Using (12) and (15), the Gibbs sampling procedure can be applied to generate a large number of posterior values for 

� and ��. The population mean � is estimated by ���(����
∗ ), where ����

∗  is the average of the generated values of �.  

In practice, � and � are unknown and must be replaced by consistent estimators before generating posterior values 
for � and �� using (12) and (15). From (11), a consistent estimator of � is 

�� = (∑ �����
′
��∈� )�� +

�������

�̃�
� (���)

  ,                                                   (16) 

where ������� is a design-consistent estimator of ���������, obtained using linearization or replication variance 

estimation methods, and   

�̃�
� (���) =

�

���
��
� (���) . 

From (14), a consistent estimator of 2��� is 

2���� =
�

��
+

�����
� (�)��

�����

��̃�
� (���)�

�  ,                                                   (17) 

where ��[��
� (�)] is a design-consistent estimator of ����[��

� (�)]. 

3.3 Prior choice 

When a non-informative prior for � is used (e.g., when ��
�� is specified close to 0), the conditional posterior 

distribution (12) reduces to �|��� ,�� → �����,����. Therefore, the posterior mean �� = ���|���� = ��� and the 

estimator (5) becomes ���(���) = ����∑ ���
′
�����∈� = ����∑ �����∈� = ���. The Bayesian approach has thus no 

advantage over the frequentist design-based approach when a non-informative prior for � is used.  

In the context of an ignorable sampling design, Sakshaug et al. (2019) suggested setting �� to a diagonal matrix with 

the jth element on the diagonal equal to ��� = �����,� − ���,��
�
, where ����,� and ���,� are the jth elements of ���� and 

���, respectively. The idea is to account for the bias of ���� through the specification of the prior variance-covariance 
matrix for �. We refer to this prior specification of �� as the “distance” specification. Sakshaug et al. (2019) pointed 
out the following caveat:        

“By using the probability-based estimator to construct the prior distribution, the question of using data twice arises. 
We address this issue by pointing out that the ML estimator from the probability sample (a measure of central 
tendency) is used to inform the variance, rather than the mean. Further, we use the information from the probability 
data only in relative comparison to the nonprobability sample. Hence, any potential shrinkage in posterior variance 
depends on the combination of both data sets, rather than the probability data alone.” 



In the context of a non-ignorable sampling design, the argument is still valid, but the “probability-based estimator” 

and the “ML estimator from the probability sample” are replaced with the pseudo maximum likelihood estimator ���. 

Pursuing this idea further, we suggest setting the prior variance-covariance matrix �� to a diagonal matrix with the jth

element on the diagonal equal to 

��� = ��� ����
� ���,� , �����,� − ���,��

�
− �̃�

� (���)���� ,                                     (18) 

where ���
� = (��� − �)��∑ ��� − �′������

�
�∈���

, and ���,� and ���  are the jth diagonal elements of the matrices 

�∑ ���
�
��∈��� �
��

 and �� , respectively. The first element in the max function in (18) is an estimator of the variance of 

����,� under model (1) and assuming the non-probability selection mechanism is ignorable. The second element is a 

design-based estimator of the square bias �����,� − ���
�
, where �� is the jth element of �. We refer to this prior 

specification of �� as the “bias-variance” specification.  

Wiśniowski et al. (2020) suggested a few prior variance-covariance matrices of the form �� = �����, where �� is a 
specified constant and V is a matrix of hyperparameters. A specification that seemed to perform well in their 

simulation study is �� =
�

���(���)
 and setting V to a diagonal matrix with the jth element on the diagonal equal to �� =

��� ����
� ���,�, �����,� − ���,��

�
�. Wiśniowski et al. (2020) refer to this prior specification of �� as the “conjugate-

distance” specification. It has a form similar to the bias-variance specification but with a scaling factor ����. 

4.  Simulation study 

4.1 Simulation setup 

We conducted a design-based simulation study, following Hidiroglou and You (2016), to evaluate the proposed 
Bayesian estimator of the population mean and compared it with the Horvitz-Thompson estimator. We created a 
population consisting of N = 1000 population units as follows: 

i) �� was generated from a gamma distribution with mean �� and variance ��
�, where �� and ��

� are pre-
determined constants. 

ii) �� was generated from a gamma distribution with mean �� and variance ��
�, where �� and ��

� are pre-
determined constants. 

iii) �� = ���� + ���� + ��, where �� → �(0,��
�) and ��

� is a pre-determined constant. The choice of �� and 
�� are discussed below. Note that �(��|��) = �� + ���� , where �� = ����. 

Then, from the population, the non-probability sample was selected by choosing 300 units that have the smallest 
values of �� . Probability samples of size 20 and 50 were drawn with Probability Proportional to Size Without 
Replacement (PPSWR), with �� as the size measure, as in You, Rao and Kovacevic (2003) and Hidiroglou and You 
(2016). For estimation, the model �� = �� + ���� + �� was considered, where �� → �(0,��

�).

