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Abstract 
 

The coefficients of regression equations are often parameters of interest for health surveys and such surveys are usually of 
complex design with differential sampling rates.  We give estimators for the regression coefficients for complex surveys 
that are superior to ordinary expansion estimators under the subject matter model, but also retain desirable design 
properties.  Theoretical and Monte Carlo properties are presented. 
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1. Introduction 

 We consider estimation of regression coefficients using data collected under a complex survey design.  It is 
assumed that the regression equation is part of a subject matter model that specifies the finite population to be 
generated by some stochastic mechanism, where the stochastic mechanism is called the superpopulation model.  We 
use script F  to denote the finite population, U to denote the set of indices of the finite population, and A to denote 
the set of indices of the sample.  We assume that there is a function p(.) such that p(A) gives the probability of 
selecting sample A from U. 

A superpopulation model for regression is 

 ,iii ey += βx  

where  are independent and identically distributed (iid) vectors, and  is independent of .  Let a set of N 
vectors define a finite population.  The model for the finite population can then be written as 
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where  is the  dimensional vector of values for the dependent variable, 
 is the  matrix of values of the explanatory variables, and the error vector 

is an  dimensional vector which is independent of .  Assume a probability sample is 
selected from the finite population with selection probabilities 
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2. Estimators 

The ordinary least squares estimator of β is  

                                                 
1 Wayne A. Fuller is Distinguished Professor Emeritus, , Department of Statistics, Iowa State University, Ames, 
Iowa, U.S.A. 50011 (email:  waf@iastate.edu); Yu Y. Wu, Department of Statistics, Iowa State University, Ames, 
Iowa, U.S.A. 50011 (email:  yuwu@iastate.edu) 

 

mailto:waf@iastate.edu
mailto:yuwu@iastate.edu


  (2) ,)(ˆ 1
1

yXXXxxxβ ′′=′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′= −

∈

−

∈
∑∑ i

Ai
i

Ai
iiols y

where  is the n dimensional column vector of observations, and ),...,,( 21 ′= nyyyy ),...,,( 21 ′′′′= nxxxX  is the kn×  
matrix of observations on the explanatory variables.  The error in the ordinary least squares estimator is 
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where  is the n dimensional vector of errors, and under mild assumptions e
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Therefore, if iii eandπx  are correlated, the OLS estimator is biased. 

The probability weighted (PW) estimator, constructed with the inverses of the selection probabilities, is  
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where   Under mild assumptions on the population and for 
many designs, 
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Thus  is a consistent estimator of the parameter of interest.  Also see Fuller (2002). PWβ̂

Let the subject matter model specify vectors  such that iq
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We define an instrumental variable estimator by 
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where  is a symmetric positive definite matrix.  The preferred choice for  is an estimator of the variance of 

.  As an example, let , let = , where , and note that   If there is 

modest correlation between  and 
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with  is the two stage least squares estimator, σQQV =bb
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where .  For example, see Wooldridge (2000).  Using (9) and , the 
instrumental variable estimator is  
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Thus the PW estimator is an instrumental variable estimator with ),( ,1 iiii ww xq = .  The instrumental variable 
framework permits one to add instruments and to perform tests on potential instruments.  For example, the 
Pfeffermann – Sverchkov (1999) estimator for the model with ),1( xx ,1 ii =  is an instrumental variable estimator 
with q  , where  is the least squares predictor of  based on  . )ˆ/,ˆ/( wwww x= ŵ w x,1 iiiiii i i i

