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Abstract 
 

The study of longitudinal data is vital in terms of accurately observing changes in responses of interest for individuals, 
communities, and larger populations over time.  Linear mixed effects models (for continuous responses observed over time) 
and generalized linear mixed effects models and generalized estimating equations (for more general responses such as 
binary or count data observed over time) are the most popular techniques used for analyzing longitudinal data from health 
studies, though, as with all modeling techniques, these approaches have limitations, partly due to their underlying 
assumptions.  In this review paper, we will discuss some advances, including curve-based techniques, which make 
modeling longitudinal data more flexible.  Three examples will be presented from the health literature utilizing these more 
flexible procedures, with the goal of demonstrating that some otherwise difficult questions can be reasonably answered 
when analyzing complex longitudinal data in population health studies. 
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1.  Introduction 
 
The modeling of longitudinal data is described in various textbooks (e.g., Verbeke and Molenberghs, 2000; Diggle 
et al. 2002, Fitzmaurice et al., 2004).  Most (but not all) of the discussion in these texts and most of the longitudinal 
analyses seen in application journals (such as in biomedicine or population health) focus upon linear models and 
generalized linear models for longitudinal data.  Correlation between the repeated measures over time within a 
subject is appropriately handled with these models.  For linear models, the typical approach used is the linear mixed 
effects model (Laird and Ware, 1982), and for generalized linear models, the majority of researchers use either 
marginal models with generalized estimating equations (Liang and Zeger, 1986) or subject-specific approach using 
generalized linear mixed effect models (e.g., Breslow and Clayton, 1993; McCulloch and Searle, 2000).  However, 
many datasets require more flexible approaches to modeling either by a different parameterization of the above 
popular models or instead new models altogether.  We will provide three examples of longitudinal datasets that 
required these types of flexible approaches.   
 
In this review paper, all of these examples have been published in various forms (and journals) in the biostatistical 
and biomedical literature.  In Section 2 below, we will describe the examples, one at a time, with the problem of 
interest defined and subsequent model specified.  Each approach has the characteristic that the trajectory of interest 
over time is not linear at a constant rate during the entire course of follow-up, with trajectories from some of the 
examples being quite non-linear.  In Section 3, we provide some summary remarks.  
 
 

2.  Examples 
 
2.1 Example 1: pharmacokinetics of Theophylline 
 
Pharmacokinetics, which studies how our bodies process the intake of a drug, has long focused on models that are 
non-linear.  Parametric non-linear models have been the norm and the parameters in the model represent functions 
such as absorption of the drug, as well as elimination and clearance.  Some researchers have focused on longitudinal 
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modeling of these processes, for example, from random assignment of different dosing levels to a group of subjects 
in a clinical trial, including the use of non-linear mixed effects models (e.g., Pinheiro and Bates, 2000).   
 
Pinheiro and Bates (2000) present one such example, a designed pharmacokinetic study of 12 subjects, with 
between-subject differences on doses received.  The longitudinal data for the 12 subjects are presented in Figure 1.  
The non-linear trajectories for each subject are apparent, as well as between-subject differences in the absorption 
rate and peak, as well as the elimination and clearance.  Random effects may be needed in any modeling of this 
data, in case dosage amount by itself cannot explain these between-subject differences. 
 
    

 
 
 
 
The following non-linear longitudinal (mixed effects) parametric model, a first-order compartmental model, is 
described in Pinheiro and Bates (2000) for the Theophylline data to reflect the concentration Y at time t after initial 
dose d: 
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In (1),  
 
Yij is the Theophylline concentration for subject i at time tij
 
di is the initial dose for subject i  
 
Ei is the elimination rate constant for subject i, where Ei = β1 + b1i, with β1 a population-level fixed elimination 
effect and b1i a subject-specific random elimination effect, with mean 0 and variance σ2

b1
 
Ai is the absorption rate constant for subject i, where Ai = β2 + b2i, with β2 a population-level fixed absorption effect 
and b2i a subject-specific random absorption effect, with mean 0 and variance σ2

b2 
 
Ci is the clearance for subject i, where Ci = β3 + b3i, with β3 a population-level fixed clearance effect and b1i a 
subject-specific random clearance effect, with mean 0 and variance σ2

b3   . 
 
