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Abstract 
 

We propose an aggregate level generalized linear model with additive random components (GLMARC) for binary count 

data from surveys.  It has both linear (for random effects) and nonlinear (for fixed effects) parts in modeling the mean 

function and hence belongs to a class termed as mixed linear non-linear models.  The model allows for linear mixed model 

(LMM)-type approach to small area estimation (SAE) somewhat similar to the well-known Fay-Herriot (1979) method and 

thus takes full account of the sampling design.  Unlike the alternative hierarchical Bayes (HB) approach of You and Rao 

(2002), the proposed method gives rise to easily interpretable SAEs and frequentist diagnostics as well as self-

benchmarking to reliable large area direct estimates.  The usual LMM methodology is not appropriate for the problem with 

count data because of lack of range restrictions on the mean function and the possibility of unrealistic (e.g. zero in the 

context of SAE) estimates of the variance component as the model does not allow the random effect part of the conditional 

mean function to depend on the marginal mean.  The proposed method is an improvement of the earlier method due to 

Vonesh and Carter (1992) which also uses mixed linear nonlinear models but the variance-mean relationship was not 

accounted for although typically done via range restrictions on the random effect. Also the implications of survey design 

were not considered as well as the estimation of random effects.  In our application for SAE, however, it is important to 

obtain suitable estimates of both fixed and random effects.  It may be noted that unlike the generalized linear mixed model 

(GLMM), GLMARC like LMM offers considerable simplicity in model fitting.  This was made possible by replacing the 

original fixed and random effects of GLMM with a new set of parameters of GLMARC with quite a different interpretation 

as the random effect is no longer inside the nonlinear predictor function.  However, this is of no consequence for SAE 

because the small area parameters correspond to the overall conditional means and not on individual model parameters.  

We propose a method of iterative BLUP for parameters estimation which allows for self-benchmarking after a suitable 

model enlargement.  The problem of small areas with small or no sample sizes or zero direct estimates is addressed by 

collapsing domains only for the stage of parameter estimation.  Application to the 2000-01 Canadian Community Health 

Survey for estimation of the proportion of daily smokers in subpopulations defined by provincial health regions by age-sex 

groups is presented as an illustration. 
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1. Introduction 
 

The problem of aggregate level nonlinear mixed models for small area estimation considered in this paper arose in 

the context of producing estimates of number of daily smokers in health regions by age-sex groups for the province 

of Prince Edward Island based on the 2000-2001 Canadian Community Health Survey (CCHS).  Denote by dyt ,  the 

direct estimate of the small area total dyT ,  of the outcome variable y  for the domain d  representing the 

subpopulation ),,( gar  where r  is the thr  health region, a  is the tha  age group (12-19, 20-29, 30-44, 45-64, and 

65+) and g  denotes the gender (male or female).  In practice, for survey data, often a linear mixed model (LMM) at 

the aggregate level is used which can take full account of the underlying sampling design typically nonignorable for 

the model, see e.g. the well known method of Fay and Herriot (1979).  Here, the term ‘aggregate level’ is used to 

signify that the covariates in the model are at the domain level.  For example, under a subgroup common mean 

model, the mean 
,y d

µ  for the 
ltd  domain is modeled as  

     
, , , ,

,
y d y d d y d x d

Aµ ν η ν β′= + =          (1.1) 

where dxA ,  is a D-vector of indicator covariates 
, ,

1 , 1,..., ; 1 1
d ag d ag

d D= =  if d belongs to the age-sex subgroup 

),( ga  and 0 otherwise, and the fixed parameter β  is of dimension q , denoting the total number (10 in our example) 



of age-sex subgroups.  The model error dη  is the random effect assumed to be iid  ),( 20 ησN .  One may also have 

the covariates such as average number of hospital admissions from domain d  with asthma as the main diagnosis.  

Denoting the totals 
, ,d x d x d

N A by T , where dN  is the domain d  subpopulation count, we can write the model for 

,
, 1, ...,

y d
t d D= , as  

    )( ,, ddxddy ANt η+β′= + dye ,  

dydddx eNT ,, +η+β′=           (1.2) 

where dye ,  is the observation or sampling error with variance dV  assumed to be approximately known. It is assumed 

that the sample size 
d
n  from domain d  is not zero or very small such that dyt ,  is not zero.  In practice, domains 

could be collapsed based on similarity with respect to dxA ,  to avoid this problem as well as for smoothing of the 

covariance matrix V
~
 of the collapsed vector yt  of dimension D

~
 in order to treat it as known, see Singh (2006) for 

more details.   

