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Abstract

In the context of its "admin-first" paradigm, Statistics Canada is prioritizing the use of non-survey sources to produce official 
statistics. This paradigm critically relies on non-survey sources that may have a nearly perfect coverage of some target 
populations, including administrative files or big data sources. Yet, this coverage must be measured, e.g., by applying the 
capture-recapture method, where they are compared to other sources with good coverage of the same populations, including 
a census. However, this is a challenging exercise in the presence of linkage errors, which arise inevitably when the linkage 
is based on quasi-identifiers, as is typically the case. To address the issue, a new methodology is described where the capture-
recapture method is enhanced with a new error model that is based on the number of links adjacent to a given record. It is 
applied in an experiment with  public census data. 
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Disclaimer: The content of this paper represents the authors' opinions and not necessarily those of Statistics Canada. It describes theoretical methods 
that may not reflect those implemented by the Agency. 

1. Introduction 

There is an increasing reliance on non-survey data including administrative data and big data in official statistics. 
However measuring the coverage of these sources is essential, e.g. when providing quality indicators for a given 
source or when estimating population sizes from administrative data . To this end, one may use the method of capture 
and recapture that rests on many assumptions including that of an error-free linkage. In practice, this assumption must 
be relaxed,  despite the challenge when trying to account for linkage errors, including false negatives and false 
positives, where a false negative is failing to link records from the same population unit, and a false positive is linking 
records from different units. 

In previous work, Ding and Fienberg (1994) have addressed the problem in the context of dual system estimation 
based on a census and a coverage survey, when assuming that the false positives do not involve units (i.e. their records) 
that are selected in both sources, with a known probability that unit has at least one false positive, given that it is only 
included in the coverage survey. Thus a false positive only occurs between units that are selected either by the census 
or the coverage survey and not by both. Di Consiglio and Tuoto (2015) have extended this solution for dual system 
estimation based on two administrative lists, under the same assumption about the units included in both lists, while 
accounting for the known probability that unit has at least one false positive, given that it is included in a single list. 
In practice, it may be hard to satisfy the assumption of no false positives for the units selected in both lists. Besides it 
is difficult to estimate the probability that a unit has at least one false positive, given that it is included in a single list. 
This challenge remains even when the recall and precision are given. Indeed, deriving  the probability of interest from 
these accuracy measures is not straightforward, because they apply to record pairs, while this probability  involves all 
the pairs that are formed between a record and all the records in the other list. Račinskij et al. (2019) have described a 
solution when the linkage variables satisfy assumptions of conditional independence and the linkage errors are 
estimated through a log-linear mixture. A related solution relies on two linkage decisions that are assumed independent 

1Abel Dasylva, Statistics Canada, 100 Tunney’s pasture driveway, Ottawa ON, K1A0T6, abel.dasylva@statcan.gc.ca; 
Arthur Goussanou, Statistics Canada, 100 Tunney’s pasture driveway, Ottawa ON, K1A0T6; Christian-Olivier 
Nambeu, Statistics Canada, 100 Tunney’s pasture driveway, Ottawa ON, K1A0T6



for records that are from the same units (see Brown et al., 2020). However, the resulting estimators may be biased, 
where the linkage decisions depart from this assumption. This is connected to the  problem of correlation bias 
previously mentioned by Newcombe (1983, chap E.6, p. 149), Belin and Rubin (1995) and Blakely and Salmond 
(2002). 

This communication describes a new methodology to the problem of capture and recapture with linkage errors, while 
relaxing the assumption of no false positives for the units captured in both lists and the assumption that the linkage 
variables are conditionally independent. The new methodology yields a lower-bound on the coverage of each list. It 
also yields an estimator of the actual coverage if it can be assumed that there are no false negatives or if the two lists 
are linked with multiple linkage decisions, where the recall of each decision is given by a shared parametric model. 
The methodology is an adaptation of the error model by Dasylva and Goussanou (2020) and an example of “linkage 
free dual system estimation” (Račinskij et al., 2019), because no file of linked pairs is produced. 

The remaining sections are organized as follows. The next section provides some background. It is followed by 
sections describing the proposed methodology and the experiment with public census data, in sequence. The last 
section contains the conclusion and future work. 