εij is the within-subject error term for subject i at time j, assumed conditionally independent N(0, σ2) 
 
 
Though (1) appears as a very complex model, each of the parameters has a biologically interpretable meaning, 
specifically absorption, clearance and elimination.  It is an extension of a general non-linear parametric model:  Yij = 
f(Xij, β, bi) + εij , where the β terms represent fixed population-level effects.  In addition, enough flexibility has been 
built into (1) to allow for between-subject heterogeneity that cannot be explained by observed covariates such as 
dosage level.  This is a complex and flexible model, yet with interpretative value.  As far as the fitting of such non-
linear parametric longitudinal models, there is an excellent function available in both R and S-Plus, called nlme, 
written by Pinheiro and Bates (2000), which comes from the nlme package/library.  In SAS, Proc NLMIXED can be 
used. 
 
 
2.2 Example 2: children lead-exposure clinical trial 
 
This second example comes from a placebo-controlled randomized trial of a chelating agent, succimer, in children 
with elevated blood level between 20 to 44 μg/dL.  Enrolled were 100 children from poor inner city housing; ages 
between 12 and 33 months.  This example is well-described in Fitzmaurice et al. (2004).  The goal was to see if 
succimer would do better than the placebo in lowering blood lead levels for children with elevated lead levels.   
 
Figure 2 presents four consecutive mean longitudinal measurements (week 0, week 1, week 4, and week 6), one 
mean trajectory for each treatment group.  A couple of key features can be detected from this plot.  First, there is a 
noticeable dive in blood levels after the first week among those in the succimer group, as compared to a small 
decrease (possibly a placebo effect and/or simple regression to the mean) in the placebo group.  Secondly, after the 
initial dive in the succimer group, the blood levels rise again, though maintaining a mean lower than the placebo 
group throughout the six-week follow-up period.  This rise is due to the body of the children in the succimer group 
re-balancing the blood lead level after the initial loss, with lead being released into the bloodstream from bone and 
muscles.   
 
This is an example that requires a much simpler parametric model than that used in Example 1.  Here, the initial 
focus is simply on a single change in an otherwise straight mean trajectory of the response over time.  Hence, a 
linear mixed effects model can be used, with the implementation of a single changepoint.  This is the simplest form 



of what otherwise is referred to as a longitudinal piecewise linear spline model, with a subject-specific random 
effect and a single knot at the changepoint.  
 

 
 
Fitzmaurice et al. (2004) suggested the following longitudinal piecewise linear spline model: 
 
Yij = (β0 + b0i) + β1(weekij) + β2(weekij – 1)+  + β3(trti * weekij) + β4(trti * (weekij – 1)+) + εij   (2) 
 
In (2),  
 
Yij is the longitudinal lead level response for subject i at time weekij, where subject i = 1 to 100, and measurement 
time j = 1 to 4   
 
β0 is population-level intercept 
 
b0i is the subject-specific random intercept for subject i, assumed to be distributed independent N(0, σ2

b0); this 
random effect induces the correlation between the repeated measures over time for each child 
 
β1 represents population-level slope (initial slope) 



 
(weekij – 1)+ = (weekij – 1) if (weekij – 1) > 0, and 0 otherwise; here, the changepoint (knot) is specified at week 1 
 
β2 represents population-level adjustment to slope from week 1 forward 
 
β3 represents interaction between treatment group (1 = succimer, 0 = placebo) and population-level initial slope  
 
β4 represents interaction between treatment group (1 = succimer, 0 = placebo) and population-level adjustment to 
slope from week 1 forward 
 
εij is the within-subject error term for subject i at time j, assumed to be distributed N(0, σ2), and conditionally 
independent.  
 
 
Note the following expected responses for subject i at time j, which can be inferred from (2): 
 
E(Yij) = β0 + β1(weekij) + β2(weekij – 1)+       [for placebo group] 
 
E(Yij) = β0 + (β1 + β3 )(weekij) + (β2 + β4 )(weekij – 1)+         [for succimer group] 
 
So, for the placebo group, this translates into a slope of β1 prior to the changepoint (week 1) and (β1 + β2) after the 
changepoint. 
 
For the succimer group, this translates into a slope of (β1 + β3) prior to the changepoint (week 1) and (β1 + β3 + β2 + 
β4) after the changepoint. 
 
