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Abstract 
 

We use a robust Bayesian method to analyze data with possibly nonignorable nonresponse and selection bias. A robust 

logistic regression model is used to relate the response indicators (Bernoulli random variable) to the covariates, which are 

available for everyone in the finite population. This relationship can adequately explain the difference between respondents 
and nonrespondents for the sample. This robust model is obtained by expanding the standard logistic regression model to a 

mixture of Student's t  distributions, thereby providing propensity scores (selection probability) which are used to construct 

adjustment cells. The nonrespondents' values are filled in by drawing a random sample from a kernel density estimator, 

formed from the respondents' values within the adjustment cells. Prediction uses a linear spline rank-based regression of the 
response variable on the covariates by areas, sampling the errors from another kernel density estimator; thereby further 

robustifying our method. We use Markov chain Monte Carlo (MCMC) methods to fit our model. The posterior distribution 

of a quantile of the response variable is obtained within each sub-area using the order statistic over all the individuals 
(sampled and nonsampled). We compare our robust method with recent parametric methods  
 
KEY WORDS: Logistic regression, Metropolis-Hastings sampler, Order statistics, Propensity scores, Rank-based method, 

Student's t  distribution. 

 

 

  1. Introduction  
 

The purpose of this work is to predict the percentile of Body Mass Index (BMI) for the finite population of children 

and adolescents, post-stratified by county for each domain formed by age, race and sex and to investigate what 

adjustment needs to be made for nonresponse and selection bias, using National Health and Nutrition Examination 

Survey (NHANES III) data. Nandram and Choi (2005, 2006) fit hierarchical Bayesian models to accommodate such 

a nonresponse mechanism. We seek more robust models, robust to distributional assumptions and outliers. 

 

Greenlees, Reece and Zieschang (1982) developed a normal-logistic regression model, a nonignorable nonresponse 

model within the selection approach, to impute missing values in the Current Population Survey when the probability 

of response depends on the variable being imputed. Nandram and Choi (2005) extend this model to accommodate 

small domains for the NHANES III data. The main contribution in Nandram and Choi (2005) is a Bayesian 

predictive inference of the finite population mean using a spline regression model in which the logarithm of the BMI 

values are modeled. Nandram and Choi (2006) make four new contributions. First they make inference about the 

more appropriate finite population percentiles. Second, they show that the logarithmic transformation is the best in a 

selected set within the Box-Cox family. Third, they demonstrate small effects of clustering. Fourth, they show how 

to account for the selection probabilities. 

 

Our key idea of this paper is to robustify the logistic regression model based on the relation between the logistic and 

the Student's t  densities. The first four moments of a standard logistic density (i.e., zero location and unit scale) are 

the same as that of a Student's t  density with location zero, scale 7/27= πγ  and nine degrees of freedom. That 

is, if γ/x  has a standard Student's t  density, then x  has approximately a standard logistic density; see Mudholkar 

and George (1978) for the original discussion on this issue, and Albert and Chib (1993) for an application. This result 
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creates an avenue for our robust analysis on nonresponse. Let 1=iI  if the 
thi  individual responds and 0=iI  

otherwise, for a sample of size n , and let iz  denote covariates. Then, the standard logistic regression model with 
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ind

i zBernoulliI Τ: , where 

)(⋅ηΤ  is the cumulative distribution function of the Student's t  random variable on 9=η  degrees of freedom (i.e., 

the regression coefficients β  in the two models are approximately the same). Thus, robustification is obtained by 

placing weights on different values of η  with a substantial weight at 9=η  degrees of freedom; thereby forming a 

more flexible class of models. 

 

In addition, we robustify our procedure in the prediction process itself. Instead of assuming normality, we use a 

linear rank-based procedure (Hettmansperger 1984) to fit a linear model of logarithm of BMI on the covariates, 

requiring no distribution assumptions; see Potvin and Roff (1993) for interesting comments about normality. It is 

clear that this new procedure is an important advance over the normal-logistic model of Greenlees, Reece and 

Zieschang (1982) and Nandram and Choi (2005, 2006). 