 

Although there are several practical benefits in using LMM for the above problem such as having a semiparametric 

approach for BLUP with only first two moment assumptions (which allows for over dispersion effect in the interest 

of robustification), self-benchmarking of SAEs to reliable direct estimates for large areas in the interest of protection 

against possible model breakdowns, and a versatile set of diagnostics based on innovations from the use of Kalman 

Filter in deriving BLUPs (cf: Singh, 2006), there are a few major limitations.  First, the model (1.1) for the small 

area means doesn’t impose any range restriction on the parameters dy ,µ  which is not reasonable for discrete data 

such as counts or proportions.  In our example with proportions of individuals in a local health area diagnosed with 

diabetes, the parameter dy ,µ  is necessarily between 0 and 1.  For the above subgroup common mean model (1.1), 

β′
dxA ,  lies in (0, 1), but with more general covariates it need not be, and so the BLUP (lying between the direct 

estimate dyd tN ,
1−

 and the indirect or synthetic estimate β′ ˆ
,dxA  at least for the case of diagonal V), need not be in the 

admissible range.  This renders the optimality of BLUP tenuous in this LMM application.  Moreover, the 

exchangeability assumption of common variance 
2

ησ  for model errors dη  in (1.1) may be an over-simplifying 

approximation because for discrete data, the range of possible values of dη  depends on the marginal mean dyv ,  and 

so its variance should depend on the mean dyv , , for example, dη  could be of the form  ddyvf ζ)( ,  for some smooth 

function )(⋅f  and dζ  being iid  ),( 20 ξσN .  Without such a generalization of LMM, the usual REML-type estimate 

of 
2

ησ  may turn out to be zero which is clearly inappropriate as the model (1.1) is known to be imperfect, i.e., 
2

ησ > 

0. 

 

A natural solution to the above problem is to consider generalized LMM (GLMM) for SAE instead of the LMM 

approach.  The frequentist approaches for GLMM tend to focus on estimation of fixed first and second order 

parameters and not on random effects which are of course needed for SAE. A good frequentist solution to the 

problem of estimation of random effects for GLMM is in general quite difficult; see Jiang and Lahiri (2006) for a 

recent review.  On the other hand, hierarchical Bayes (HB) methods with MCMC can be used for estimation of fixed 

and random parameters, see Rao (2003, Ch. 10).  With survey data and nonignorable designs, the problem of SAE 

with unit level GLMM is even more difficult and is a topic of current research in the field.  However, for aggregate 

level GLMM, an HB extension of Fay-Herriot methodology was proposed by You and Rao (2002).  Although this is 

a useful extension, it does not seem possible to have the desirable feature of self-benchmarking in the HB 

framework.  Moreover, the resulting SAEs have neither a simple practical interpretation nor the model diagnostics.  

It would therefore be useful to have LMM-type approach to aggregate level GLMM for SAE. 

 

The purpose of this paper is to propose a new model based on GLM with additive random components (GLMARC) 

where the random part of the mean is linear and additive to the fixed nonlinear part of the mean function. The 

GLMARC models can be viewed as a special case of mixed linear nonlinear (MLNL) models. Earlier approaches to 



MLNL models used the framework of small-sigma asymptotics (i.e. ησ  being small) which may not be realistic for 

SAE applications.  Also, these earlier approaches were only concerned primarily with estimation of fixed parameters 

in the mean function and variance components and not with random effects. 

 

In this paper, we propose a new MLNL model where both β  and −η parameters are replaced to avoid the small 

sigma asymptotics assumption.  This is reasonable for SAE because the original model parameters β  and η  are not 

of direct interest.  In Section 2, we review the existing approaches to MLNL models based on small-sigma 

asymptotics as well as provide a motivation of the proposed method.  In Section 3, the proposed method of 

GLMARC is described and a method of iterative BLUP is presented for parameter estimation.  It is also shown how 

the covariates in GLMARC can be extended to allow for self-benchmarking analogous to the case of LMM.  

