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Abstract 

 
Statistics Canada conducted the Canadian Community Health Survey – Nutrition in 2004. The survey’s main objective 

was to estimate the distributions of Canadians’ usual dietary intake at the provincial level for 15 age-sex groups. Such 

distributions are generally estimated with the SIDE application, but with the choices that were made concerning sample 

design and method of estimating sampling variability, obtaining those estimates is not a simple matter. This article 

describes the methodological challenges in estimating usual intake distributions from the survey data using SIDE. 
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1. Introduction 

 
The Canadian Community Health Survey (CCHS) is a series of cross-sectional surveys consisting of two cycles: the 

“.1” cycle surveys are designed to produce estimates of the general health of the population at the regional level, 

while the “.2” cycles are intended to provide provincial-level estimates of the population’s health in a specific part of 

the health field. During the development of the CCHS content, it was felt that nutrition was a very important subject 

to cover because of Canadians’ concerns about excess weight and obesity. In addition, it had been several years since 

the last national survey of nutrition in 1972. It was therefore decided that cycle 2.2 of the CCHS would be about 

nutrition. 

 

Specifically, the main objective of the CCHS – Nutrition was to produce estimates of the distributions of the daily 

nutritional intake of provincial populations in terms of nutrients, food and food groups at the provincial level for 15 

age-sex groups throughout 2004. The age-sex groups covered were as follows: infants under the age of 1 (estimates 

required at the national level only); children aged 1 to 3 and children aged 4 to 8, both sexes combined; and the 9-13, 

14-18, 19-30, 31-50, 51-70 and 71+ age groups broken down by gender. Persons living on Indian reserves and 

Crown land, institutional residents, full-time members of the Canadian Forces, and residents of selected remote areas 

were excluded from the target population (exclusions represent about 2% of the population of Canada’s provinces). 

 

A person’s usual dietary intake can be expressed as the expectation of the theoretical distribution that generates his 

or her daily dietary intakes. A person’s usual intake can also be regarded as the average of his or her daily intakes 

over a long period of time. Hence it is impossible to measure a person’s usual intake directly. It is possible, however, 

to measure a person’s daily intake by having him/her recall what he/she ate and drank in a 24-hour period. For the 

CCHS cycle 2.2, each recall covered the full 24 hours of the day preceding the interview (from midnight to 

midnight). Estimating each respondent’s usual intake was not an option because of the number of recalls per 

respondent that would have been necessary, the response burden that would have been generated, and the collection 

cost per recall. Yet the survey’s objective was to estimate the usual intake distribution in the population. That can be 

done with one recall per respondent, a second recall for a subset of those respondents and a sophisticated 

methodology based on the theory of measurement error models.  
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This article describes the issues encountered in applying the theory in the CCHS context. The next section contains a 

brief overview of some aspects of the sampling plan and the estimation process.  Section 3 describes the 

methodology of the Software for Intake Distribution Estimation (SIDE), which is used to analyze nutritional data. 

Section 4 presents the issues, problems and solutions involved in estimating the sampling variance of the estimates 

produced by the SIDE. 

 

 

2. Canadian Community Health Survey - Nutrition 

 
It was determined that a sample of 35,000 respondents (and therefore 35,000 first recalls) was needed to ensure that 

the estimators had the desired precision. That is a very large sample for a nutrition survey. We had to use several 

frames to generate the sample, which was spread evenly across the four quarters of 2004 to eliminate seasonal bias in 

the data. A subsample of 10,000 second recalls was also collected to control for day-to-day variation in respondents’ 

dietary habits. For more details on the sampling plan see Béland et al. (2003) and Junkins and Vigneault (2003). The 

plan provides an address for the interviewer to visit in order to contact the resident household. One person from the 

household was selected by computer to take a computer-assisted interview. The first recall was done in person at the 

respondent’s home, while the second recall was done by telephone. The data from the first recall are considered 

more reliable than the data from the second recall. Respondents might have a tendency to bias their responses in the 

second recall either because they had tried to eat better following the first interview or to speed up the second 

interview. 

 

The sample weighting process is complex because of the sample design that had to be used to achieve the survey’s 

objectives. For more information on the CCHS’s standard weighting procedures, see Brisebois and Thivierge (2001). 