 

The major difference with our previous work is that we use propensity scores to study “nonignorable” nonresponse. 

Our approach here is even different from our earlier non-parametric approach with Dirichlet process prior (see 

Nandram and Choi 2004). The propensity scores incorporate differences between respondents and nonrespondents 

through covariates; see Little and Rubin (2002) for a discussion on nonresponse and Rosenbaum (2002) for a similar 

discussion on observational studies. The propensity score simply describes the response probability of an individual 

as a function of the covariates. A standard reasonable assumption is that the response indicators follow a logistic 

regression model in which the response probability (propensity score) is a function of the covariates. The propensity 

scores are used to form adjustment cells, and the nonrespondents' BMI values are filled in by drawing samples from 

a kernel density estimator (Silverman 1986). 

 

The notion of nonignorability is a somewhat different from that of Little and Rubin (2002). The estimated propensity 

scores are a function of the response indicators and the covariates, unrelated to the observed responses. But, the 

unobserved responses are a function of the estimated propensity scores and the covariates, and therefore, they are a 

function of the response indicators. However, the covariates may not discriminate between respondents and 

nonrespondents. Thus, our models are very flexible because they are allowed to capture some degree of 

nonignorability. 

 

The purpose of this paper is to describe a robust method to obtain propensity scores to fill in nonrespondents and to 

predict the finite population percentiles (at risk of overweight; overweight) for small domains formed by age, race 

and sex. In Section 2 we discuss the the NHANES III data that we study. In Section 3, we review the previous 

hierarchical Bayesian model (Nandram and Choi 2006) for nonignorable nonresponse through the selection 

approach. In Section 4 we provide our robust Bayesian methodology. In Section 5 we present data analysis.   

 

  2. Main Features of the NHANES III Data  
 

Nonresponse occurs in both the interview and examination stages of NHANES III survey, October 1988 through 

September 1994 (see National Center for Health Statistics, 1994 for detail). The interview nonresponse arises from 

sampled persons who did not participate in the interview. Some individuals, who were already interviewed and 

included to participate in the health examination, missed the examination at home or at the MEC, thereby missing all 

or part of the examination. In all our previous work, “nonresponse” refers to a missing BMI value for those sampled 

“persons” whose age, sex and race information was obtained. We note also that for children and adolescents (2-19 

years old) the observed nonresponse rate is 24)(1606/6791100 ≈× %. 

 

We study the BMI data for four age classes (02-04, 05-09, 10-14, 15-19 years). Recalling that there are 560 

( 42235 ××× ) domains, the sample sizes on the average are very small per domain e.g., 126791/560 ≈  for the 

sample and 9=5185/560  for the respondents. Many domains by county are too small (i.e., many domains do not 

have any individuals in the sample) for any meaningful analysis. Therefore, the small areas are formed by crossing 



age, race and sex within counties. As in Nandram and Choi (2005, 2006) our models are constructed at county level, 

and, at the same time, age, race and sex are represented as covariates; inference is made for each domain formed by 

crossing age, race and sex within county. There are differential probabilities of selection by age, race and sex, from a 

screening procedure, oversampling some age group and race.   

 

  3. The Bayesian Spline Regression Model: A Review  
 

We give a review of the spline regression model of Nandram and Choi (2005), and describe how Nandram and Choi 

(2006) incorporate correlation and selection probabilities into the model. 