Innovation-based diagnostics are presented assuming that the direct estimates dyt ,  are approximately normal, after 

domain collapsing, if necessary.  Section 4 presents an application of the proposed method to the data from 2000-01 

CCHS.  Finally, concluding remarks are given in Section 5. 

 

2. Alternative MLNL models without Small Sigma Asymptotics 
 

The mixed linear non-linear (MLNL) models were considered earlier by several authors where estimation of only 

fixed parameters in the mean function and variance components were of concern.  Estimation of random effects was 

not of interest unlike the SAE problem considered here.  For example, McCullagh and Nelder (1989, Ch 14) used 

first order Taylor linearization under small-sigma asymptotics (i.e., 02 ≈ση ) to transform approximately the 

nonlinear predictor function of GLMM into an MLNL model form for simplified computations.  However, they did 

caution about the caveat of small-sigma assumption which is not likely to be tenable, see also Drum and McCullagh 

(1993).  Sutradhar and Rao (1996) used second order Taylor under small-sigma asymptotics to capture random 

interaction terms in cases where there are more than one main random factor.  The main limitations of the above 

small-sigma based approaches are that the variance component in the context of SAE is generally not small, and that 

no range restrictions are placed on the random effect, and hence on the variance component which may lead to 

inadmissible error covariance structure in the sense of non-positive definiteness.  Clearly an alternative framework 

for MLNL modeling without relying on small-sigma is needed.  To this end, Vonesh and Carter (1992) proposed 

directly an MLNL model which in the case of binary data considered in this paper can be written as: 

 
, , ,

[ ( ) ]
y d d y d d y d
t N v eα ζ ∗= + + , 2

~ (0, ), ~ (0, )
iid

y de V N
ζ

ζ σ ∗
∗                        (2.1) 

and     logit α′=α dxdy Av ,, )(  

following the notation for aggregate level LMM introduced in Section 1.  Notice that the fixed regression parameters 

β  are replaced by α  signifying that in (2.1) we are modeling the marginal mean dyv ,  instead of the conditional 

mean dy ,µ  given dη  which in the logit case is expressed as 

   logit ddxdy A η+β′=µ ,,              (2.2) 

Moreover, the new random effect 
∗ζ d  is now outside the nonlinear predictor function as an additive term.  The model 

(2.1) is basically a new model deemed to be valid for the problem at hand instead of the model (2.2) which does not 

require small-sigma assumption. Moreover, no equivalence between old parameters ),( ηβ  and new ones ( , )α ζ  is 

stipulated.  However, a major limitation of the model (2.1) is that no range restrictions are placed on the random 

effect 
∗ζ d  and so the variance component 

2
∗ζσ  does not account for the variance- mean relationship.  The conditional 

mean given 
∗ζ d  under (2.1) is , ,

( ( ) )
y d y d d

vµ α ζ ∗= +  which must lie between 0 and 1.  So, the range restrictions on 

∗ζ d  take the form 

     
, ,
( ) 1 ( )

y d d y d
v vα ζ α∗≤ ≤ −                           (2.3) 

which implies that 
2
∗ζσ  should depend on 

,
( )

y d
v α  and not be constant for all d . For the GLMARC proposed in the 

next section, we take 
∗ζ d  to be of the form of ,

( )
y d d

f v ζ  where the functional form of )(⋅f  is motivated from the 



first order Taylor expansion of GLMM under (2.2) around 0=ηd  as  

 =µ :,dy  inv logit )( , ddxA η+β′
dddyddyddy ηηβµ−ηβµ+=ηβµ= ∗∗ )),()(,(),( ,,, 10                  (2.4) 

where 
∗ηd  is somewhere between 0 and dη .  We need to express (2.4) in an approximately equivalent form 

involving the marginal mean ( )
d
v α  and the new random effect dζ  because 

∗ηd  is not known. The expression (2.4) 

suggests that the working form of the function )( ,dyvf  can be taken as )( ,, dydy vv −1  and then correct the variance 

component 
2
ησ  by introducing the new random effect dζ  with the new variance 

2
ζσ .  In other words, for the model 

proposed in the next section, we define 

    
, , , ,

( ) ( )(1 ( ))
y d y d y d y d d

v v vµ α α α ζ= + −            (2.5) 

where the random effect dζ  must satisfy the range restrictions 

    
111 −− ≤ζ≤−− dyddy vv ,, )(              (2.6) 

The above restrictions make the variance of dζ  depend on d  via dyv ,  which is rather awkward despite the factor 

)( ,dyvf . A way out is to make the stronger assumption that 11 <ζ<− d  for all d  which in fact implies that (2.6) 

holds for all dyv , ’s and that 10 2 <σ≤ ζ  (Note that in our experience the assumption 1<ζ d  is not serious in 

practice.)  In view of the range restrictions, we will assume for simplicity that dζ ’s are approximately 

),0(i.i.d. 2

ζσN  because they are restricted to lie in (-1, 1). 