2.  Background

The basic capture-recapture setup includes a finite population � with an unknown population size �, two independent 
lists �� and �� from this population, where the probability of inclusion in �� is uniform. The goal is how to estimate 
the population size � and the coverage of each list. With the methodology by Petersen (1896) and Lincoln (1930), the 
population size and the coverage of the two lists are estimated as follows. 

�� = |��||��| |�� ∩ ��|,⁄

��(� ∈ ��) = |�� ∩ ��| |��|⁄ ,

��(� ∈ ��) = |�� ∩ ��| |��|⁄ .

However, these estimators rest on the following key assumptions that must be relaxed in practice. 

1. Closed population: i.e. no births, no deaths and no migration. 

2. Independent lists: inclusion in the first list is independent of inclusion in the second list. 

3. Independent units: each unit is included in the first or the second list independently of the other units. 

4. Homogeneous capture: a uniform inclusion probability for at least one list. 

5. No overcoverage: no duplicates and no out-of-scope units in each list. 

6. Perfect linkage: no errors when identifying the units in both lists. 

Relaxing the perfect linkage is required when the linkage variables are nonunique and have typos, so that linkage 
errors do occur including false positives and false negatives. A false positive leads to overestimating the intersection, 
while a false negative leads to underestimating this intersection. These errors are measured by the recall and the 
precision, where the recall is the proportion of links among the record pairs that comprise records from the same unit, 
while the precision is the proportion of pairs with records from the same unit among the links. 



Ding and Fienberg (1994) and Di Consiglio and Tuoto (2015) have described solutions for capture-recapture with 
linkage errors, when there are no false positives for the units that are selected in both lists, with a known probability 
that unit has at least one false positive, given that it is included in a single list. However these requirements are hard 
to meet in practice. Račinskij et al. (2019) have described a different solution, which assumes the conditional 
independence of the linkage variables and estimates the population size and the coverage without producing a file of 
linked pairs. However the conditional independence assumption may not apply, resulting in some bias. 

2. Methodology 

The proposed methodology aims to relax the assumption of no false positives for the units in both lists and that of 
conditionally independent linkage variables. It is another example of  “linkage free dual system estimation” that adapts  
the error model by Dasylva and Goussanou (2020). This methodology produces a lower-bound on the coverage of 
each list. It also yields consistent estimators of the coverage of the lists if it can be assumed that there are no false 
negatives or if the files are linked with multiple linkage decisions, where the recall of each decision is given by a 
shared parametric model. 

Obtaining a lower-bound on the coverage: To motivate the coverage lower-bound, first observe that the coverage of 
�� is no less than the conditional joint probability that unit � is in �� and a true positive (TP) given that the unit is in 
��, where a true positive is linking two records from the same unit and the recall corresponds to the conditional 
probability of a TP given that the unit is in both lists, i.e. �(� �� |� ∈ �� ∩ ��). 

�(� ∈ ��) = �(� ∈ �� |� ∈ ��) ≥ �(� ∈ �� ��� � �� |� ∈ ��).

From this lower-bound, it is straightforward to derive an upper-bound on the population size and a lower-bound on 
the coverage of ��. The lower-bound on the coverage of �� may be estimated by reusing the finite mixture model 
described by Dasylva and Goussanou (2020), while giving a new meaning to the model parameters. To this end, the 
first step is noting the important connection between the number of links �� from record � ∈ �� and the linkage errors 
involving this record, as shown in Table 3-1. This table differs from the similar table described by Dasylva and 
Goussanou (2020) because each list has some undercoverage. When �� = 0, there is no or one false negative because 
the unit may be outside ��  or it may be on �� but with a false negative, with no way of knowing which case applies. 
However it is known that there are no false positives. When �� is positive, there is still no or one false negative but 
there are �� − 1 or �� false positives, which does provide a lot of useful information. Clearly a statistical model is 
required where some uncertainty remains, i.e. where �� is positive. 

Table 3-1 
Neighbours and errors.  

