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Abstract 
 

We discuss methods for the analysis of case-control studies in which the controls are drawn using a complex sample survey. 

The most straightforward method is the standard survey approach based on weighted versions of population estimating 

equations. We also look at more efficient methods and compare their robustness to model mis-specification in simple cases. 

Case-control family studies, where the within-cluster structure is of interest in its own right, are also discussed briefly. 
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1. Introduction 
 
The case-control study, in which separate samples are drawn from ‘cases’ (people with a disease of interest, say) and 

from ‘controls’ (people without the disease), is one of the most common designs in health research. In fact, Breslow (1996) 

has described such studies as “the backbone of epidemiology”. We shall concentrate on biostatistical applications, but the 

basic design is an efficient sampling strategy whenever cases are rare and examples are common in many other fields as well 

(business, social science, ecology, market research, for example). In particular, there has been a parallel development of 

much of the theory in the econometric literature on choice-based sampling (see Manski and McFadden 1981, Cosslett 1981 

for example). 

There are two fundamentally different types of case-control study: (set-)matched studies, in which each case is matched 

with one or more controls, and unmatched studies, in which the case and control samples are drawn independently, although 

there may be loose “frequency matching”, with the control sample allocated across strata defined by basic demographic 

variables in such a way that the distribution of these variables in the control sample is similar to their expected distribution in 

the case sample. We are only concerned with unmatched studies here and, more specifically, only with the restricted class of 

population-based studies in which the controls (and occasionally the cases as well) are selected using standard survey 

sampling techniques.  

An excellent introduction to the strengths and potential pitfalls of case-control sampling is given by Breslow (1996, 

2004). One of the most important and difficult challenges confronting anyone designing such a study is to ensure that 

controls really are drawn from the same population, using the same protocols, as the cases. In the words of Miettinen (1985), 

cases and controls “should be representative of the same base experience”. Failure to ensure this adequately in some early 

examples led to case-control sampling being regarded with some suspicion by many researchers. A comprehensive 

discussion on the principles that should govern the selection of controls is given in Wacholder, McLaughlin, Silverman and 

Mandel (1991). Since the essence of survey sampling lies in methods for drawing representative samples from a target 

population, it became natural at some stage to think about using survey methods for obtaining controls. Increasingly over the 

last 25 years or so, the controls (and occasionally the cases as well) are being drawn using complex stratified multi-stage 

designs. A good history of this development can be found in Chapter 9 of Korn and Graubard (1999).  

The analysis of such studies is a particularly appropriate topic for this paper since Joe Waksberg himself was one of the 

principal drivers behind the adoption of survey methods (and random digit dialing, in particular) for obtaining controls (see, 

for example, Waksberg 1998 and DiGaetano and Waksberg 2002). 
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2. Examples 
 

We start with two examples to illustrate the sort of problem that we want to handle. The first example is typical of the 

large scale studies conducted by the National Cancer Institute whose personnel have been responsible for much of the 

development of the area. Joe Waksberg, along with his colleagues at Westat, had a strong influence on the sampling 

methods used for these studies (see Hartge, Brinton, Rosenthal, Cahill, Hoover and Waksberg 1984, who also gives a 

description of a number of other similar studies) so it is a natural place to start. 
 
Example 1. 

In 1977  –  78, the National Cancer Institute and the US Environmental Protection Agency conducted a population-based 

case-control study to examine the effects of ultraviolet radiation on non-melanoma skin cancer over a one-year period 

(Hartge, Brinton, Rosenthal, Cahill, Hoover and Waksberg 1984, Fears and Gail 2000). The study was conducted at eight 

geographic locations with varying solar ultraviolet intensities. Samples of non-melanoma skin cancer patients aged 20 to 74 

and samples of general population controls from each region were interviewed by telephone to obtain information on risk 

factors. At each location, a simple random sample of 450 patients and an additional sample of 50 patients in the 20  –  49 

age group were selected for contact. For the controls, 500 households were sampled at each location using Mitofsky-

Waksberg random-digit dialing (Waksberg 1978). An attempt was made to interview all adults aged 65  –  74 as well as a 

randomly selected individual of each sex aged 20 to 64. In addition, a second Mitofsky-Waksberg sample of between 500 to 

2,100 households was taken and information gathered on all adults aged 65 to 74. This resulted in samples of approximately 

3,000 cases and 8,000 controls, with the sampling rate for cases being roughly 300 times the rate for controls, depending on 

age. 

The second example is important to me personally since it first introduced Chris Wild and myself to the area. 
 
Example 2. 