   

We can justify the existence of above random effects in several ways.  Typically with binary data the beta-binomial 

distribution is used for count data.  So if we assume that )Beta( dddy ,ba~,µ  on the interval (0, 1) for some dd ba ,  

> 0, we have 

    , , 2
( ) , ( )

( ) ( 1)

d d d

y d y d

d d d d d d

a a b
E V

a b a b a b
µ µ= =

+ + + +
       (2.7) 

It follows that for general )( ,dyvf , 

    
2 2

, , , ,
[ (1 ) ( ) 1]

d y d y d y d y d
a v v v f v ζσ− −= − −         (2.8a)  

and    
2 2

, , , ,
(1 )[ (1 ) ( ) 1]

d y d y d y d y d
b v v v f v ζσ− −= − − −            (2.8b)  

Notice that with the choice of )( ,dyvf  as 
, ,
(1 )

y d y d
v v− , the condition 12 <σζ  is sufficient to ensure that both da  

and db  > 0.  This justifies the formulation (2.5).  Alternatively if we assume that 1

,, )]1([ −− dydy vv  )( ,, dydy v−µ  is 

truncated normal on (-1, 1) with mean 0 and variance 
2
ζσ , then we get dζ  approximately ),( 20 ζσN .  This is the 

assumption we make for the proposed model which is useful and convenient for model diagnostics under the added 

assumption of approximate normality of the observation error dye , .  However, for the BLUP type estimation 

followed by their MSE estimation, the above normality assumptions are not necessary. 

 

3. Iterative BLUP for GLMARC:  The Proposed Method 

 
3.1 The Model 

 

The proposed method of SAE for binary count data is based on the following GLMARC model mentioned earlier in 

the previous section.  For 1,...,d D= , 

   [ ] dyddddddy evvvNt ,, )()(()( +ζα−α+α= 11          (3.1) 

where logit α′=α dxd Av ,)( , 
2 2 2 2

0 0
~ (0, ), ~ (0, ), 1

iid

y d
e N V N ζ ζσ ζ σ τ σ <  and 

2
0σ  is the over/under dispersion 

parameter representing adjustment to the covariance structure due to possibly omitted covariates or random effects.  

It is possible that for some domains, the realized sample sizes dn  are zero or small or the products dydd tNn ,
1−

 are 



not large enough for approximate normality of dyt ,  .  To overcome this problem, we first collapse similar domains 

based on closeness in terms of covariates dxA , ’s so that the number of domains is reduced to DDD <
~

,
~

, and then 

estimate fixed model parameters 
2

, ζα σ  and 
2
0σ .  Once these model parameters are estimated, then the d -specific 

random effects corresponding to uncollapsed domains are estimated, thus preserving the identity of domain-specific 

small area parameters, see e.g. Singh (2006).  The condition of 1
d

ζ <  to ensure that the small area parameters 

dy ,µ ’s satisfy range restrictions is not imposed initially during estimation via BLUP, but once dζ̂ ’s are obtained, 

they are truncated, if necessary, to satisfy this condition.  Such truncation may not, in general, be needed in practice 

and is not expected to introduce any serious compromise in BLUP optimality.  Moreover, the usual MSE estimates 

for BLUP can still be used in a conservative sense.  