To determine a suitable choice of �� and ��, let us first define �� = �� − �(��|��) = −�� + ���� + ��. The degree of 
sampling informativeness depends on the correlation between �� and ��. Let us define the square correlation coefficient 

���
� =

[���(��,��)]�

���(��) ���(��)
. It is straightforward to show that ���

� =
��
���

�

��
���

����
�. Solving for �� yields : 



�� = �
��
����

�

��
�(�����

� )
.                                                                  (19) 

The value of ���
�  is set to a pre-determined constant. Similarly, we can also define the square correlation coefficient 

between �� and ��  as ���
� =

[���(��,��)]�

���(��) ���(��)
. Again, we can show that ���

� =
��
���

�

��
���

����
���

����
�. Noting that ��

���
� + ��

� =

��
�

�����
�   and solving for �� yields : 

�� = �
��
����

�

��
�(�����

� )(�����
� )

.                                                                  (20) 

The value of ���
�  is also set to a pre-determined constant. 

The following quantities are set to pre-determined constants: ��, ��
�, ��, ��

�, ��
�, ��� and ���. Then, �� and �� are 

determined as in (20) and (19). In our simulation study, we set ��=��=4, ��
�=��

�=8, ��
�=36, ���=0.8, and for ���, we 

consider two cases, ���=0.8 and ���=0.2. The non-probability sample size is 300, and the probability sample size is 

� = 20  or � = 50. For the Bayesian estimation of �, the prior mean of � is estimated based on the non-probability 
sample, while the prior variance is the proposed bias-variance specification given in (18).  

4.2 Results  

We compare the Bayesian predictors of the population mean ���(��∗) and ���(����
∗ ), described in Section 2, with the 

Horvitz-Thompson (HT) estimator ��� (with �� = ��
��) by computing the Monte Carlo Absolute Relative Bias (ARB) 

and Relative Root Mean Square Error (RRMSE) of these estimators. The ARB is defined as  

��� = �
�

�
∑

(��(�)��)

�

�
��� �, 

where ��(�) is ���(��∗), ���(����
∗ ) or ��� based on r-th simulation, and R = 5000. The RRMSE is defined as  

����� =
�
�

�
∑ (��(�)��)��
���

�
. 

Recall that ��∗ is obtained under the assumption that the probability sampling design is ignorable, whereas ����
∗  is 

obtained assuming a non-ignorable probability sampling design. Table 3.2.1 presents the comparison of the HT 
estimator and Bayesian predictors, in terms of ARB and RRMSE, when ���=0.8, which indicates a strong association 

between �� and �� .  

Table 4.2.1 
Comparison of ARB and RRMSE, ��� = �.�

Estimator Sample size n = 20 Sample size n = 50
ARB RRMSE ARB RRMSE

��� 0.88% 21.7% 0.91% 13.9% 

���(��∗) 5.3% 19.5% 5.7% 12.7% 

���(����
∗ ) 0.95% 16.8% 0.98% 10.5% 

From Table 4.2.1, it is clear that the bias of ���(����
∗ ) is negligible as its Monte Carlo ARB is just slightly larger than 

that of the unbiased HT estimator. The ARBs of ��� and ���(����
∗ ) are smaller than 1% for both sample sizes, 

whereas ���(��∗) has a moderate bias slightly larger than 5%. The HT estimator has the largest RRMSE, and ���(����
∗ )

has the smallest RRMSE. Thus, it is clear that properly accounting for the probability sampling design in the estimation 



of � leads to a decreased bias and a smaller RRMSE. The results in Table 4.2.1 show that the proposed Bayesian 
predictor performs very well when the probability sampling design is not ignorable.  

Table 4.2.2  
Comparison of ARB and RRMSE, ��� = �.�

Estimator Sample size n = 20 Sample size n = 50
ARB RRMSE ARB RRMSE

��� 0.98% 15.1% 0.93% 9.72% 

���(��∗) 15.6% 26.5% 19.5% 22.9% 

���(����
∗ ) 1.86% 20.5% 1.48% 12.6% 

Table 4.2.2 presents the comparison of the HT estimator and Bayesian predictors when ���=0.2, which indicates a 

weak association between �� and �� . The HT estimator performs the best in that scenario with the smallest ARB and 

the smallest RRMSE. The predictor ���(��∗) performs the worst with a very large bias and RRMSE, whereas ���(����
∗ )

has a small ARB, below 2% but slightly larger than the ARB of the HT estimator, and a smaller RRMSE than ���(��∗). 
Thus, properly accounting for the probability sampling design in the estimation of � can substantially reduce the bias, 

even when the association between �� and ��  is weak. However, the Bayesian predictor ���(����
∗ ) is not necessarily 

more efficient than the HT estimator in that situation. 

5.  Conclusion 

We have proposed a predictor of a population mean using a Bayesian linear model that allows us to combine data 
from a probability and non-probability sample. Under a suitable informative prior distribution for the model 
parameters, we have shown the benefit of using a non-probability sample to improve estimates from a probability 
sample, particularly when the association between auxiliary variables and the variable of interest is not weak. 
However, if the association is perfect, no efficiency gains can be achieved through the use of a non-probability sample 
as our predictor reduces to the standard survey-weighted estimator. We have also shown the importance of accounting 
for the probability sampling design when it is non-ignorable. Our proposed predictor of the population mean performed 
well in our simulation study.  

In future research, we plan to investigate the estimation of the mean square error and compare our Bayesian predictor 
with the one proposed by Nandram and Rao (2021). Another topic of interest, especially in social statistical programs, 
is the extension to the estimation of a proportion (i.e., the case of a binary variable of interest) using a Bayesian logistic 
model. 
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