There are data from 35=l  counties and each county has iN  (known) individuals. We assume a probability sample 

of in  individuals is taken from the 
thi  county. Let s  denote the set of sampled units and ns  the set of nonsampled 

units. Let ijI , l1,2,...,=i  and iNj 1,2,...,= , be the response indicator for the 
thj  individual within the 

thi  

county in the population. Also, let ijx  denote the BMI value, possibly transformed (e.g., the logarithmic 

transformation). Note that ijr  and ijx  are all observed in the sample s ; ijx  are unknown, and ijr  are not needed, in 

ns . Let ij
i
n

ji rr ∑ 1=
=  (i.e., ir  is the number of sampled individuals that responded in the 

thi  county). For 

convenience, we express the BMI ijx  as 
i

in
i

ir
i

irii xxxxx ,,,,,, 121 KK +  in s , 
i

iN
i

in xx ,,1 K+  in ns , and 

)( ii nN −  non-sampled persons for the 
thi  county. 

 

A key point that we note for what follows is that the ir  individuals are not necessarily random respondents from the 

in  sampled individuals. This is the nonresponse bias we need to address. It is clear that we need to predict the BMI 

values ijx  for (a) the nonrespondents in s  and (b) the individuals in ns . Thus, for the finite population of iN  

individuals, we need a Bayesian predictive inference for the 1<<,0100 ηη , percentile of the finite population of 

BMI values for each age-race-sex domain within the 
thi  county. For example, for the 

thi  county, let 

'ns
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, where 
),( rs

ix  is observed BMI values of the sampled respondents, and both 
),( nrs

ix , the 

BMI values of the sampled nonrespondents, and 
)(ns

ix , the nonsampled BMI, are not observed. Then, the η100  

percentile of the 
thi  county is the 

th

iN ][η  order statistic ( ][⋅  is the nearest integer to iNη ) among the iN  

components of ix . Because only 
),( rs

ix  is observed, Nandram and Choi (2005) develop a Bayesian selection and a 

Bayesian pattern mixture model to predict the finite population mean BMI for each domain. Note that only the 
),( rs

ix are observed; 
),( nrs

ix  and 
)(ns

ix  are to be predicted. This is an enormous task for three reasons: The finite 

population is large, there are covariates, and transformation is used. 

 

To accommodate the BMI values and the nonresponse indicators, Nandram and Choi (2006) used the selection 

nonresponse model which has two parts. For part 1 of the selection model, the response depends on the BMI as 
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iijij eeBernoullixI : , where β  is bivariate normal with appropriate priors for 

the mean, variance, and correlation. For the part 2 of the selection model, the single most important predictor of BMI 

is age, with race and sex playing a relatively minor role, and there is also a need to understand the relationship 

between BMI and age, race and sex. For iNji ,1,= ,,1,= KlK , we let 1=0ijz  for an intercept, 1=1ijz  for 

non-black and 0=1ijz  for black, 1=2ijz  for male and 0=2ijz  for female, =3ijz  21 ijij zz ×  for the interaction 

between race and sex, and we let ( )
3210 ,,,= ijijijij

'

ij zzzzz . Also, let ija  denote the age of the 
thj  individual within 

the 
thi  county. Generically, letting 0=+c  if 0≤c  and cc =+

 if 0>c , 



++ −− 13)(= ,8)(= 1,= 321 ijijijijij awaww , for a spline regression of BMI on age adjusting for race and sex, we 

take ) (0,|  ,)(= 2

3
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ijtij :  with proper priors and hyperpriors. See 

Appendix B (Nandram and Choi 2005) for the details of how to fit the selection model using Markov Monte Carlo 

methods. 

 

Prediction of the finite population percentiles is straightforward. We first predict ),1,= ,(=
)(
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straightforward to predict 
i
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in xx ,,1 K+ . First we take a sample of size M  from the posterior distribution, 

},1,=:{ )( Mhh
KΩ , and second, we fill in 

i
iN

i
ni xx ,,1, K+  using this. (Once the transformed BMI values are 

predicted, they can be easily retransformed to the original scale.) Letting 
)(h

ix  denote the vector of all iN  iterated 

values, we order these components to obtain the 
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iN ][η  value 
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Kη , from the posterior density of the ][100η  percentile.  