 

3.2 Parameter Estimation via iterative BLUP (IBLUP) 

 

Given the over dispersion 
2
0σ  , the proposed method of IBLUP can be used to estimate α , dζ  and 

2
ζσ .  In fact, it 

turns out that, due to 
2
0σ  being a multiplicative factor for V and 

2
ζσ , the estimates of α  and ζ  do not depend on 

2
0σ , but their variances and the estimate of 

2
ζσ  do. If the model were LMM, both (

2
0σ ,

2
ζσ ) can be estimated using 

REML which can be simplified further by using the profile likelihood for estimation of 
2
ζσ . The reason for this is 

that REML of 
2
0σ  can be obtained in a closed form as an average of standardized residuals which are themselves 

functions of 
2
ζσ , see e.g., Harvey (1989, Ch. 4) for an analogous approach in the Kalman Filter context.  For 

GLMARC, we can use the above idea in an iterative manner.  In the following, for simplicity, we set 
2
0σ  = 1, and 

describe in steps how BLUP is modified to IBLUP for the GLMARC case.  Here the fixed parameters 
2
ζσα,  are first 

estimated. Given 
2
ζσα, , BLUP estimates of 

s
d
'ζ  are then obtained. 

 

Step 0: Computation of the initial estimate 
)(0α  

 

Let 
)(02

ζσ  = 0, and find a consistent estimate 
)(0α  using the standard iteratively reweighted least squares (IRLS) of 

GLM.  More specifically, at iteration r , the mean function )(αdv  is linearized at rα=α  as  

   )())()(()()( , rdxrdrdrdd Avvvv α−α′α−α+α≈α 1          (3.2) 

which gives the approximate linear model for dyt ,  as  

   dydxrddrddy eTbNbt ,,)()(, +α′+≈ 10            (3.3) 

where 
0( ) 1( ) , 1( )

( ) , ( )(1 ( ))
d r d r d r x d r d r d r d r
b v b A b v vα α α α′= − = − . 

At 0r = , we do not need 0α  to estimate )(αdv .  Instead, )( 0αdv  is estimated directly by the observed proportion 

with the continuity correction as )/().( , 151 ++−
ddydd ntNn , and 0α′

dxA ,  is easily computed as log  of 

0 0
( ) /(1 ( ))

d d
v vα α− .  Now with the adjusted dependent variable dyt ,  - )(rdb 0 , IRLS is used until convergence to 

obtain
)(0α . 

 

Step 1 Computation of 
)(12

ζσ  

 

With 
)(0α  from step 0 , consider the linearized model  
(0) (0) (0) (0)

, , 0 1 , ,
( ) ( )

y d y d d d d x d y d
t t N b b T eα α α∗ ∗′≡ − ≈ +                        (3.4) 

where 
(0) (0) (0) (0) 2

, 1 ,
( ) , ~ (0, ( , ))

y d d d d y d y
e b N e vector e N W ςα ζ α σ∗ ∗= +  



{ }(0) 2 (0) 2 (0) 2 (0) 2 2

d1( , ) ( , ) , ( ) diag b ( ) dW V Nς ς ζα σ α σ α α σ= Γ + Γ =  

Now, use REML (see e.g., Rao (2003, Ch. 6) to obtain the estimate 
)(12

ζσ . To ensure 
2 2

0 1,ζ ζσ σ< <  can be  first 

transformed via logit before the REML estimation.   

Step II Computation of 
)(1α  

 

With 
)(12

ζσ  from step 1, compute 
)(1α  by WLS from the above linearized model (3.4) except that 

(0) 2
( , )W ςα σ  is 

replaced by 
(0) 2(1)

( , )W ζα σ  = 
(0) 2(1)

( , ) Vζα σΓ + , 
(0) 2(1) 2(1)

( , ) diagζ ζα σ σΓ =  { }2 2 (0)

1( )d dN b α . 

The above steps I & II are iterated until convergence to obtain 
2
ζσ̂  and α̂ . 

 

Step III Estimation of , 1,...,
d
d Dζ =  

 

Given 
2
ζσ̂  and α̂ , and the linearized model (3.4) with VW +σαΓ= ζ )ˆ,ˆ( 2

 = 
2
ζσ̂ diag 2 2

1
ˆ{ ( )}

d d
N b Vα + , we have  

the EBLUP of dζ  in the case of diagonal V as  

   1

1 , ,
ˆˆ ˆ( ) ( ( ))

d d d d d y d d y d
N b W t N vα ζ α−= Γ −           (3.5) 

where dΓ  and dW  are evaluated at α=α ˆ , 
2
ζσ  = 

2
ζσ̂ .  In general, for nondiagonal  V, we have 

   1

1
ˆ ˆdiag{ } ( -diag{ } ( ))

d d y d y
N b W t N vζ α−= Γ                 (3.6) 