The Auckland Meningitis Study was commissioned by the NZ Ministry of Health and Health Research Council to study 

risk factors for meningitis in young children which was reaching epidemic proportions in Auckland at that time (see Baker, 

McNicholas, Garrett, Jones, Stewart, Koberstein and Lennon 2000). The target population was all children under the age of 

nine in the Auckland region in 1997 – 2000. 

All cases of meningitis in the target age group over the three year duration of the study were included in the study, 

resulting in about 250 cases. A similar number of controls was drawn from the remaining children in the study population 

using a complex multi-stage design. At the first stage of sampling, 300 census mesh blocks (each containing roughly 70 

households) were drawn with probabilities proportional to the number of houses in the block. At the second stage, a 

systematic sample of 20 households was selected from each chosen mesh block and children from these households were 

selected for the study with varying probabilities that depended on age and ethnicity and were chosen to match the expected 

frequencies among the cases. Selection probabilities are shown in the table below: (PI means Pacific Islander) Cluster 

sample sizes varied from one to six and a total of approximately 250 controls was achieved. This corresponds to a sampling 

fraction of about 1 in 400 on average, so that cases are sampled at a rate that is 400 times that for controls here. 

These two studies are fairly typical of the sort of study that we want to discuss. They also illustrate the two main sampling 

methods used, namely random digit dialing and area sampling. A lively discussion of the relative merits of these two 

strategies are given in Brogan, Denniston, Liff, Flagg, Coates and Brinton (2001) and DiGaetano and Waksberg (2002).  
Table 1 

Selection Probabilities 
 

AGE MAORI PACIFIC ISLANDER OTHER 

1≤ year 0.29 0.70 0.10 

3≤ years 0.15 0.50 0.07 

5≤ years 0.15 0.31 0.04 

8≤ years 0.15 0.17 0.04 

 



 
 

 
3. General Set-Up 

 
Suppose that we have a binary response variable, ,Y  with 1Y =  denoting a case and 0Y =  denoting a control, and a 

vector of potential explanatory variables, .x  We assume that the value of Y  is known for all N  units in some target 

population but that at least some components of x  are unknown. We stratify the population into cases and controls, draw a 

sample from each stratum based on the variables that we know for all units, and measure the values of the missing covariates 

for the sampled units (in practice, the control sample is often drawn from the whole population, rather than the units with 

0.Y =  If the proportion of cases is small, the difference will be negligible. Otherwise it is simple to adapt the results below 

to this variant – for a rigorous development, see Lee, Scott and Wild 2006). Typically, we then want to use the sample data 

to fit a binary regression model for the marginal probability of a being a case as a function of the covariates. The model used 

is almost always logistic with 
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x ββββ  (1)

 

say, where 0β  and 1ββββ  are unknown parameters, and we shall assume model (1) throughout the paper. Extensions to more 

general regression models are straightforward in principle (see Scott and Wild 2001b) but the resulting expressions are 

somewhat clumsier than those for the logistic model. 

How should we go about fitting the model (1) given sample data? Efficient methods are straightforward with simple or 

stratified random sampling, but we are interested in more complex sampling procedures here. Very often the complex 

sampling is simply ignored. Potentially, this could lead to all the usual problems that arise from ignoring sampling design 

structure. Varying selection probabilities can distort the mean structure and estimates produced by standard programs may 

be inconsistent. Intra-cluster correlation can reduce the effective sample size so that routinely-produced standard errors are 

too small, confidence intervals are too short, p − values too low, and so on. A simple strategy that has been adopted by 
some researchers to minimize the effect is to keep the numbers of subjects in each cluster small (see Graubard, Fears and 

Gail 1989, for example). This reduces the design effect and hence the impact of clustering, but it can be a very expensive 

remedy. We look at some possible ways of coping with standard, more cost-effective, sampling schemes in the next few 

sections. 

 
4. Survey Weighted Approach  

 
One obvious possibility is to use the standard weighted estimating equation approach embodied in most modern 

packages for analyzing survey data (see Binder 1983). Suppose first that we had data from the whole finite population. If we 

assume this finite population is drawn from a superpopulation in which the conditional logistic model (1) holds, then we 

could estimate ββββ  by solving the whole-population or census estimating equations 

1
1

( ) ( ( ; )) 0,
N

i i iy p= − =∑S x xβ ββ ββ ββ β  (2) 

where 0 1 0 1
1( ; ) /(1 ).

T T

p e eβ + β += +x xx β ββ ββ ββ βββββ  (These are the likelihood equations if population units are assumed to be 

sampled independently from a superpopulation but the resulting estimators are consistent under much more realistic 

population structures as long as model (1) holds marginally – see Rao, Scott and Skinner 1998 for more discussion.)  