 

  4. Robust Bayesian Methodology  
 

Now, we describe the robust method to predict the finite population percentiles. First, we use robust logistic 

regression model to obtain propensity scores. Second, using these propensity scores to form adjustment cells, we fill 

in the nonrespondents. Third, we fit a linear spline rank-based, regression model of the logarithmic BMI values 

(respondents and nonrespondents) on the relevant covariates and use this model also to predict the nonsampled BMI 

values. We also include the selection probabilities. We will call the model described in this section the  mixture 

model or  robustified logistic regression model. Note that the logistic regression model with random effects is a 

special case of this model when the degrees of freedom is nine.  

 

4.1 Robust Logistic Regression  

We assume that  

  ,,1,= }],)/{([}=,,{| ii

'
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riij njzBernoulliaI Kγν+βηνβ Τ:  (1) 

 where )(⋅
r
aΤ  is the cumulative distribution function of the Student's t  density on ra  degrees of freedom,  
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 where 7/27= πγ  and },1,= ),,{( Rra rr Kω  is specified with R  the number of values of η . [Note that it is 

convenient to use R  here, and later it will be used to denote ranks; also η  was used in Section 3 for percentiles.] In 

our application we take 50= 25,= 12,= 9,= 6,= 3,= 654321 aaaaaa . Here 3=1a  is near a Cauchy 

density, 9=3a  is the approximate logistic density and 50=6a  is near a normal density. The construction in (1), 

(2) and (3) is a prescription of R  models, the 
thr  model having probability rω . Note that the iν  are area effects, 

and they form a common stochastic process. Moreover, note that the regression coefficients are not allowed to 



change over the models; thus facilitating a borrowing of strength across the counties and this is moderated by the iν . 

Also, it is desirable to identify a single set of regression parameters as in (1); in this way we can avoid model 

averaging, an undesirable complex feature. We only allow the degree of freedom ra  to depend on the model. 

 

Finally, a priori we assume that β  and 
2σ  are independent with  

  0,>  ,)1/(1=)( ) ,( 2222

00 σσ+σ∆θβ pandNormal:  (4) 

 where 0θ  and 0∆  are specified, and we avoid the ill-behaved prior distribution .001) (.001,2 Gamma:−σ  (see 

Gelman 2006). We specify 0θ  and 0∆  by performing a standard logistic regression of the response indicators on the 

covariates, taking 0θ  as the point estimator of β  and 0∆  as the covariance matrix inflated one hundred times. 

 

Note that setting 9= 1,= 11 aω  gives the logistic regression model, and letting 
2σ  go to zero, in the limit the iν  

become point masses at 0  (i.e., there will be no county effects). Doing both simultaneously produces the logistic 

regression model without county effects. We will call the model specified by (1)-(4) the robustified logistic 

regression model, and it is the basis for robust prediction of the finite population percentiles. 

 

We fit the model using the Metropolis-Hastings sampler (e.g., see Appendix B of Nandram and Choi 2006 for the 

selection model). We obtain a sample 1000=,1,= ),,,(
)()()(

Mh
hhh

Kνηβ  which we use for inference about the 

finite population percentiles. The joint posterior density is )|,,( 2 Ip σνβ . To run the Metropolis-Hastings sampler, 

we need the conditional posterior densities for priors, ),,|( 2 Ip σνβ ,  ),,,|( 2

)( Ip ii σνβν , and ),,|( 2 Ip νβσ  

(see Nandram and Choi, 2006).  

 

We need to predict the nonrespondents' BMI values and the BMI values of the nonsample population. The methods 

to fill in the missing values for the nonrespondents and the nonsample population are both robust. First, we consider 

the nonrespondents. At the 
thh  iterate, the propensity scores (selection probability) are 

lKK ,1,= ,,1,= },)/{( )()(

)( injz i

h

i

h

ijh γν+β
η

Τ , where 
)(hη  is one of the Rrar ,1,= , K . For the 

thh  

iterate, we have partitioned all propensity scores (for respondents and nonrespondents in all counties) into five strata 

(adjustment cells). We have computed the five quintiles (.2, .4, .6, .8 to form the five strata) of the propensity scores, 

and we allocated both the ir  respondents and the )( ii rn −  nonrespondents to these five strata. So we now know 

which stratum each individual (respondent or nonrespondent) belongs, albeit with uncertainty. 