Now dζ̂  from (3.6) can also be expressed as  

 1 1

1 , ,. ,
ˆˆ ˆ ˆ( ) ( ( )) ( diag{ , ' } ( ))

d d d dd y d d y d ddd d dd dd y d d
N b W t N v W W t N d d vα ζ α α− −

′
 = Γ − − − ≠   

 1 1 1

, ,. , ,
ˆ ˆ( ( )) ( diag{ , ' } ( ))

dd dd dd y d d y d ddd d dd dd y d y d
W W W t N v W W t N d d vα α− − −

′
 = Γ − − − ≠         (3.7) 

Where d  is the set of all domains except the domain d , and 
dddddd WWW ,,  are defined by partitioning the matrix 

W  as  1

.
,

dd dd

dddd d dd dd dd

dd dd

W W
W W W W W w

W W

− 
= = − 

 
          (3.8) 

It follows that the SAE for dyT ,  is given by 

  
,

ˆˆ ˆ ˆ[ ( ) ( )(1 ( ) ]sae

y d d d d d d
t N v v vα α α ζ= + −            (3.9) 

because )ˆ(ˆ)ˆ()ˆ( ,10 αααα dddxddd vNTbbN =′+ . 

So, for V diagonal, 
sae1
dyd tN ,

−
 is necessarily between 0 and 1 as it is a convex combination of dyd tN ,

1−
 and ˆ( )

d
v α .  

However, for nondiagonal V, it need not be so, but is likely to be in the range (0, 1) because the first term in (3.7) is 

expected to be dominant.  As mentioned earlier, we can truncate dζ̂  to 1±  if it lies outside (-1, 1). 

 

Finally, the MSE of 
sae
yt  can be easily obtained with second-order approximation as shown in Rao (2003, p. 155) 

because after linearization, the GLMARC model reduces to a Fay-Herriot Type model.  Now so far, the 

overdispersion parameter 
2
0σ  was set to 1 for simplicity.  To estimate (

22
0 ζσσ , ) jointly, we can first estimate 

2
ζσ  via 

REML on the profile likelihood after replacing 
2
0σ  by its MLE given 

2
ζσ  from the REML likelihood.  It turns out 

that 
2
0σ̂ )( 2

ζσ  has a simple form as an average of squared standardized residuals; see e.g. Harvey (1989 Ch. 4) in the 

context of Kalman filtering for BLUP estimation. 

 

3.3 Benchmarking of SAEs under GLMARC 

 

For LMM, it is possible to get exact benchmarking by enlarging the model, see e.g. Singh (2006).  It would be useful 

to review this before we consider benchmarking for GLMARC.  Suppose there is only one global benchmark, i.e., 



the sum of SAEs for all domain totals should add up to the sum of the direct total estimates for all the domains in the 

benchmark subgroup, B(say).  Here the benchmark subgroup B consists of all domains , 1,...,d d D= .  Now, for 

LMM, we consider  the enlarged model 

 1 ( ) diag{ }
y B B d y
t T x N eβ β η= + + + ( ) ( )

y
T x T c eβ η∗ ∗= + +        (3.10) 

where 1
B
 is a D-vector with elements 1 or 0 depending on whether the thd  domain is in B or not, and )(xT ∗

 is the 

enlarged covariate matrix, β ∗  is the corresponding enlarged β -vector and ( )T c  is simply }{ dNdiag . 

With one global benchmark, 1
B
 is just a vector of 1 ’s.  The covariate 1

B
V  involving the observation error 

covariance matrix is introduced with the extra regression parameter 
B

β  as an artifact to induce benchmarking. 

To see this, note that for LMM 

   sae 1ˆ ˆ( ) ( ( ) )
y y
t T x W t T xβ β∗ ∗ − ∗ ∗= + Γ −                      (3.11) 

where 
2 2 2

d
( ) ( ) diag{N }T c T c η ησ σ′Γ = = , VW +Γ= , and 

∗β̂  is the WLS estimate of β  under (3.10). 

Rewriting (3.11) as 

   sae 1 ˆ( )( ( ) )
y y y
t t I W t T x β− ∗ ∗= − −Γ −  

          1 ˆ( ( ) )
y y
t VW t T x β− ∗ ∗= − −          (3.12) 

we have the desired benchmarking, i.e.,    

   sce 1 ˆ1 ( ) 1 ( ( ) ) 0
B y y B y
t t VW t T x β− ∗ ∗′ ′− = − =        (3.13) 

because, (3.13) is one of the WLS equations corresponding to the new covariate BV1 . 