The preferred method of estimating sampling variability with the CCHS data is bootstrapping. For cycle 2.2, it was 

determined that bootstrapping was the most appropriate technique because of the sampling plan’s complexity, the 

time required to produce the estimates and the desirable properties of the variance estimators it produces (Rao and 

Wu, 1988). For each of the 500 bootstrap replicates, we sampled nh-1 clusters with replacement from the nh clusters 

in stratum h. The kind of bootstrapping we used assumes that the first-stage sampling fractions are negligible. 

 

 

3. Analyzing Nutrition Data with the Software for Intake Distribution Estimation (SIDE) 

 

3.1 Software for Intake Distribution Estimation 

 
The Software for Intake Distribution Estimation (SIDE) is used by most analysts when the survey data are in the 

form of 24-hour recalls. It is highly popular because it is very thorough: it applies the measurement error model 

required to estimate the usual intake distribution in a population, and it makes sophisticated adjustments to the data 

before and after. The SIDE methodology is described in detail in Nusser et al. (1996) and summarized in the 

subsection 3.2.  

 

3.2 The steps executed by SIDE 

 
Step 1 involves adjusting the daily intake data to improve their quality and simplify the calculations made in 

subsequent steps. First, SIDE forces the mean and variance of the second recalls to be equal to the mean and 

variance of the first recalls. This adjustment is based on the assumption that the first recall data are of better quality 

than the second recall data. A ratio adjustment can also be made to eliminate the effects of detrimental variables 

(continuous or discrete). Step 1 ends with a smoothing process that produces an equal-weights sample, which 

simplifies the calculations in subsequent steps. We compute the empirical distribution function of the daily intakes 

using the formula ∑ ∑
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for i=1, 2, ..., n and j=1, 2, ..., ki, where sij is the rank of Yij. 

 

The measurement error model used by SIDE requires normality in the data. For this reason, Step 2 is a complex 

normality transformation. First, a power transformation is applied to the data. Then the data are put in order and 

matched with the percentiles in the standardized normal distribution. Lastly, the data are divided into equal intervals 

and regressions are used to find the best cubic transformations on the intervals. The result is Xij data that are zero-

centred, unlike the Zij and the Yij, which are centred on the means of the untransformed first-recall daily intakes. 

 

In step 3, SIDE fits the following measurement error model:  
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where ijX  is the j
th
 measurement of the transformed daily intake of respondent i, ix  is the usual intake of 

respondent i, and uij is the measurement error. We also assume the following distributions: ix ~ ),,( 2
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AA σµ . As mentioned earlier, a precise estimate of ix  cannot be produced with the survey 

data. Instead, the parameters of interest are xµ  and 2
xσ  because they completely define the usual intake distribution 

in the population on the normal scale. Let n be the number of respondents (or the number of first recalls), N the total 

number of recalls, ki the number of recalls of respondent i (equal to 1 or 2), ⋅iX  the mean of the recalls of respondent 

i and n0 = N - N
-1 
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Table 1 

SIDE analysis of variance (ANOVA) table  
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The final step involves transforming the estimated usual intake distribution from the normal scale back to the original 

scale. This is a very important step because consumption patterns are defined in the original scale. The 

transformation is given by the expectation of daily intake Y in the original scale when we know the usual intake value 

in the normal scale ix&&  : [ ] ( )[ ] ( )iii xhxxuxgExxYE &&&&&& ==+== −1 , where g is the step 2 transformation to normality, 

u is the measurement error, and h is the desired transformation.  

 

Once the distribution of the usual intake in the population has been estimated, the analyst is generally interested in 

the following statistics: mean usual intake, usual intake percentiles and the proportion of the population above or 

below a given consumption limit. However, it is important to tailor the way SIDE is used to the survey’s sampling 

plan and the method used to estimate the sampling variability. Because of the number and complexity of the steps 



executed by SIDE, this is not a simple exercise. An important aspect of this adjustment process is described in the 

next section. 