 

For each stratum, we construct a kernel density estimator of the n observed values. Then, letting sL  denote the 

number of respondents in the 
ths  adjustment cell, and order the logarithm of the BMI values for the respondents 

within the 
ths  adjustment cell as ssj Ljx ,1,= ,~

K . Then, to estimate the density of the sjx
~

, we use the kernel 

density estimator,  
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where )(⋅φ  is the standard normal density and /1.34) ,(
1.06

=
1/5

IQRSTDmin
L

h
s

opt  with STD  and IQR  

respectively the standard deviation and interquartile range of the ssj Ljx ,1,= ,~
K ,  s=1,...,5; see Silverman (1986, 

pg. 47). 

 



Then, to fill in a BMI value for a nonrespondent, we draw a random value from )~(xg . Specifically, we draw 

random a sample of size one from the labels sLj ,1,= K , say 
'j , and then draw the logarithm of the BMI value 

from the normal distribution with mean 'sj
x~  and standard deviation opth . We obtain the BMI value sjx  by 

retransforming sjx
~

 (i.e., )~(= sjsj xexpx . The entire process is repeated independently for all the nonrespondents in 

each of the five adjustment cells. At the 
thh  iterate, we have done so for all nonrespondents in all strata. Note that 

this process includes uncertainty about the formation of the strata as well because the adjustment cells are formed at 

each iterate. 

 

Second, a similar procedure, but without using the adjustment cells, can be applied to the BMI values of the 

nonsampled individuals, which are needed to obtain the finite population percentiles. Specifically, we use a linear 

spline rank-based estimation procedure. In passing, we note that a less robust alternative is the least squares 

procedure. However, the least sqaures procedure has less computational burden, and we have found small differences 

between the linear spline rank-based and the least squares procedures; we prefer the linear spline rank-based 

procedure. 

 

We use a notation similar to Part 2 of the selection model for the spline regression in Section 3. For 

iNji ,1,= ,,1,= KlK , we let 1=0ijz  for an intercept, 1=3ijz  for non-black and 0=3ijz  for black, 

1=4ijz  for male and 0=4ijz  for female, =5ijz  43 ijij zz ×  for the interaction between race and sex. Here 

+−8)(=1 ijij az  and 
+−13)(=2 ijij az  with again 0=+c  if 0≤c  and cc =+

 if 0>c . Note the small change 

in the definition of ( ),,,,,,= 543210 ijijijijijij

'

ij zzzzzzz , with the second and third components for the two 

nonconstant splines in age. 

 

We specify the following model for all individuals in the finite population (i.e., sample respondents and 

nonrespondents and nonsample individuals) At the 
thh  iterate letting ijx

~
 denote the logarithm of the BMI values, 

we use the model  

  ,,1,= ,,1,= ,
~

=~ )(
iiji

'

ij
h

ij Njiezx KlK+β  

where ije  are independent and identically distributed. Note that i

h

ij rjx ,1,= ,~ )(
K  do not change with h  because 

they are observed, and the unobserved ii

h

ij nrjx ,1,= ,~ )(
K+  for the nonrespondents in the sample are obtained 

using the kernel density estimator as described for the nonrespondents, without any specific distribution assumptions. 

That is, both the BMI values of the respondents and the nonrespondents are used to estimate the 
i

β
~

. Also, note that 

the parameters of this model are not related to those in the logistic regression model. 

