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Abstract

The coefficients of regression equations are often parameters of interest for health surveys and such surveys are usually of
complex design with differential sampling rates. We give estimators for the regression coefficients for complex surveys
that are superior to ordinary expansion estimators under the subject matter model, but also retain desirable design
properties. Theoretical and Monte Carlo properties are presented.
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1. Introduction

We consider estimation of regression coefficients using data collected under a complex survey design. It is
assumed that the regression equation is part of a subject matter model that specifies the finite population to be
generated by some stochastic mechanism, where the stochastic mechanism is called the superpopulation model. We
use script F to denote the finite population, U to denote the set of indices of the finite population, and 4 to denote
the set of indices of the sample. We assume that there is a function p(.) such that p(A) gives the probability of
selecting sample A4 from U.

A superpopulation model for regression is
Vi=xX;p+e;,

where (y;, x;) are independent and identically distributed (iid) vectors, and e; is independent of x;. Letasetof N
vectors define a finite population. The model for the finite population can then be written as

Yy =XyBrey, )

eN - (O’INGZ)i

where yy =(1,»2,-yy) is the N dimensional vector of values for the dependent variable,
Xy =(x,x5,...,xy) is the Nxk matrix of values of the explanatory variables, and the error vector
ey =(e,ey,...,ey) is an N dimensional vector which is independent of X, . Assume a probability sample is
selected from the finite population with selection probabilities 7; .

2. Estimators

The ordinary least squares estimator of B is
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where y = (yy,y5,...,¥,)" is the n dimensional column vector of observations, and X =(x;,x5,...,x,,)" isthe nxk
matrix of observations on the explanatory variables. The error in the ordinary least squares estimator is

Boi —B=(XX)"X'e, (3)
where e is the n dimensional vector of errors, and under mild assumptions
-1
I}ols _B:(Zx;ﬂ'ixiJ Zx;ﬂ'iei +0p(n_l)' (4)
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Therefore, if x,z; and e; are correlated, the OLS estimator is biased.

The probability weighted (PW) estimator, constructed with the inverses of the selection probabilities, is

-1
ﬁPW :[ZX;’”I‘_lxiJ ZX;”i_lyi (5)
icA ieA
= (X'WX) 1 X'Wy,

where W = diag(z;*, ;" ..., x,") = diag(wy,w,,...,w,). Under mild assumptions on the population and for

! n

many designs,

a
ﬁPW -B= (ZX;X,‘) D Xie, + o, (n™)

ieU ieU 6
=0,(n™"?). ©
P

Thus fi pw 1S @ consistent estimator of the parameter of interest. Also see Fuller (2002).

Let the subject matter model specify vectors q; such that
E{Zq;ei}:E{zﬁiq;ei}zo' (7
icA ielU
We define an instrumental variable estimator by
By =LQX)'Vr QX (QX) 'V, Q'Y ®)

where \Afbb is a symmetric positive definite matrix. The preferred choice for \Afbb is an estimator of the variance of
Q’e. Asanexample, let x; = (1,xy,), let q,= (w;, w;xy;) , where w; =%, and note that E{Q'e}=0. If there is
modest correlation between ¢, and z,, and if ¢, ~ind (0,52), then V,, =V{Q'e}=Q'Qo?. The estimator (8)
with V,, = Q’Qa2 is the two stage least squares estimator,



BIV = (5('5() B X'y, ©)

where X=Q(Q'Q)Q'X. For example, see Wooldridge (2000). Using (9) and q; = (w;, w;xy;), the
instrumental variable estimator is

By = (X'WX)IX'Wy (10)

Thus the PW estimator is an instrumental variable estimator with q; = (w;, w;x;;). The instrumental variable

framework permits one to add instruments and to perform tests on potential instruments. For example, the
Pfeffermann — Sverchkov (1999) estimator for the model with x; = (1,x,;) is an instrumental variable estimator

with q; = (w, /w;, w; Iw;xy;) , where w, is the least squares predictor of w, based on x; .