 

 

4. Problem in Estimating the Usual Intake Variance 

 

4.1 The problem 

 

Algebraically, the usual intake variance estimator 2ˆ
xσ  given in equation (2) can take negative values. When it is 

negative, the estimated usual intake distribution is not defined. When that happens, SIDE stops executing, and the 

user is left with no estimate. The negative values occur because the method of moments is used to estimate 2
xσ . One 

might suppose that a better approach would be to produce an estimator by another method that yields only positive 

values, but developing such an estimator is a laborious task with the measurement error model in (1).  

 

The probability of producing a negative estimate of the variance parameter when the method of moments is used is 

not zero; for more details, see subsection 4.3. We need to bear this in mind when doing the point estimation of the 

usual intake distribution. Similarly, when bootstrap replication is used to measure the sampling variability, it is 

possible to obtain negative variance estimates for the individual replicates. In theory, some proportion of the 

replicates should have a negative variance estimate. Hence, when we estimate the usual intake distribution for a 

population, it is important to keep in mind that the variance parameter for the point estimate and the sampling 

variance estimate can take negative values.  

 

4.2 The solutions 

 
4.2.1 Case 1: The point estimate of the usual intake variance is negative 

 
Option 1: Use a variance estimator truncated to zero 

 

The acceptable values for the usual intake variance 2
xσ  are zero or greater than zero, while the 2ˆ

xσ  estimator can 

take negative values. The first solution to the negative variance estimate problem is to use ( )0,ˆmaxˆ 2*2

xx σ=σ  instead 

of 2ˆ
xσ  as the 2

xσ  estimator. For the bootstrap replicates, we will use ( )0,ˆmaxˆ )(2)(*2 b

x

b

x σ=σ . Note that *2ˆ
xσ  is a 

positive-biased estimator since 2ˆ
xσ  is unbiased. When 2ˆ

xσ  is negative, *2ˆ
xσ  is zero. This means that usual intake 

does not vary from person to person and therefore that the entire population concerned has exactly the same usual 

intake xµ . As a result, the estimated usual intake distribution is discrete, with the entire mass of probability 

concentrated at the mean. With that distribution, it is possible to estimate the mean usual intake and the proportion of 

population that is above or below a particular consumption threshold (the estimated probability is either 0 or 1). 

However, the percentiles are not defined for such a distribution, which prevents the analyst from producing a 

percentile estimate from the estimated distribution. 

 

Option 2: Set a value for the usual intake variance based on an external source 

 

It may make more sense for an analyst to use a more reliable, more stable external source to estimate the variance of 

the usual intake of the population being studied. A negative or zero variance estimate for the point estimate might be 

an indication that the data are not sufficiently precise to estimate the variance parameter. To justify this approach, we 

have to assume that the usual intake variance for the domain concerned and the variance for the external source are 

equal. This approach is easy to implement since we generally have external sources for which the assumption is 

reasonable and because SIDE allows us to preset a value for 2
xσ  through the input parameters. 

 



To estimate the sampling variance, we must use the same method as for the point estimate. We therefore have to set 
2
xσ  values for the individual replicates. If we set the same value for all the replicates, the sampling variability 

measured by the bootstrap replication will be solely due to the variation from replicate to replicate in the estimation 

of the mean and the transformations. This amounts to assuming that the value based on the external source is known 

exactly, with no sampling error, which is assuming a great deal. If possible, we will not make that assumption, and 

we will address the problem by varying the values from replicate to replicate to imitate the sampling variation due to 

the usual intake variance estimate based on the source. It is relatively simple to follow this method when the source 

data are from the survey. For example, in the estimation process for an Atlantic province such as Prince Edward 

Island, we could set variance values for the point estimate and the 500 bootstrap estimates based on the Atlantic 

sample as a whole instead of using the more unstable values from the provincial sample. 

 
4.2.2 Case 2: The point estimate of the usual intake variance is positive (but the variance of some 

bootstrap replicates is negative) 

 
Option 1: Remove problematic replicates from the sampling variance computation. 

 

When the main estimate yields a positive usual intake variance estimate and some replicates have a negative 

estimate, it is perfectly natural to want to remove those replicates from the sampling variance calculations. This 

approach biases the sampling variance estimate, since some combinations of primary sampling units are eliminated 

from the variance calculation. That bias will be small if the number of replicates eliminated is small. Consequently, 

we should adopt this approach if the number of replicates to be removed from the sampling variance calculation is 

small. 