�� False negatives False positives 
0 0 or 1 0

1 ≤ �� ≤ |��| − 1 0 or 1 �� − 1 or ��

The model arises as a limit in distribution under regularity conditions that slightly differ from those previously given 
by Dasylva and Goussanou (2020). In order to detail these conditions, let the two lists be samples drawn from notional 
registers � and �, and let unit � be associated with record �� in � and record ��(�)

�  in �, for some uniformly random 

permutation �(. ) of {1, … ,�}. The recording and list inclusion processes are assumed to be such that 

���(� ∈ ��), �(� ∈ ��), �� , ��(�)
� ��

�����
 are independent and identically distributed and independent of the random 

permutation �(. ). The records are assumed to take their values from some finite but possibly large set�. The decision 
to link two records is such that it is characterized by a set-valued function ℬ(. ) from � into the power set 2�, i.e. the 



set of all subsets of �, such that �� is linked to ��
� if and only if ��

� ∈ ℬ(��). For � ∈ �, call ℬ(�) the neighbourhood 

of � and define the conditional probabilities 

��(�) = ��� ∈ �� ��� ��(�)
� ∈ ℬ(��)|� ∈ �� ��� �� = ��,

��(�) = � ��� ∈ �� ��� ������
� ∈ ℬ(��)|� ∈ �� ��� �� = �� , �� ≠ �,

where the functions ��(. ) and ��(. ) incorporate the inclusion mecanisms in the two lists with a partial overlap, unlike  
the related functions in Dasylva and Goussanou (2020), where both sources are complete registers, or Dasylva and 
Goussanou (2021), where one source is a complete register and the other is a file. For � ∈ ��, let 

�� = � ����
� ∈ ℬ(��)�

�∈��

,

 denote the number of neighbours. With the above notation, a TP corresponds to the event �� ∈ �� ��� ��(�)
� ∈

ℬ(��)� ∩ {� ∈ ��}, a false positive corresponds to the event ��� ∈ �� ��� ������
� ∈ ℬ(��)� ∩ {� ∈ ��} with �� ≠ �, and 

�(� ∈ �� ��� � �� |� ∈ ��) = ��� ∈ �� ��� ��(�)
� ∈ ℬ(��)|� ∈ ���.

With the above refined definitions of ��(. ), ��(. ) and ��, the same regularity conditions can be assumed as by Dasylva 

and Goussanou (2020), i.e. a piecewise-constant function ���(. ), (� − 1)��(. )�, with a finite number of levels, a 

bounded expected number of false positives (i.e. ����∈�(� − 1)��(�) ≤ � for some positive �) and a joint 
distribution of ��(��) and (� − 1)��(��) that is invariant with respect to �. Then, with arguments similar to those 
used by Dasylva and Goussanou (2020), it can be shown that 

��|� ∈ ��
�
→���������������� ∗ �����������

�

���

,

where * denotes the convolution operation. Hence �(� ∈ �� ��� � �� |� ∈ ��) → �̅ = ∑ ����
�
��� , where the 

parameters ����, ��, ��������� may be estimated by maximizing the composite likelihood of the ��’s, with �

determined through  the minimization of Akaike information criterion. 

The coverage lower-bound estimator is appealing because it applies regardless of the correlation structure of the 
linkage variables and requires no clerical reviews. Thus it is quite inexpensive. It is of interest in applications that 
require one or both sources to have a minimum coverage, or if checking that the union of multiple independent lists 
provide a near complete coverage of the target population. For example, when building a frame from � independent 
lists where list � has a coverage of at least ��, then the union of the lists has a coverage of at least 1 − ∏ ��

�
���  (e.g. 

99.22% when �� = 1 2⁄  and � = 7), which provides a way of checking that enough lists are included for the intended 
purpose. Of course, duplicate records (i.e. records from the same unit regardless of whether they are identical) must 
be identified and accounted for when producing estimates, e.g. with the fractional counting technique by Zhang (2019). 
Yet it is still of interest to estimate the actual coverage of each list. 