In a number of situations it may be reasonable to believe that the selection probability is correlated with the
error e; , but that

E{(xy; ~%y)'e; |ic A}=0. (11)
Consider the hypothesis that the selection probabilities have the representation
7= gi(x;) +ga(e) +u;, (12)

where g;(.)and g,(.) are continuous differentiable functions and u; is independent of (x;,e;) . An example where
model (12) is reasonable is one in which selection probabilities are related to a previous y-value. Given (12),
E{z (xq, —il,N)'e,} = E{Zﬂi (xq, _il,N),ei} =0, (13)
i€eA ieU
because under model (1), e, is independent of x;. It follows from (13) that (11) holds and that the estimator defined
by
|:Z[Wi7(xl,i _il,N)] (X xy ):|BIV = Z[Wia(xl,i _il,N)] Vi (14)
icA ied
is consistent for B. If x; ,, is unknown, X, , can be replaced with a consistent estimator.
To study tests for instruments, we partition the vector q; as (qq;.q,;) . where it is assumed that
E{Z,.,q%,€;}=0 and we wish to test

E{Zq;ie[} =0. (15)
ied
To test that £{Q%e} =0, using the two-stage least squares estimator (9) as our basic estimator, we compute
7 =X R) (X, R)I (X Ry, (16)
where R, =Q,-Q,;(QiQ,)Q, and Q=(Q,,Q,). If the finite population correction can be ignored, an
estimated covariance matrix for y is
VT =[(XR,) (X R TAX,R,) H(X,R,) (X, R, (17)
An estimator of V{(f(,Rz)’e} is the Horvitz-Thompson estimator calculated with (5(,R2)'é, where
e; =y; —(x;,ry)y and r,, is the i-th row of R,. Under the null hypothesis that E{Q%e}=0, v,, the coefficient
for X, is estimating B and vy, , the coefficient for r,; , is estimating 0. Therefore a test statistic is
Flkg,n=k) = k' 75V o7, (18)



where \7”22 is the lower right %, xk, block of I}{?}, k is the dimension of q;and k, is the dimension of r,; .

Under the null hypothesis, the test statistic is approximately distributed as the tabulated F-distribution with
k, and n — k degrees of freedom.

3. Monte Carlo Study

A simulation study was used to assess the performance of two IV estimators and a two-step pretest
estimator. The model is

yi=Po+xubi+e
=x,p+e;,
where x; = (1, xy;).

We create each sample by generating the vector (xy;, e;, a;, u;), where x;; is a normal (0, 0.5) random
variable, e; is a normal (0, 0.5) random variable, a; is a normal (0, 0.5) random variable, u; is a uniform (0, 1)
random variable, and the variables x;;, e;, a,, and u, are mutually independent. The selection probability p; is a
function of x;, ¢; and a; ,

pi = p(xy, €, a;) = 025r(xy,) +1.75r(y %€, +[L-y]*°q)), (19)
where
0.025 if x<0.2
r(x) =:0.475(x-0.20)+0.025 if0.2<x<1.2
0.5 if x>1.2

and y is a parameter that is varied in the experiment. The parameter y determines the correlation between p; and
e; . If u; < p, the vector is retained for the sample; otherwise it is discarded.
The first IV estimator uses a vector of four instrumental variables, z;; = (w;, w;x;, w; p;,w; p;xy;), Where

p; is the predicted value from the OLS regression of p, on (1,7(x;;)). The second IV estimator is based on the
Vector z,; = (w;, w;xy;, w; p;, w; p;xy;, x;) . The IV estimators of B are
By =[XZ,(2,2,) 2 X]'X'Z (Z',2,)" L}y, (20)
where Z; =(z';,,2'5,...,2;,)", for j=1 2. The estimated covariance matrix of ﬁ,w is
V(Byy) = (X)X ) X)D, X (XX )7 (21)
where X, =Z (Z,Z,;) 2" X, D, ; = diag(éf;,¢5 1y;.....e0 ;) and & 1 = v, =X, By; .
The pretest estimator is a two-step estimator based on the OLS estimator and the two IV estimators. The
first test is a test for the importance of weights and is obtained from two regressions: the regression of y; on
(4, xy;, w;, w;xy;) (full model) and the regression of y; on (1,x;;) (reduced model). If the F statistic

2 (SSEred - SSEﬁtll ) /12

e (22)
! MSE

is not statistically significant, ﬁols is the estimator, otherwise a second test is performed. The OLS regression of y;,
on (X;, x; —Xy;) is computed, where x; is the predicted value from the OLS regression of x; on z,,, and Xy; is
the predicted value from the OLS regression of x;; on z;,. The test statistic for y, =0 is defined in (18) where

7, is the OLS coefficient for x,, — X, . Because y, is a scalar, let /* denote the statistic of (18). Then the two-
step pretest estimator is



Bols if F< FZ,n—4 (O{)
_J(a : 23
B e B |_f [1<Z(@l?) gy Fy (@), (23)
By ifltxZ(al2) '
where « is the size of the test.