 

Option 2: Use a variance estimator truncated to zero 

 

An alternative that allows the use of information from every replicate is to use the usual intake variance estimator 

( )0,ˆmaxˆ )(2)(*2 b
x

b
x σ=σ . This estimator is positive-biased. On the other hand, the sampling variance estimator derived 

from it is less biased than in the previous solution because all combinations of primary sampling units are included in 

the calculation. 

 

One consequence of this approach is the fact that the shape of the point-estimated usual intake distribution will be 

continuous, while the shape of the distributions based on replicates for which )*(2ˆ b
xσ  is zero will be discrete, with all 

of the probability mass concentrated in the mean. When the statistics based on those distributions are the mean usual 

intake or the proportion of the population above or below a particular threshold, the sampling variability is easy to 

calculate because the statistics are well defined for both the point estimate and all the replicates. However, when the 

statistic of interest is a percentile, it is not defined for replicates that have a variance estimate of zero. One solution to 

the problem is to use the Woodruff method (1952) adapted for the bootstrap context. The Woodruff method is 

applicable here because, even though it is impossible to produce percentile estimates for all the replicates, it is 

possible to estimate probabilities (areas under the curve) for each replicate. 

 

The process of constructing the confidence interval is based on the application of the Woodruff method (1952) 

described in Lohr (1999), section 9.5.2. Let xF  be the usual intake distribution function, xF̂  the point estimation of 

that distribution and the percentile of interest )(
1
qFxq

−=θ . The level α−1  bootstrap confidence interval for )(yFx  

is given by )](ˆ[ˆ)(ˆ 2/ yFVzyF xBx α± , where index B denotes the variance estimator obtained by bootstrap 

replication and 2/αz  is the 2/100 α× -percentile of the standardized normal distribution. We can calculate the 

bootstrap variance by including information from all the replicates because it is an interval for the proportion of the 

population whose usual intake is below threshold y. We can therefore construct a confidence interval for )( qxF θ , 

from which the confidence interval for qθ  can be derived. If the sample distribution of )(ˆ qxF θ  is approximately 

normal, since xF  and xF̂  are continuous, we have: 
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Hence, the approximate level α−1  interval for quantile qθ  is given by: 
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The bootstrap variance computed here is based on calculations of probabilities with replicates rather than percentile 

calculations, which is possible for every replicate, even when the usual intake variance estimate is zero. In practice, 

the following steps will be carried out in applying the method: 

1. Generate a point estimate ( )qθ̂  of percentile qθ . 

2. Estimate the proportion of the population with a usual intake below the value computed in step 1 for each 

bootstrap replicate ( ))ˆ(ˆ...,),ˆ(ˆ),ˆ(ˆ )500()2()1(

qxqxqx FFF θθθ . 

3. Calculate the bootstrap variance estimator of )ˆ(ˆ qxF θ  and construct the corresponding confidence interval 
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4. Generate a point estimate of the confidence interval percentiles that correspond to the interval limits 

calculated in step 3. The interval generated corresponds to the one given by equation (4). 

 

The confidence interval given in (4) may be wide if the data are not sufficiently precise. In particular, the lower limit 

may be 0 and the upper limit may be 1. This will result in the loss of one or both limits of the confidence interval 

constructed in step 4. This “loss” of information is due to a lack of precision in the data and not to the method used. 

In that case, the data are too imprecise to provide an exact value for the confidence interval over a proportion given 

in (4). 

 

Option 3: Set a value for the usual intake variance based on an external source 

 

To make the results more precise than in option 2, we need to make additional assumptions about the usual intake 

distribution that we want to estimate. One possible solution is to assume that the variance of the usual intakes of the 

population concerned is equal to the variance for another population (for which we have greater precision in the 

variance estimate). This approach also has the advantage of correcting for negative variance estimates in the 

bootstrap replicates. We will use the values of the usual intake variance for the more precise population sample when 

we estimate the usual intake distribution for the population of interest. This takes us back to option 2 in subsection 

4.2.1. It is important to note that in this case, we will set the variance values not only for the bootstrap replicates 

whose initial variance estimate is negative, but also for the other bootstrap replicates and the main estimate. Indeed, 

it makes sense to take full advantage of the precision afforded by the additional assumption. 