Estimating the actual coverage: The coverage is obviously an estimator of the actual coverage if it can be assumed 
that there are no false negatives, i.e. assuming �(� �� |� ∈ �� ∩ ��) = 1 or ��(�) = 1 on �. The actual coverage can 
also be estimated from multiple linkage decisions and a shared parametric model for the recalls of these different 

decisions. To be specific consider � decisions and let ℬ(�)(. ) denote the set-valued function associated with the 

decision � = 1, … ,�, such that �� is linked to ��
� by this decision, if ��

� ∈ ℬ(�)(��). Let ��
(�)

 denote the corresponding 

number of neighbours. Each decision is assumed to satisfy the regularity conditions given above so that 

��
(�)

|� ∈ ��
�
→���

(�)
��������� ���

(�)
� ∗ ������� ���

(�)
�

�(�)

���

 and the coverage lower-bound may be estimated as described above. This lower-bound is denoted by �̅(�) =

∑ ��
(�)
��

(�)�(�)

���  and it is assumed to be of the form �̅(�) = �(� ∈ �� |� ∈ ��)�(�)(�), where �(�)(�) is the recall; �(�)(. )

being a known function and � being a �-dimensional parameter that is shared among all the decisions, where � ≤

� − 1. Then the coverage may be estimated by the following method of moments. Let �̅�(�) denote the estimated lower-
bound for the decision �. Then � may be estimated by the solution of the following system of equations. 

���̅�(�)

�

���

�

��

�
�̅�(�)

⋮
�̅�(�)

� = ���(�)����

�

���

�

��

�

�(�)����

⋮
�(�)����

�.

Consequently, the coverage may be estimated by 

��(� ∈ �� |� ∈ ��) =
∑ �̅�(�)�
���

∑ �(�)�����
���

.

In general the � decisions may be built from � elementary decisions based on ℬ�(. ),…, ℬ�(. ), with ℬ(�)(. )

characterized by a nonempty subset �(�) of {1, … ,�}, such that 

ℬ(�)(�) = � � ℬ�(�)

�∈�(�)

� ∩ � � ℬ�(�)�

�∈{�,…,�}��(�)

�,

where � ≤ 2� − 1. Then � is related to the parameters of the loglinear model for � ��� ∈ �� ��� ��(�)
� ∈ ℬ�(��)�,…, 

� ��� ∈ �� ��� ��(�)
� ∈ ℬ�(��)�, including interactions if the elementary linkage decisions are correlated for two 

records that are from the same unit. For example, one may consider � = 3 decisions, which are built from two 
decisions based on ℬ�(. )  and ℬ�(. ), which are independent for records from the same unit. Let these decisions 

correspond to ℬ(�)(�)  = ℬ�(�), ℬ(�)(�)  = ℬ�(�) and ℬ(�)(�) = ℬ�(�) ∩ ℬ�(�). Let �̅� and �̅� denote the coverage 
lower-bounds associated with ℬ�(. ) and ℬ�(. ) and � = [�̅� �̅�]�. Then, it is easily shown that the method of moment 

estimator is ��(� ∈ �� |� ∈ ��) = �̅�(�)�̅�(�) �̅�(�)⁄ . In practice, it may be challenging to select the interactions because the 
��’s are correlated such that the standard likelihood ratio test does not apply. A solution is to base inferences on a 

subset of ��√�� ��’s that are then approximately independent, as suggested by Dasylva et al. (2019). 



Relaxing the homogeneous capture assumption: The above discussion also applies when the capture in �� is 
homogeneous within post-strata that are defined based on the auxiliary variables, which are available on list ��. In 
this case, a coverage lower-bound and point estimator is obtained within each post-stratum. Then the overall coverage 
is obtained by aggregating this information across all the post-strata. 