Now, for any fixed value of , ( )Sβ ββ ββ ββ β  in equation (2) is just a vector of population totals. This means that we can estimate 

it from the sample, say by  

1
sample

ˆ ( ) ( ( ; )),i i i iw y p= −∑S x xβ ββ ββ ββ β  (3) 



 
 

where iw  is the inverse of the selection probability, perhaps adjusted for non-response and post-stratification. Setting ˆ ( )S ββββ  

equal to 0 gives us our estimator, ˆ.ββββ  We could use linearization or the jackknife directly on β̂βββ  to get standard errors. 
Alternatively, we can expand ˆ ˆ( )S ββββ  about the true value, ,ββββ  and obtain as our estimated covariance matrix the “sandwich” 

estimator 

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆCov{ } ( ) Cov{ ( )} ( ) ,S− −≈ J Jβ β β ββ β β ββ β β ββ β β β  (4) 

where sample 1 0
ˆ( ) ( ; ) ( ; )T T

i i i i iw p p∑= − ∂ ∂ =J S x x x xβ β β ββ β β ββ β β ββ β β β  with 0 11 .p p= −  Since ˆ ( )S ββββ  is a vector of totals, 
ˆ ˆCov{ ( )}S ββββ  should be available as a matter of course for any standard design. Most major statistical packages (for 

example, SAS (PROC SURVEYLOGISTIC), SPSS (CSLOGISTIC), STATA (SVY:LOGIT), SUDAAN 

(LOGISTIC)) can handle logistic regression with complex sampling and weighting routinely these days. Thus 

producing weighted estimates and making associated inferences is reasonably straightforward.  

Strictly speaking, the selection probabilities will themselves often be random variables in our model-based framework, 

based on a finite population that we assume is generated from the model. We can account for this by using the results in Rao 

(1973), but the correction is of order 1/ N  and can be ignored in most large studies. 

The downside of weighting in general is that it tends to be inefficient when the weights are highly variable. (A rule-of-

thumb sometimes suggested is that max min/w w  should be no more than 10.) In case-control studies, the variation in weights 

is about as extreme as it can get. For instance, the ratio of maxw  to minw  is approximately 300:1 in Example 1 and 

approximately 1,000:1 in Example 2. Even more extreme ratios are not uncommon. No experienced survey sampler would 

be surprised to find that weighting is not very efficient under these circumstances. 

Can we do something more efficient? The answer is certainly “Yes” in some special cases. Fully efficient likelihood 

methods have been developed in situations where both cases and controls are drawn using simple or stratified random 

sampling and these can be very much more efficient than weighted methods. We review these results in the next section. 

 
5. Review: Simple Case 

 
We start with the very simplest case where cases and controls are selected by simple random sampling and we have no 

population information about any of the covariates at the design stage. Here fully efficient semi-parametric maximum-

likelihood procedures are well-developed. Moreover, these methods are very simple to implement using standard software 

(Prentice and Pyke 1979). (The methods are semi-parametric because the full likelihood depends on the unknown 

distribution of the covariates and we do not want to model this in general.) 

It turns out that all we have to do is fit model (1) using a standard logistic regression program without any weighting at 

all. More specifically, solving the unweighted equation 

1
sample

( ( ; )) ,i i iy p− =∑ x x 0ββββ  (5) 

produces efficient estimates of all the coefficients except the intercept. Perhaps more importantly, all the standard errors and 

resulting inferences that we get from the standard program are also valid, again with the exception of anything involving the 

intercept. It is simple enough to correct inferences involving the intercept provided that we know the ratio of the two 

sampling fractions but we are often only interested in the other coefficients anyway. 

The results extend directly to stratified random sampling, provided that separate intercepts for each stratum are included 

in the model. Again efficient semi-parametric estimators of all coefficients except the stratum intercepts can be obtained 

simply by running the data through an ordinary (unweighted) logistic regression program. Again, the estimated standard 

errors and associated inferences are also valid. As with simple random sampling, we can correct the results for the stratum 

intercepts provided that we know the stratum sampling fractions but, again, these are usually of minor interest.  

Thus in these simple situations, maximum likelihood estimates are simpler to compute than the weighted estimates, as 

well as being more efficient. How much more efficient are they? This depends on the number of covariates, the magnitude 

of their coefficients and the ratio of the sampling fractions, but the difference is often substantial. (The weighted estimates 

are about 50% efficient in Example 2 of the introduction, for example, and less than 20% efficient in the brain cancer 



 
 

example we look at in Section 8. Lawless, Kalbfleisch and Wild 1999 discuss situations where the efficiency is even lower 

than this.) 