 

We obtain the rank-based estimators 
)(~ h

i
β  in Appendix B (Nandram and Choi, 2006). Then, using the rank-based 

estimators, we obtain the residuals i

h

i

'
ij

h
ij

h
ij njizxe ,1,= ,,1,= ,

~~=~ )()()(
KlKβ− . In a manner similar to the 

nonrespondents, within the 
thi  county and at the 

thh  iterate, we have constructed a kernel density estimator using 

the i

h

ij nje ,1,= ,~ )(
K . Thus, to fill in the BMI values for the nonsampled population, we draw a random sample of 

size ii nN −  using the kernel density estimator, formed by the 
)(~ h

ije  from the 
thi  county, lK,1,=i . Then, 

}~{exp= )()( h

ij

h

ij xx , where ii

h

i

'
ij

h
ij

h
ij Nnjizex ,1,= ,,1,= ,

~~=~ )()()(
KlK +β+ , are obtained. 

 

Thus, conditional on the observed BMI values, we have obtained the BMI values of the nonrespondents and the 

nonsampled individuals. Therefore, the finite population quantiles are now easy to obtain as in the spline regression 



model; see Section 3. 

 

Finally, we have also included the selection probabilities in this robust framework. We note the inclusion of the 

selection probabilities is a challenging problem, because there is no simple linear relation between the selection 

probabilities and the BMI values, but a preliminary investigation shows that there is important information about 

BMI in these selection probabilities. See Appendix B (Nandram and Choi, 2006) on how to include the selection 

probabilities.   

 

  5. Data Analysis  
 

In this section, we present an analysis of the BMI data using five models. The first two models are the selection 

nonresponse model with spline regression (1) (Nandram and Choi 2005) and the selection nonresponse model with 

the spline regression and selection probabilities (2) ( Nandram and Choi 2006). These first models are parametric 

models. The other three models are the logistic regression model (3), robustified logistic regression model (4) and 

robustified logistic regression model with selection probabilities (5). These are nonparametric models in the sense 

that there are no distribution assumptions on the BMI values of the nonrespondents and the nonsample population. 

For inference, we have presented posterior mean (PM), posterior standard deviation (PSD), numerical standard 

deviation (NSE), and 95% credible interval. In Tables 1 and 2 we have studied inference of the regression 

coefficients, and in Table 3 we have predicted the 
th85  and 

th95  percentile BMI values by model and age for white 

males. In Table 1 we have studied how the regression coefficients of the robustified logistic regression model (4) 

change with the weights, but not the selection probabilities. As is evident, the changes with the weights are small. 

These differences in weights do not affect inference markedly. Thus, we have used for all our calculations .5=3ω  

and 3 )/5,(1= 3 ≠− kk ωω . 

 

We have compared the regression coefficients from the logistic regression model (3), the robustified logistic 

regression model (4), and the robustified logistic regression model (5) with selection probabilities. In Table 2 there 

are very little differences between these three models when one considers the 95% credible intervals. The posterior 

quantities should be exactly the same for the robustified logistic regression model with and without selection 

probabilities; the small differences are due to Monte Carlo errors. The differences between logistic regression (3) and 

the robustified logistic models (4, 5) with and without selection probabilities should be larger than the differences 

between these two latter models (4, 5). More importantly, age and race are discriminators of respondents and 

nonrespondents. For example, under the robust model (5) with selection probabilities the 95% credible intervals for 

the regression coefficient of age and race are 1.054) (0.932,  and 201).0 0.305,( −− . 

 

Next, we discuss our results for prediction of the finite population 
th85  and 

th95  percentiles. While there are 

important differences among the counties (Nandram and Choi 2006), we exemplify our results using county 11. 