In a number of situations it may be reasonable to believe that the selection probability is correlated with the 
error , but that  ie
 0xx =∈′− }|){( ,1,1 AieE iNi . (11) 
Consider the hypothesis that the selection probabilities have the representation 
 iiii uegg ++= )()( 21 xπ , (12) 
where and  are continuous differentiable functions and is independent of .  An example where 
model (12) is reasonable is one in which selection probabilities are related to a previous y-value.  Given (12), 
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because under model (1), is independent of .  It follows from (13) that (11) holds and that the estimator defined 
by 

ie ix

 [ ] [ i
Ai

NiiIV
Ai

iNii ywxw ′−=⎥
⎦

⎤
⎢
⎣

⎡ ′− ∑∑
∈∈

)(,ˆ),1()(, ,1,11,1,1 xxβxx ]  (14) 

is consistent for .  If β N,1x  is unknown, N,1x  can be replaced with a consistent estimator. 
 To study tests for instruments, we partition the vector  as  , where it is assumed that 

 and we wish to test 
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To test that , using the two-stage least squares estimator (9) as our basic estimator, we compute 0eQ =′ }{ 2E

 , (16) yRXRXRXγ ),ˆ()],ˆ(),ˆ[(ˆ 2
1

22 ′′= −

where  and 2
1

11122 )( QQQQQR −′−= ),( 21 QQQ = .  If the finite population correction can be ignored, an 
estimated covariance matrix for  is  γ̂
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An estimator of  is the Horvitz-Thompson estimator calculated with , where 
 and  is the i-th row of .  Under the null hypothesis that , the coefficient 

for , is estimating  and , the coefficient for , is estimating 0.  Therefore a test statistic is 
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where  is the lower right  block of ,  is the dimension of and  is the dimension of .  
Under the null hypothesis, the test statistic is approximately distributed as the tabulated F-distribution with 

 degrees of freedom. 
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3. Monte Carlo Study 
 
 A simulation study was used to assess the performance of two IV estimators and a two-step pretest 
estimator.  The model is  
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where . ),1( 1ii x=x
 We create each sample by generating the vector , where  is a normal (0, 0.5) random 
variable,  is a normal (0, 0.5) random variable,  is a normal (0, 0.5) random variable,  is a uniform (0, 1) 
random variable, and the variables , and  are mutually independent.  The selection probability  is a 
function of  and , 
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and ψ  is a parameter that is varied in the experiment.  The parameter ψ  determines the correlation between  and 
.  If  the vector is retained for the sample; otherwise it is discarded. 
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 The first IV estimator uses a vector of four instrumental variables, ),ˆ,ˆ,,( 11,1 iiiiiiiii xpwpwxww=z  where 

 is the predicted value from the OLS regression of  on .  The second IV estimator is based on  the 
vector .  The IV estimators of β  are 
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 The pretest estimator is a two-step estimator based on the OLS estimator and the two IV estimators.  The 
first test is a test for the importance of weights and is obtained from two regressions:  the regression of  on 

 (full model) and the regression of  on  (reduced  model).  If the F statistic 
iy
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is not statistically significant,  is the estimator, otherwise a second test is performed.  The OLS regression of  
on 

olsβ̂ iy
)ˆ,~( 11 iii xx −x  is computed, where ix~  is the predicted value from the OLS regression of  on , and  is 

the predicted value from the OLS regression of  on .  The test statistic for 
ix i,2z ix1ˆ

ix1 i,1z 02 =γ  is defined in (18) where 

2γ  is the OLS coefficient for .  Because ii xx 11 ˆ− 2γ  is a scalar, let  denote the statistic of (18).  Then the two-
step pretest estimator is 
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where α  is the size of the test. 
 The standard error for  uses the variance estimation procedure appropriate for the estimator chosen.  
An estimated variance is 

preβ̂
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where  is defined in (21).  The estimated variance  is not an unbiased variance estimator.  We call 
the statistic 
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for ,1,0, =mmβ  the t statistic, although distribution of the statistic is not that of Student’s t. 
 Table 1 and Table 2 contain the mean squared error for the estimators.  A sample was created by generating 
1000 vectors giving an expected sample size of 221.  The pretest estimators used 10.0=α .  The second column of 
Table 1 is the correlation between  and .  For the modest correlation of 0.077 associated with a ie ip ψ  of 0.01, 
ordinary least squares is inferior to the PW estimator.  The IV1 estimator is more efficient than the PW estimator, 
because the IV1 estimator contains more instrumental variables than the PW estimator.  The IV2 estimator is 
appropriate for our data generation mechanism and uses the most information.  Therefore, the IV2 estimator is 
always superior to the IV1 estimator.  The mean squared errors of the pretest estimator are between the mean 
squared error of the OLS estimator and the mean squared error of the IV1 estimator.  As ψ  gets larger, the mean 
squared errors of the pretest estimator become closer to the mean squared errors of the IV1 estimator, because the 
pretest procedure rejects the null hypothesis more frequently as the correlation between  and  increases. ip ie
 