Finally, we note that the maximum likelihood estimates have yet another advantage over weighted estimates: they tend to 

have much better small sample performance, especially in situations where the efficiency of the weighted estimates is low. 

Essentially, weighting results in a reduction in the effective sample size and it is this effective sample size that governs when 

the asymptotic theory starts to give a good approximation. (See Scott and Wild 2001a for more details.) Clearly we can pay 

a very heavy price for a rigid adherence to population weights. 

 
6. More Complex Sampling 

 
In both the examples in Section 2, the controls were obtained from a complex multi-stage survey rather than a simple 

random sample. As we noted in the introduction, this is increasingly common in large scale case-control studies. 

(Occasionally, as in Example 1, the cases are also selected using a complex sampling scheme.) It is possible to derive semi-

parametric efficient estimators for stratified multistage sampling, assuming that primary sampling units are selected 

independently within strata (which is the assumption that all the computer packages are making with the survey-weighted 

approach anyway), but this requires us to build multivariate models for the vector of responses within a primary sampling 

unit. Details can be found in Neuhaus, Scott and Wild (2002, 2006). Unless we are interested in the within-cluster structure 

in its own right (as in the family case-control studies considered in Section 9, for example), this requires far too much effort 

for it to be practicable, certainly for routine analysis.  

Can we do something simpler without losing too much efficiency? Weighted estimates are always available, of course. 

However, they are just as inefficient with complex designs as they are in the simple case considered in the previous section. 

It turns out that we can do considerably better without too much extra complication. 

Return for a moment to the situation of the previous section where we have a simple random sample of size 1n  from the 

case stratum and an independent simple random sample of size 0n  from the control stratum. Here all units in Stratum l  

have weight / ,iw W n∝
l l

 where W
l
 denotes the proportion of the population in the stratum, for 0,1.=l  If we divide 

throughout by N  and set 0 ( ; ) 1p = −x ββββ  1( ; ),p x ββββ  then we can re-write equation (3) for the weighted estimator in the 

form  

0 1
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( ; ) ( ; )

.
i i i ip p

W W
n n

− =
∑ ∑x x x x

0

β ββ ββ ββ β
 (6) 

Similarly, we can write equation (5) for the efficient maximum likelihood estimator in the form 

0 1
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1 0
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,
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ω − ω =
∑ ∑x x x x
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where 0 1/( ),n n nω = +
l l

 for 0,1.=l  Both these are special cases of the general set of estimating equations 

0 1
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.
i i i ip p
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λ − λ =
∑ ∑x x x x

0

β ββ ββ ββ β
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As 0 1, ,n n → ∞  under mild conditions on the way that the finite population is generated from the superpopulation the 

solution of (8) converges almost surely to the solution *ββββ  of  

* *
1 1 0 0 0 1{ ( ; )} { ( ; )} ,E p E pλ − λ =X X X X 0β ββ ββ ββ β  (9) 

where {}E ⋅
l

 denotes the conditional expectation given that Y = l  for 0,1.=l  If model (1) is true, then equation (8) has 

solution *
1 1=β ββ ββ ββ β  and *

0 0 bλβ = β +  with bλ =  1 0 0 1log ( / )W Wλ λ  for any positive 0 1,λ λ  (see Scott and Wild 1986 for 

details of the proof). Thus the solution to equation (8) produces consistent estimators of all the regression coefficients apart 



 
 

from the constant term for any 0 ( 0,1).λ > =
l

l  As in the simple case, it is easy to correct the inferences about the 

constant term, provided that we know the proportion of cases in the population. 

Now turn to more complex sampling schemes. Since the left hand side of equation (9) just involves two subpopulation 

means, we can still estimate these means for any standard survey design. This suggests an estimator, ˆ λββββ  say, for general 

sampling schemes satisfying 

1 1 0 0
ˆ ( ) ( ) ( ) ,ˆ ˆλ = λ − λ =S 0β µ β µ ββ µ β µ ββ µ β µ ββ µ β µ β  (10) 

where ( )ˆ
l
µ βµ βµ βµ β  is the sample estimator of the subpopulation mean { (1 ( ; ))}( 0,1).E p− =

l l
lX X ββββ  The covariance matrix 

of ˆ λββββ  can then be obtained by standard linearization arguments. This leads to an estimated (‘sandwich’) covariance matrix 

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆCov{ } ( ) Cov{ ( )} ( ) ,− −
λ λ λ λ λ λ λ≈ J S Jβ β β ββ β β ββ β β ββ β β β  (11) 

with ˆ( ) ( ( ) / )T
λ λ= −∂ ∂J Sβ β ββ β ββ β ββ β β  and ˆ ˆCov{ ( )}λ =S ββββ  2 2

1 1 0 0
ˆ ˆCov{ ( )} Cov{ ( )}.ˆ ˆλ + λµ β µ βµ β µ βµ β µ βµ β µ β  Here, Ĉov{ ( )}ˆ

l
µ βµ βµ βµ β  denotes 

the usual survey estimate which should be available routinely for any standard survey design since ( )ˆ
l
µ βµ βµ βµ β  is just an 

estimated mean. 