However, we now compare all five models to see the effects of robustification and inclusion of the selection 

probabilities. These results are presented for white males in Table 3. We discuss in detail the predictions for white 

males in Table 3. We summarize the similarities and differences between the two parametric models (first two) and 

the three nonparametric models (last three). We note three similarities. [a.] The posterior means of the 
th85  

percentile and the 
th95  percentile are respectively very similar for all five models, and the expected increase from 

age group 1 to 4 is similar. As it must be, the posterior means of the 
th95  percentile are larger than the posterior 

means of the 
th85  percentile. [b.] The selection probabilities do two things. Both the posterior means and the 

posterior standard deviations are smaller under the models with selection probabilities than under the models without 

the selection probabilities. That is, the selection probabilities correct for some selection bias and help to improve 

precision. [c.] As is expected, the posterior standard deviations for both the 
th85  and 

th95  percentiles are generally 

larger under the robust models than under the parametric models; there are some exceptions. Under the parametric 

models the largest posterior standard deviations occur at age group 4; whereas the largest posterior standard 

deviations occur at age group 3 under all robust models except for the robustified logistic regression model when the 
th95  percentile is being estimated. 
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Table 1:   Sensitivity of the posterior means (PM), posterior standard deviations (PSD), numerical standard errors 

(NSE) and 95% credible intervals for the regression coefficients (coef) of the robustified logistic model (4) without 

selection probabilities with respect to the choice of weights  

 

3ω  Coef PM PSD NSE Interval 

.3 0β  1.445 0.034 0.002 ( 1.378,  1.509) 

 1β  0.990 0.031 0.001 ( 0.931,  1.053) 

 2β  -0.252 0.025 0.001 (-0.300, -0.201) 

 3β  -0.007 0.024 0.001 (-0.055,  0.039) 

 4β  -0.014 0.026 0.001 (-0.063,  0.040) 

.5 0β  1.448 0.033 0.002 ( 1.387,  1.515) 

 1β  0.993 0.030 0.001 ( 0.931,  1.052) 

 2β  -0.253 0.027 0.001 (-0.303, -0.201) 

 3β  -0.007 0.025 0.001 (-0.059,  0.040) 

 4β  -0.015 0.026 0.001 (-0.064,  0.034) 

.7 0β  1.448 0.037 0.006 ( 1.399,  1.524) 

 1β  1.000 0.030 0.003 ( 0.943,  1.067) 

 2β  -0.246 0.025 0.003 (-0.311, -0.211) 

 3β  -0.004 0.025 0.002 (-0.054, 0.042) 

 4β  -0.024 0.022 0.002 (-0.065, 0.020) 

.9 0β  1.454 0.035 0.004 ( 1.401,  1.521) 

 1β  1.005 0.030 0.003 ( 0.956,  1.065) 

 2β  -0.254 0.028 0.003 (-0.313, -0.207) 

 3β  -0.008 0.026 0.002 (-0.061,  0.043) 

 4β  -0.017 0.024 0.002 (-0.056,  0.035) 

  

NOTE. The logistic regression coefficients are intercept ( 0β ), age ( 1β ), race ( 2β ), sex ( 3β ) and the race-sex 

interaction ( 4β ). The weights in the robustified logistic regression model (4) without selection probabilities and with 

county effects are ),,,,,( 654321 ωωωωωω ; 3)/5,(1= 3 ≠− kk ωω  and 3ω  is specified.   

  



Table 2:  Posterior means (PM), posterior standard deviations (PSD), numerical standard errors (NSE) and 95% 

credible intervals for the regression coefficients (coef) by model  

 

Model Coef PM PSD NSE Interval 

3 0β  1.474 0.033 0.003 ( 1.413,  1.536) 

 1β  1.014 0.031 0.002 ( 0.952,  1.070) 

 2β  -0.260 0.029 0.002 (-0.316, -0.204) 

 3β  -0.006 0.027 0.002 (-0.060,  0.040) 

 4β  -0.017 0.024 0.002 (-0.055,  0.037) 

4 0β  1.448 0.033 0.001 ( 1.387,  1.515) 

 1β  0.993 0.030 0.001 ( 0.931,  1.052) 

 2β  -0.253 0.027 0.001 (-0.303, -0.201) 

 3β  -0.007 0.025 0.001 (-0.059,  0.040) 