 

4.3 Estimating the magnitude of the problem 

 
It may be helpful to estimate the problem’s magnitude in terms of the probability that it will arise in a number of 

situations. First, computing that probability may be useful in constructing the sampling plan at the sample size 

determination stage. For given values of the parameters in the model described in (1), we can calculate the sample 

sizes needed to ensure that the probability of having a negative value of 2ˆ
xσ  is reasonably small. The larger the 

numbers of first and second recalls, the smaller the probability will be. That is the approach taken in this survey 

(Junkins and Vigneault, 2003). We can also compute the probability once the sample is collected to determine how 

frequently the problem will arise for different values of the model’s parameters. Thus, it can be used to characterize a 

sample. Finally, the situation in which it is of greatest value to compute the probability in the context of this article is 

the bootstrap replication process. We can calculate the probability that a replicate will produce a negative variance 

estimate on the basis of the estimated point values of the parameters of the measurement error model. This shows us 



the number of replicates that can be expected to “fail” before we make the calculations for each replicate. This 

process is worthwhile because the calculations for the entire set of replicates take a significant amount of time to run 

in SIDE and because it helps us determine in advance which solution we will choose for the “failed” replicates. In 

particular, we will be able to decide ahead of time whether we will need to enhance the sample’s precision by making 

an additional assumption about the usual intake variance parameter. Furthermore, we may select one of the options in 

subsection 4.2 on the basis of the probability of having a negative point estimate and negative bootstrap estimates 

instead of the fact that the point estimate is negative or non-negative. To compute the probability, we will use the 

expected values of the usual intake variance parameters. 

 

Because of the number and complexity of the steps in SIDE, it is not easy to compute the probability of obtaining a 

negative variance estimate. The difficulty is compounded by the complex survey design. Accordingly, we will make 

several assumptions before calculating the probability. First, we will assume a simple random sampling design, 

which will allow us to skip the weight equalization step. Second, we will take it for granted that no initial adjustment 

is required and that normality transformation g and reverse transformation h are simply linear. Third, we will 

simplify the measurement error model in (1) by assuming that the between-individuals variance is constant from 

person to person, i.e., that parameter 
2
Aσ  is zero. The latter assumption changes the measurement error model into a 

conventional model in which the ijX  are normal. With these conditions, we can use Fisher’s distribution to compute 

the probability of interest:  
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  (5) 

If n is large, the right side of the inequality in the last line of equation (5) is approximately equal to 

( )[ ]Ax µσγ /111 2++  (a constant smaller than 1), where nnN /)( −=γ  is the number of second recalls divided by 

the number of first recalls. On the other side of the inequality, Fisher’s statistic has a distribution that becomes more 

concentrated around 1 as sample sizes increase. Consequently, the probability shrinks if n is fixed and γ  increases 
toward 1 (if the number of second recalls increases toward n) or if γ  is fixed and n increases (the number of 

respondents increases while the proportion of second recalls remains constant). Furthermore, estimator 2ˆ
xσ  in (2) is 

formed from a quadratic combination of Horvitz-Thompson-type estimators. Thus, since the sampling fractions are 

negligible, most of the estimator’s variability will be due to sampling from a finite population and not to the 

mechanism that generates the population (Binder and Roberts, 2003). Bootstrap replication in this case provides an 

estimate of the sampling variability and the total variability. Formula (5) represents the expected proportion of 

replicates that will produce a negative variance estimate. In practice, however, we do not have values for the 

parameters. We will therefore replace those values in the formula with the corresponding point estimates (or their 

expected values) to estimate the probability. 

 

In the general case where the design is complex and all the steps in SIDE must be carried out, formula (5) must be 

adapted to produce the exact probability. In the applications described above, however, we want a measurement of 

the problem’s magnitude rather than an exact figure. For that purpose, we can use the probability in (5) in the general 

case. In practice, the value produced by the formula appears to be very close to the observed proportion of “failed” 

replicates. 
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