All of this can also be carried out straightforwardly in any package that can handle logistic regression for complex survey 

designs simply by specifying the appropriate vector of weights. More specifically, suppose that  

1( ( ; ))

( ) ,ˆ

i i i i
i S

i
i S

w y p

w

∈

∈

−

=
∑

∑
l

l

l

x x ββββ

µ βµ βµ βµ β  (12) 

where 1S  denotes the case subpopulation (i.e., the set of all units with 1)Y =  and 0S  denotes the control subpopulation 

(the set of all units with 0).Y =  Then the estimating equation (9) can be written in the form  

*
1

sample

ˆ ( ) ( ( ; )) ,i i i iw y pλ = − =∑S x x 0β ββ ββ ββ β  (13) 

with * / i Si i iw w w∈∑∝ λ
ll

 for units in ( 0,1).S =
l
l  In other words, we simply have to scale the case weights and control 

weights separately so that the sum of the case weights is proportional to 1λ  and the sum of the control weights is 
proportional to 0λ  and put them, along with the usual specification of the design structure (strata, primary sampling units), 

into our program of choice. Note that the choice of proportionality constant does not affect the result.  

We still have to decide on good values for 1λ  and 0.λ  We can often get substantial gains using sample weights 

( / )n nλ =
l l

 compared with using population weights ( ).Wλ =
l l

 Scott and Wild (2002) report efficiency gains of 50% 

or more in Example 2 and in simulations based on that population. The gains became larger as the strength of the 

relationship increased, and as the effect of clustering increased. Moreover the coverage of confidence intervals was closer to 

the nominal value for sample weighting in the simulations.  

Using sample weights is the most efficient possible strategy when we have simple random samples of cases and controls 

but for more complex schemes using the sample weights will no longer be fully efficient. We might expect weights based on 

some form of equivalent sample sizes to perform better. This does indeed produce some gain in efficiency in some limited 

simulations reported in Scott and Wild (2001a). However, the gains are relatively small, at least when the control sample 

design effect is less than 2, since ˆCov{ }λββββ  is very flat as a function of λλλλ  near its minimum. Considerations of robustness 
that we discuss in Section 8 are possibly more important in the choice of .λλλλ  
The gains from sample weighting may depend very much on the particular problem under examination. Korn and 

Graubard (1999, page 327) comment that, in their experience, the sample weighting strategy rarely produces big gains in 

efficiency. Obviously more work, both empirical and theoretical, is needed here. In any event, it would seem prudent to fit 

the model using both sample weights and population weights routinely. If the coefficient estimates are similar, then we can 

make a judgement based on the estimated standard errors. However, significant differences in the coefficient estimates 

indicate that the model has been mis-specified. If we are unable to fix up the deficiencies in the model, then we need to think 

very carefully about just what it is that we are trying to estimate. We look at this again in Section 8.  

 



 
 

 
7. Stratified Sampling 

 
The compromise suggested in the previous section (i.e., use standard survey weighting within the subpopulations defined 

by case/control status but combine the sub-populations using sample proportions) seems to work reasonably well in practice 

but it is all completely ad hoc. Could we do better with a more systematic approach? 

In the special case of stratified random sampling, where independent case-control samples are taken within each stratum, 

fully efficient procedures are well-developed and easy to implement. In particular, if our model includes a separate intercept 

for each stratum, then ordinary unweighted logistic regression (with a simple adjustment for the stratum intercepts if they are 

wanted) is the efficient semi-parametric maximum likelihood procedure (Prentice and Pyke 1979). It is reasonably 

straightforward to extend this to more general stratified designs. Our model is now 

0 1logit{ ( 1 , Stratum h)} ,T
hP Y = | = β + βx x  (14) 

and the stratified equivalent of the estimating equation (7) is  
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As 0 1, ,h hn n → ∞  the solution of (7) converges almost surely to the solution of  