3. Data experiment 

The proposed methodology is evaluated with simulations in two scenarios, with 100 Monte-Carlo repetitions in each  
scenario. In each repetition, a synthetic population is generated including one million individuals with the last name 
and birthdate based on public data from the 2010 US census. The lists are created by drawing independent Bernoulli 
samples with the inclusion probability of 0.95, and injecting typos into the variables according to Copas and Hilton 
(1990). For the last name, the errors are generated by first drawing a number � of typos according to a Poisson 
distribution with intensity �, where � = 0.01 in the first scenario and � = 0.0025 in the second scenario. The last 
name is then transformed by applying � steps of a finite state machine, where the initial state is the original surname 
and the state at step � ≤ � is the surname modified by the first � typos. At a given step, a random typo is generated 
independently of the typos in the previous steps, such that it is equally likely to be a deletion or an insertion, at a 
uniformly random position in the string. When the typo is an insertion, the inserted character is drawn uniformly from 
the alphabet. For the birth date, each component is modified by adding an independent random error, which is equal 
to 0, -1 or 1 with probability 1 − �, � 2⁄  and � 2⁄  respectively. For simplicity, the modified date is recorded even if it 
is no longer legitimate, e.g. due to a null day or month component. The typos are generated independently for the  last 
name on one hand and the birth day and birth month on the other hand. Then the files are linked using the decisions 
described in Table 4-1, where it can be noted that the decisions 1 and 2 are not independent (for records from the same 
unit) because they both involve the blocking criterion. It would be the case if there were no blocking false negatives, 
i.e. a recall of 1.0 for decision 0. The coverage lower-bound is estimated by fitting the proposed model with the 
constraint �� = ⋯ = �� , after replacing each selected �� by min(�,��) to protect against outliers, with � = 10. The 
parameters estimates are computed by nonlinear optimization with the R constrOptim() procedure under the 
constraints �� ∈ [0,1[, �� ≥ 0, �� ≥ 0 and ∑ ��

���
��� ≤ 1. The coverage may be estimated by using the lower-bounds 

of decisions 1, 2 and 3, as described above, and under the assumption that decisions 1 and 2 are independent. 

The performance of the estimated lower-bound (relative to the actual lower-bound) appears on Tables 4-2 and 4-3, 
while that of the estimated coverage (relative to the actual coverage) appears on Table 4-4. They show that the 
coverage lower bound is estimated with a small relative bias and a small variance. They also show that the coverage 
is estimated with a smaller bias in the second scenario, where there is less correlation between decisions 1 and 2 
because there are fewer blocking false negatives, i.e. a higher recall for decision 0. 

Table 4-1 
Linkage decisions.  

Decision Description
0 Blocking criterion based on the same birth year, same last name SOUNDEX and direct or cross 

agreement on the day and month of birth
1 Blocking criterion and perfect agreement on the last name
2 Blocking criterion and perfect agreement on the birth day and birth month
3 Perfect agreement on all the variables (implies the satisfaction of the blocking criterion)



Table 4-2 
Estimated lower-bound for the first scenario.  

Decision Recall Precision Actual lower-bound 
Estimated lower-bound

Relative bias (%) Variance (×10��)
0 0.971 0.207 0.922 -0.540 2.58
1 0.964 0.369 0.915 -0.478 1.58
2 0.933 0.940 0.886 -0.029 1.30
3 0.926 0.972 0.880 -0.030 1.73

Table 4-3 
Estimated lower-bound for the second scenario.  

Decision Recall Precision Actual lower-bound 
Estimated lower-bound

Relative bias (%) Variance (×10��)
0 0.993 0.210 0.943 -0.135 1.98
1 0.991 0.372 0.941 -0.119 0.886
2 0.983 0.942 0.934 -0.008 0.693
3 0.981 0.973 0.932 -0.007 0.634

Table 4-4 
Estimated coverage for both scenarios.  

Scenario Relative bias (%) Variance (×10��)
1 -3.34 8.73
2 -0.845 1.02

5.  Conclusion 

A new methodology is proposed for capture-recapture estimation with linkage errors, without clerical-reviews, while 
relaxing the assumption that there are no false positives for units included in both lists and the assumption that the 
linkage variables are conditionally independent. It yields a lower-bound on the coverage of each list. It also yields an 
estimator of the actual coverage if it can be assumed that there are no false negatives or if the two lists are linked with 
multiple linkage decisions, with a shared parametric model for the recall of these decisions. It is an example of 
“linkage-free” solution because it estimates the coverage by exploiting the connection between this parameter and the  
measures of linkage accuracy including the recall and the precision, without producing a file of linked pairs. This work 
also suggests that a high recall should be prioritized over a high precision when linking for capture-recapture 
estimation, unlike linkages that have an analytical purpose. 
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