 4β  -0.015 0.026 0.001 (-0.064,  0.034) 

5 0β  1.452 0.032 0.001 ( 1.389,  1.518) 

 1β  0.995 0.031 0.001 ( 0.932,  1.054) 

 2β  -0.252 0.027 0.001 (-0.305, -0.201) 

 3β  -0.007 0.026 0.001 (-0.059,  0.041) 

 4β  -0.015 0.026 0.001 (-0.064,  0.036) 

 

NOTE. The regression coefficients are intercept ( 0β ), age ( 1β ), race ( 2β ), sex ( 3β ) and the race-sex interaction 

( 4β ). Sex and the race-sex interaction are not important to discriminate between respondents and nonrespondents. 

Model - 1 (spline regression model); 2 (spline regression model with selection probabilities); 3 (logistic regression); 

4 (robustified logistic regression); 5 (robustified logistic regression with selection probabilities). For the robustified 

logistic regression models (4, 5) .5=3ω .The regression coefficients for Models 1 and 2 are not comparable to 

Models 3-5; see Nandram and Choi (2005).  

   

   



Table 3:  Posterior means (PM), posterior standard deviations (PSD) and 95% credible intervals for the 
th85  and 

th95  percentiles of BMI for  white males from county 11 by model and age  

 

  85
th

 Percentile 95
th

 Percentile 

        

Model Age PM PSD Interval PM PSD Interval 

1 1 18.0 0.23 (17.5,  18.4) 19.7 0.25 (19.2,  20.2) 

 2 18.2 0.23 (17.8,  18.7) 19.9 0.25 (19.4,  20.4) 

 3 22.6 0.43 (21.7,  23.4) 24.8 0.48 (23.8,  25.7) 

 4 25.1 0.84 (23.4,  26.7) 27.5 0.92 (25.6,  29.3) 

2 1 18.1 0.15 (17.8,  18.3) 19.4 0.16 (19.1,  19.8) 

 2 18.2 0.15 (17.9,  18.5) 19.7 0.17 (19.3,  20.0) 

 3 22.1 0.39 (21.3,  22.8) 23.8 0.42 (22.9,  24.6) 

 4 24.3 0.78 (22.7,  26.0) 26.2 0.85 (24.5,  28.0) 

3 1 17.9 0.35 (17.2,  18.6) 20.2 0.61 (19.2,  21.5) 

 2 18.0 0.37 (17.3,  18.7) 20.4 0.64 (19.4,  21.8) 

 3 20.8 0.70 (19.5,  22.3) 23.7 0.92 (22.1,  25.6) 

 4 25.5 0.41 (24.8,  26.4) 29.0 0.76 (27.7,  30.6) 

4 1 17.9 0.35 (17.2,  18.6) 20.3 0.62 (19.3,  21.6) 

 2 18.0 0.35 (17.4,  18.8) 20.5 0.62 (19.4,  21.9) 

 3 20.9 0.69 (19.7,  22.3) 23.7 0.95 (22.2,  25.9) 

 4 25.6 0.40 (24.8,  26.4) 29.0 0.81 (27.7,  30.9) 

5 1 17.1 0.22 (16.8,  17.6) 19.4 0.44 (18.6,  20.4) 

 2 17.3 0.23 (16.9,  17.7) 19.5 0.45 (18.8,  20.5) 

 3 20.1 0.39 (19.4,  20.9) 22.7 0.63 (21.7,  24.1) 

 4 25.3 0.35 (24.7,  26.0) 28.6 0.74 (27.4,  30.3) 

  

NOTE. Age: 1 - (2-4), 2 - (5-9), 3 - (10-14), and 4 - (15-19); Model: 1 - (spline regression model), 2 - (spline 

regression model with selection probabilities), 3 - (logistic regression model), 4 - (robustified logistic regression 

model), 5 - (robustified logistic regression with selection probabilities).   

  

   

 