1 1 0

0 0 1

( { ( ; )}

{ ( ; )}) ,

h h h
h

h h

E p

E p

λ

− λ =

∑ X X

X X 0

ββββ

ββββ
 

(16)
 

with the obvious extension of the notation from the unstratified case. If model (13) is true, then equation (8) has solution 
*
1 1=β ββ ββ ββ β  and *

0 0h h hbλβ = β +  with hbλ =  1 0 0 1log ( / ).h h h hW Wλ λ  Since equation (14) only involves stratum means, we 

can estimate them easily using the data coming from any reasonable survey design, for example by 
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h

ih ih ih ih
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h
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=
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∑
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µ βµ βµ βµ β  

Substituting these estimators in place of the sample means in equation (14) leads to the estimating equation 

*
1

ˆ ( ) ( ( ; )) ,
h

ih i i h i
h i S

w y pλ
∈

= − =∑∑S x x 0β ββ ββ ββ β  (17) 

with * /
hi Sih h ih ihw w w∈∑∝ λ
ll

 for units in ( 0,1;hS =
l

l  1, ..., ).h H=  This can be fitted in any standard survey 

program by including these weights and the appropriate design information. Note that we need to be careful about how we 

include the so-called ‘strata’ in the design specification. If primary sampling units are nested within the ‘strata’, as with the 

geographical locations in Example 1, there is no problem and the strata should be included in the standard way. However, if 

the primary sampling units cut across the ‘strata’, as with age in Example 1 and age and ethnicity in Example 2, then these 

are not strata in the usual survey sampling sense. They should not be included in the design specifications but simply 

handled through the weights.  

Sometimes we want to model the contribution of the stratum variables using some smooth parametric curve rather than 

including them through dummy variables. For example, we might well want to include a linear function of age in our model 

in both Examples 1 and 2. The survey weighted method and the compromise weighting suggested in Section 6 both apply 

directly and no new theory is needed. More efficient methods are not nearly so simple, however. Fully efficient methods 

have been developed in the case where simple random samples of cases and controls are drawn within each of the strata (see 



 
 

Scott and Wild 1997, and Breslow and Holubkov 1997) but the resulting estimating equations are not linear combinations of 

stratum means and there is no obvious way of generalizing them to more complex sampling schemes. There is a slightly less 

efficient way that does extend easily, however. If we modify model (14) by including 1 0 0 1log ( / )h h h h hb W Wλ = λ λ  as an 

offset, i.e., we set 

*
0 1logit{ ( 1 , Stratum h)} ,T

h hP Y bλ= | = + β + βx x  (18) 

then equation (15) produces consistent, fully efficient, estimates of all the coefficients including 0 ( 1, ...,h hβ =  ).H  

Including the same offsets in models where there is no 0hβ  term and the x  vector includes functions of the stratifying 

variable produces consistent estimators of all the coefficients with typically high (although not full) efficiency (see Fears and 

Brown 1986, and Breslow and Cain 1988). This generalizes to arbitrary designs immediately. We just use equation (16) 

with 1hp  replaced by *
1hp  defined by setting *

1logit( ) .T
h hp bλ= + βx  Then any survey program that caters for offsets can 

be used to fit the model and provide estimated standard error, etc.  

How much extra efficiency do we get in this case? We have carried out a number of simulations, some of which are 

reported in Scott and Wild (2002). Most of the scenarios are based on the meningitis study in Example 2 and we set the ratio 

of the largest to smallest stratum sampling fraction in the control sample at about 10:1. Without any clustering, the gain in 

efficiency from using the offset method (which is full maximum likelihood in this case) compared to the ad hoc procedure 

was never more than 10%. The relative efficiencies stayed about the same as clustering that cut across strata was introduced. 

When clustering nested within strata was introduced, the gains disappeared progressively as the design effect increased and 

the ad hoc procedure actually became more efficient than the offset method when the design effect reached about 1.5. 

As we stated earlier, it is possible to produce fully efficient semi-parametric estimators if we are willing to model the 

dependence structure within primary sampling units. We have begun to carry out some simulation. The early results suggest 

that the extra work involved in the modeling will almost never be worth the effort if we are only interested in the parameters 

of the marginal model (1). Our tentative conclusion is that, the ad hoc partially weighted procedures (with sample weights) 

are simple to use and work well enough for most practical purposes in the range covered by our experience but this is 

another area where more empirical work is needed yet. We note, however, that there are some problems, like the case-

control family design discussed in Section 9, where the within-cluster behaviour is of interest in its own right. These require 

more sophisticated methods. 

 

8. Robustness 
 
There must be a catch somewhere. What if the model is not correct? What price do we pay for efficiency then? 