In summary, equation (2) represents a relatively simple longitudinal model but one that has been adapted to allow 
for a change in trajectory over time, including this trajectory change to be a function of treatment group. It can be 
argued that a second changepoint, at week 4, would provide a better fit to the blood level data.  It is not hard to 
imagine extending models such as (2) to include several changepoints (knots); that is, models such as (2) can easily 
be extended to accommodate greater non-linearity in the trajectory over time.  One such complex model will be 
described on a different dataset, in Example 3 below.  On a programming note, these types of fixed changepoint 
models, as described in (2) above, can easily be fitted in a linear mixed effects modeling program such as lme (in R 
or S-Plus) or lmer (in R) or in Proc Mixed in SAS. 
 
 
2.3 Example 3: respiratory health study 
 
This example, presented only briefly here, comes from an investigation of the association between respiratory health 
and respirable particulate pollution in a sample of 41 schoolchildren, over a period of 109 consecutive days in 1991.  
Daily measures of peak expiratory flow (PEF) were collected, as well as amount of particulate matter (PM) and 
several weather variables such as lowest temperature of the day (LT).  Unfortunately, a Figure from this example 
was unavailable to be included in this paper. 
 
The following initial linear mixed effects model is an extension of the linear model used by the initial investigators 
(Pope et al., 1991): 
 
Yij = β0 + b0i + β1(PM)j + β2(LT)j + β3(Time)j + εij      (3) 
 
In (3), the response Yij represents PEF measurement for child i (i = 1 to 41) at time j (j = 1 to 109), and b0i is a 
single between-subject random effect representing unexplained variability (heterogeneity) between children on 
baseline PEF levels.  Also, notice that the i subscript is suppressed from PM, LT, and Time, as these are not specific 
to an individual in this study. 
 



Coull et al. (2001) realized the above was an inadequate model, as more flexible relationships were required 
between PEF and LT, as well as between PEF and Time.  In addition, unexplained variability needed to be 
accounted for regarding the relationship between PEF and PM, and accounting for serial correlation was also 
necessary.  Hence, Coull et al. (2001) suggested the following additive mixed model for this data: 
 
Yij = β0 + b0i + (β1 + b1i) (PM)j + f(LT)j + g(Time)j + εij     (4) 
 
The model (4) reflects the following changes from (3): 
 
b1i has been added to the model to account for unexplained between-child variability on the relationship between 
PEF and PM 
 
εij now accounts for serial correlation, such that εij = ρεi,j-1 + αij 

 
f and g represent non-linear relationships between PEF and LT, as well as PEF and Time, respectively.  Coull et al. 
(2001) reflected these non-linear relationships using smoothed functions, via penalized splines (e.g., Eilers and 
Marx, 1996), a more complex implementation of splines than the ones used in the children lead example model in 
(2).  
 
As complex as the above model (4) may appear, additive mixed models, including models such as that presented in 
(4) for the respiratory data, can use standard linear mixed effects model software, such as lme in R and S-Plus, and 
Proc MIXED in SAS.  For more complex additive models, specialized software is required. The SemiPar package in 
R may be one option, and complex additive mixed models are described in Ruppert et al. (2003).  For generalized 
additive mixed models (e.g., Lin and Zhang, 1999; Wood, 2006), one can use the mgcv package in R. 
 
 

3. Discussion 
 
Several informative examples were presented in this review paper, with the focus on longitudinal data where 
complex modeling was required.  These were only a few approaches among many proposed in the statistical and 
biostatistical literature, though several of these flexible approaches have not yet become mainstream in the 
population health and biomedical literature.  Some of these other approaches can fall into classes of varying 
coefficient models, where the β parameters themselves are a function of time (e.g., Chiang et al., 2001; Lin and 
Ying, 2001; Fan and Li, 2004), fully non-parametric curve-based models (e.g., Rice and Silverman, 1991; Dubin 
and Müller, 2005), and functional data analytic models (e.g., Ramsay and Silverman, 2005; Yao et al., 2005), the 
latter two approaches using curves (representing the trajectory of responses over time) as the basis for analysis.  
Fortunately, there has recently been a concerted effort by many of the researchers developing these new methods to 
create software such that these flexible longitudinal methods can be utilized more often in the applied health 
literature.  The studies contained in this paper are examples of that effort. 
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