Table 1:  Monte Carlo Mean Squared Error (×1000) for estimators of 0β  (10,000 samples) 

ψ  Corr. 
),( ii ep  0,
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ˆ
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ˆ
IVβ  

10.0
ˆ
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0 0.000 2.33 5.92 5.71 5.33 3.39 
.01 0.077 6.77 5.71 5.55 5.14 6.97 
.02 0.108 10.82 5.75 5.53 5.10 8.94 
.05 0.171 23.94 5.60 5.41 4.99 9.35 
.07 0.203 32.45 5.65 5.47 5.02 8.01 
.10 0.243 45.11 5.58 5.42 5.06 6.55 
.20 0.343 88.22 5.67 5.55 5.18 5.41 
.30 0.420 131.22 5.44 5.34 4.89 5.11 
.50 0.542 217.28 5.26 5.23 4.88 5.07 

 
 
Table 2:  Monte Carlo Mean Squared Error (×1000) for estimators of 1β  (10,000 samples) 
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ˆ

IVβ  
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0 4.16 9.62 8.53 4.29 5.12 
.01 4.30 9.87 8.61 4.32 5.61 
.02 4.41 9.71 8.63 4.32 5.93 
.05 4.66 9.54 8.49 4.34 6.18 
.07 4.94 9.80 8.64 4.46 6.49 
.10 5.32 9.69 8.57 4.58 6.52 

 



.20 6.47 9.48 8.39 4.84 6.56 

.30 7.91 9.30 8.25 5.20 6.66 

.50 10.29 9.10 8.25 5.76 6.97 
 
 As the simulation results of Table 3 and Table 4 illustrate, almost all t-statistics exceed the tabular  
value for Student’s t.  One should remember that there is a wide range of selection probabilities so that the variance 
of the variance estimator is greater than that of a simple random sample.  The performance of the test statistic is 
generally better for the IV1 estimator than for the other estimators.  As expected, the t-statistic for the pretest 
estimator is very biased for the true intercept near 1.5 standard deviations of the estimator.  As 
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Table 3:  Monte Carlo Probability that  (10,000 samples) 025.||

0
tt >β

ψ  olsβ̂  PWβ̂  1
ˆ

IVβ  2
ˆ

IVβ  
10.0

ˆ
=α
β pre  

0 0.049 0.058 0.057 0.053 0.065 
.01 0.282 0.065 0.066 0.061 0.237 
.02 0.486 0.061 0.061 0.057 0.320 
.05 0.870 0.055 0.056 0.051 0.247 
.07 0.950 0.065 0.065 0.062 0.167 
.10 0.990 0.059 0.059 0.055 0.086 
.20 1.000 0.058 0.060 0.055 0.059 
.30 1.000 0.059 0.064 0.059 0.063 
.50 1.000 0.060 0.064 0.060 0.065 

 
 
Table 4:  Monte Carlo Probability that  (10,000 samples) 025.||

1
tt >β

ψ  olsβ̂  PWβ̂  1
ˆ

IVβ  2
ˆ

IVβ  
10.0

ˆ
=α
β pre  

0 0.049 0.069 0.066 0.051 0.063 
.01 0.054 0.073 0.070 0.055 0.072 
.02 0.057 0.073 0.068 0.053 0.074 
.05 0.072 0.070 0.065 0.056 0.080 
.07 0.077 0.070 0.068 0.057 0.085 
.10 0.083 0.073 0.069 0.054 0.081 
.20 0.119 0.071 0.067 0.052 0.074 
.30 0.154 0.076 0.072 0.053 0.076 
.50 0.233 0.074 0.072 0.054 0.070 
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