By its construction, the population-weighted estimator is always estimating the linear logistic approximation that we 

would get if we had data from the whole population. By contrast, what the more efficient sample-weighted estimator is 

estimating depends on the particular sample sizes used. Some people would regard this alone as a strong enough reason for 

using the population weighted estimator and I suspect that very few people would regard it as completely satisfactory to 

have the target of their inference depend on the arbitrary choice of sample size. 

Our general estimator ˆ λββββ  satisfying (10) converges to the solution of equation (9), γB  say, with 0 0 1/( ),γ = λ λ + λ  

which depends on the true model and distribution of the covariates, as well as on .γ  In Scott and Wild (2002), we looked at 
what happens to γB  under mild deviations from the assumed model. (We are interested in small deviations since large ones 

should be picked up by routine model-checking procedures and the model then improved.) For simplicity, suppose that we 

fit a linear model with a single explanatory variable for the log odds ratio but that the true model is quadratic, say 

2
0 1logit{ ( 1 )}P Y x x x= | = β + β + δ  (19) 

with δ  small.  
Obviously, the actual slope on the logit scale, 1 2 ,xβ + δ  changes as we move along the curve. For any 0 1,< γ <  1γB  

is equal to the actual slope at some point along the curve. Denote this value by .x xγ=  Let 0x  be the expected value of x  

in the control population and let 1x  the expected value of x  in the case population. We shall assume that 1 0β >  so that 

0 1.x x<  It turns out that xγ  always lies between 0x  and 1x .and that xγ  increases as γ  increases from 0 to 1. Recall that 
survey weighting corresponds to 0Wγ =  and sample weighting to 0 0 / .n nγ = ω =  Typically, 0W  is much larger than 



 
 

0ω  so that survey weighting gives an estimate of the slope at larger values of ,x  where the probability of a case is higher, 

while the slope estimated from sample weighting is closer to the average value of x  in the population. Figure 1, adapted 

from Scott and Wild (2002), illustrates the position in two scenarios, one with positive curvature and one with negative, 

based roughly on Example 2. The value of δ  is chosen so that it would be detected with a standard likelihood ratio test 
about 50% of the time if we took simple random samples of 0 1 200n n= =  from the population. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of population and equal weights. 
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In both scenarios, the value of 0β  is set so that the proportion of cases in the population is 1 in 400, i.e., so that 

0 0.9975.W =  The overall density of x  is shown at the top of the graph and the conditional densities for cases and 

controls are shown at the bottom. Values of xγ  and 1γB  are shown for 0Wγ =  (labeled “population”) and 0.5γ =  

(labeled “equal”). The latter value corresponds to sample weighting if we draw equal numbers of cases and controls. 

Clearly, survey weighting is estimating the appropriate slope for values of x  further out in the upper tail of the distribution 

(i.e., for individuals at higher risk) than equal weighting in both scenarios.  

Note that if we took simple random samples of 0n =  1 200n =  from the population in Figure 1 (a), the relative 

efficiency of survey weighting is only about 16%, and the small sample bias is 0.24. In this case, even if we take the 

population value as our target, the survey weighting leads to a larger mean squared error than sample weighting.  

More results are given in Scott and Wild (2002) where we also look at the effect of omitted covariates. This turns out to 

have a similar, but somewhat smaller, effect to omitting a quadratic term. 

Which is the right value of γ  to use? That clearly depends on what we want to use the resulting model for. If our primary 
interest is in using the model for estimating odds ratios at values of x  where the probability of a case is higher, and the 

sample is large enough so that variance and small sample bias are less important, we might use population weights. For 

smaller sample sizes, or if we are interested in values of x  closer to the population mean, sample weights would be better. A 

value intermediate between population weighting and sample weighting might sometimes be a sensible compromise. For 

example trimming the weights to 10:1 (i.e., setting 0.91)γ ≈  in the example, instead of 1:1 (sample weighting) or 400:1 

(population weighting), leads to an efficiency of 70% and a small sample bias of 0.04. The corresponding values for 

population weighting were 16% and 0.24. The value of 0.91x  lies almost exactly half way between 0.5x  and 0.9975 .x  

 
9. Case-Control Family Studies   

If we are primarily interested in the parameters of the marginal model (1), then the methods that we have discussed in 

previous sections are simple to implement and reasonably efficient. Fully efficient methods require building parametric 

models for the within-cluster dependence and the extra effort that this would entail is rarely worthwhile. However, there are 

situations where the dependence structure is of interest in its own right. In particular, it has become increasingly common for 

genetic epidemiologists to augment data from a standard case-control study with response and covariate information from 

family members, in an attempt to gain information on the role of genetics and environment. This can be regarded as a 

stratified cluster sample, with families as clusters, and the intra-cluster structure is of the primary focus of attention here. The 

following example is fairly typical.  
 