The standard error for ﬁ uses the variance estimation procedure appropriate for the estimator chosen.

pre
An estimated variance is

B V{Boi} if F < Fy,4(a)
1% =1 [vep i 24
Bod =\ [Py} 1k 2@iD) g p @)
VBt itz Z(al2) Y
where I}{fi v+ 1s defined in (21). The estimated variance I}{ﬁ
the statistic

pre) 18 NOt an unbiased variance estimator. We call

A A 125
tﬁpm’m = [V{ﬂpre,m}] ! Z(ﬂpre,m _ﬂm) (25)
for g,,m=0,1 the ¢ statistic, although distribution of the statistic is not that of Student’s ¢.
Table 1 and Table 2 contain the mean squared error for the estimators. A sample was created by generating
1000 vectors giving an expected sample size of 221. The pretest estimators used « =0.10. The second column of
Table 1 is the correlation between e; and p;. For the modest correlation of 0.077 associated with a y of 0.01,
ordinary least squares is inferior to the PW estimator. The IVV1 estimator is more efficient than the PW estimator,
because the IV1 estimator contains more instrumental variables than the PW estimator. The IV2 estimator is
appropriate for our data generation mechanism and uses the most information. Therefore, the IV2 estimator is
always superior to the IV1 estimator. The mean squared errors of the pretest estimator are between the mean
squared error of the OLS estimator and the mean squared error of the 1\VV1 estimator. As y gets larger, the mean
squared errors of the pretest estimator become closer to the mean squared errors of the V1 estimator, because the
pretest procedure rejects the null hypothesis more frequently as the correlation between p; and e; increases.

Table 1: Monte Carlo Mean Squared Error (x1000) for estimators of £, (10,000 samples)

4 Corr. Pois,o Prwo Bio Bvao ﬂpre,O
(p;e) a=0.10

0 0.000 2.33 5.92 5.71 5.33 3.39
.01 0.077 6.77 5.71 5.55 5.14 6.97
.02 0.108 10.82 5.75 5.53 5.10 8.94
.05 0.171 23.94 5.60 541 4.99 9.35
.07 0.203 32.45 5.65 5.47 5.02 8.01
.10 0.243 4511 5.58 5.42 5.06 6.55
.20 0.343 88.22 5.67 5.55 5.18 5.41
.30 0.420 131.22 5.44 5.34 4.89 511
.50 0.542 217.28 5.26 5.23 4.88 5.07

Table 2: Monte Carlo Mean Squared Error (x1000) for estimators of £, (10,000 samples)

14 Bois Brwa B B2 Bprea
a=0.10
0 4.16 9.62 8.53 4.29 5.12
.01 4.30 9.87 8.61 4.32 5.61
.02 441 9.71 8.63 4.32 5.93
.05 4.66 9.54 8.49 4.34 6.18
.07 4.94 9.80 8.64 4.46 6.49
.10 5.32 9.69 8.57 4.58 6.52




.20 6.47 9.48 8.39 4.84 6.56
.30 791 9.30 8.25 5.20 6.66
.50 10.29 9.10 8.25 5.76 6.97

As the simulation results of Table 3 and Table 4 illustrate, almost all sstatistics exceed the tabular ¢,

value for Student’s z. One should remember that there is a wide range of selection probabilities so that the variance
of the variance estimator is greater than that of a simple random sample. The performance of the test statistic is
generally better for the IV1 estimator than for the other estimators. As expected, the z-statistic for the pretest
estimator is very biased for the true intercept near 1.5 standard deviations of the estimator. As y increases,

P 16 e [>¢025) approaches P(| o > g25) -

Table 3: Monte Carlo Probability that |tﬂ0 [> 7 go5 (10,000 samples)

v Bois Bew B B2 B pre
a =0.10
0 0.049 0.058 0.057 0.053 0.065
.01 0.282 0.065 0.066 0.061 0.237
.02 0.486 0.061 0.061 0.057 0.320
.05 0.870 0.055 0.056 0.051 0.247
.07 0.950 0.065 0.065 0.062 0.167
10 0.990 0.059 0.059 0.055 0.086
.20 1.000 0.058 0.060 0.055 0.059
.30 1.000 0.059 0.064 0.059 0.063
.50 1.000 0.060 0.064 0.060 0.065
Table 4: Monte Carlo Probability that |7 [> 7,5 (10,000 samples)
4 Bois Brw B B2 B pre
a =0.10
0 0.049 0.069 0.066 0.051 0.063
.01 0.054 0.073 0.070 0.055 0.072
.02 0.057 0.073 0.068 0.053 0.074
.05 0.072 0.070 0.065 0.056 0.080
.07 0.077 0.070 0.068 0.057 0.085
10 0.083 0.073 0.069 0.054 0.081
.20 0.119 0.071 0.067 0.052 0.074
.30 0.154 0.076 0.072 0.053 0.076
.50 0.233 0.074 0.072 0.054 0.070
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