Example 3. 

Wrensch, Lee, Miike, Newman, Barger, Davis, Wiencke and Neuhaus (1997) conducted a population-based case-control 

study of glioma, the most common type of malignant brain tumor, in the San Francisco Bay Area. They collected 

information on all cases of glioma that were diagnosed in a specified time interval and on a comparable sample of controls 

obtained through random digit dialing. They also collected brain tumor status and covariate information from family 

members of the participants in the original case-control sample. There were 476 brain cancer case families and 462 control 

families in the study. 

We could use the methods that we have been discussing to fit a marginal model for the probability of becoming a glioma 

victim but a major interest of the researchers was the estimation of within-family characteristics. One way of approaching 

this would be to fit a mixed logistic model with one or more random family effects. 

Note that, strictly speaking, the original sampling scheme in Example 3 is not included in this case-control set-up. The 

stratification here is related to the response variable but not completely determined by it. Stratum 1 contains the 476 families 

with a case diagnosed in a particular small time interval while Stratum 2 contains the remaining 1,942,490 families, some of 

which contain brain cancer victims. 

In Neuhaus et al. (2006) we develop efficient semi-parametric methods for stratified multi-stage sampling in situations 

where the stratification depends on the response, possibly in an unspecified way that has to be modeled, and observations 

within a primary sampling unit are related through some parametric model. The estimates require the solution of 1p +  

estimating equations, where p  is the dimension of the parameter vector. The covariance matrix can also be estimated in a 



 
 

straightforward way using an analogue of the inverse observed information matrix. The whole procedure can be 

implemented using any reasonably general maximization routine but this still requires some computing expertise.  

We could also fit the same models using survey weighted estimators, which has the big advantage of requiring no 

specialist software. In our example, case families would have weight 1 and control families would have weight 

1,942,490 / 462 4,200.≈  With such a huge disparity, we might expect the weighted estimates to be very inefficient 

indeed. Unfortunately it turned out to be almost impossible to fit an interesting model for which the weighted estimates 

converged. One problem is that the weighted estimates are based almost entirely on the control sample and there is very little 

information about family effects in the control families. (Another problem is that we did not have information on age for 

family members and any model without age was grossly mis-specified!) For this reason, we had to resort to simulation 

which is far from complete at this stage. It seems, however, that the efficiency of weighted estimates is less than 10% of the 

efficient semiparametric estimates here. More details are given in Neuhaus et al. (2002, 2006). 

Although our simulations are at a very early stage, it is possible to draw a few tentative conclusions. The main one is that 

within-family quantities are very poorly estimated, even using fully-efficient procedures. Case-control family designs, where 

the information on family members is obtained as an add-on to a standard case-control design, simply do not contain enough 

information to estimate the parameters of interest to genetic epidemiologists unless the associations are extremely (even 

unrealistically) strong. (I should note that not all genetic epidemiologists would agree with this.) More efficient variants are 

possible, however. For example, if we can identify families containing more than one case, then it is possible to get much 

greater efficiency by heavily over-sampling such families. In essence, we would be taking the family as the sampling unit, 

defining a ‘case family’ as one containing multiple individual cases and then taking a case-control sample of families. This is 

an important area where a lot of work still needs to be done. 

 
10. Conclusion 

 
The population-based case-control study is one of those subjects where practice has forged ahead of theory. As far as I 

know, the only book that discusses the topic in any depth is Korn and Graubard (1999, Chapter 9). One aspect that has 

received a reasonable amount of theoretical attention in the literature is stratification. Efficient procedures for incorporating 

stratifying variables in the analysis have been developed by Scott and Wild (1997), Breslow and Holubkov (1997), and 

Lawless et al. (1999), among others, when the variables can take only a finite set of values. Breslow and Chatterjee (1999) 

have considered how best to use such information at the design stage. The extension of all this (both analysis and design) to 

situations where we have information on continuous variables such as age for all members of the population is an area that 

still needs work. Much less has been written on the effect of clustering, even though multi-stage sampling is in common use. 

Exceptions are Graubard et al. (1989), Fears and Gail (2000) and Scott and Wild (2001a). Perhaps this paper might 

stimulate more work on an important topic. In particular, since the essence of the problem boils down to estimating two 

population means (see equation (8)), it should be possible to transfer a lot of the expertise about efficient survey design 

across to this problem. 
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