 

Now, for GLMARC, we introduce a new covariate vector 
1 1

(1)
diag{ ( )} 1

d d B
N b Vα− − ∗

ɶ  and the corresponding regression 

parameter Bα , where 
∗α~  is the true unknown value of 

∗α , and consider the enlarged model 

   { } { }diag ( ) diag ( )(1 ( ))y d d d d yt N v N v v eα α α ζ∗ ∗ ∗= + − +       (3.14) 

where ( )v α ∗  =invlogit ))(( ∗∗ α′xA , and )(xA∗
 denotes the enlarged covariate matrix of domain averages including 

those for the new covariate vector.  In estimating parameters via IBLUP, for the linearized model, we use a slightly 

modified version given below. 

  
( ) ( ) ( )

, 0 1 , 1
( ) ( ) ( )r r r

y d d d d x d d d d d
t b N b T b N eα α α α ζ∗ ∗ ∗ ∗ ∗′≈ + + +                     (3.15a)  

where 
( ) ( ) ( ) ( )

0 1 ,
( ) ( ) ( )r r r r

d d d x d
b v b Aα α α α∗ ∗ ∗ ′= − 1( element of diag { } 1 )th

d B
d N V−−                    (3.15b) 

and  
( ) ( )

1 , 1 ,
( ) ( ) ( element of 1 )r r th

d x d d x d B B
b T b T d Vα α α α α∗ ∗ ∗ ∗′ ′= +                                  (3.15c) 

Notice that in the last terms of (3.15b) and (3.15c), the product )~()( )( ∗−∗ αα 1
11 d

r
d bb  is replaced by 1. This is to get 

around the unusual specification of the new covariate involving the unknown 
∗α . This is reasonable because at 

convergence, the product will be 1 when 
∗α~  is replaced by 

∗α̂ . This slight modification of 0db  and 1db  terms helps 

to speed up convergence of IBLUP. 

 

Now following the LMM argument under benchmarking, we have from (3.13) and (3.15a) that  

    
sae1 ( ) 0

B y y
t t
∗ ∗− =           (3.16) 

where 1diag 0 })ˆ({ ddyy Nbtt ∗∗ α−=  and 
1 1

ˆˆ ˆ ˆdiag { ( )} ( ) diag{ ( ) }sae

y d d d
t b T x b Nα α α ζ∗ ∗ ∗ ∗ ∗= +  

However,  sae ˆˆ ˆ ˆ[ ( ) diag{ ( )(1 ( ) } ]
y y y d d d
t t t v v v Nα α α ζ∗ ∗ ∗ ∗ ∗− = − + −  

   
sae
yy tt −=             (3.17) 

which in view of (3.16) establishes the desired benchmarking under GLMARC. 

 



3.4 Estimation and Benchmarking in the presence of Collapsed domains 

 

Often in practice and indeed for the CCHS example considered in the next section, we need to collapse domains 

before we estimate the fixed parameters α  and 
2
ζσ .  Suppose, for illustration, only two domains d ′  and d ′′  are 

collapsed.  Then the total number of domains D  is reduced to 1−= DD
~

, and in the model (3.1) d  is replaced by 

d
~
 varying from 1,...,Dɶ  as well as V  by V

~
.  Now, estimation of α  and 

2
ζσ  is carried out as before.  However, in 

estimating ,
d d

ζ ζ′ ′′ , the residual for the collapsed domain , ' , " ' ' " "
ˆ ˆ[( ) ( ( ) ( )]

y d y d d d d d
t t N v N vα α+ − +  is apportioned to 

d ′  and d ′′  according to relative variances of ''' )ˆ( ddd Nb ζα1  and """ )ˆ( ddd Nb ζα1 , somewhat similar to (3.5); see 

also Singh (2006). 

 

The benchmarking property for the SAEs for collapsed domains goes through along the same lines.  However, SAEs 

for domains d ′  and d ′′  within the collapsed subgroup are not readily available because the extra covariate vector 

involves the DD
~~

×  matrix V
~
 and not V .  There doesn’t seem to be an optimal way to resolve this problem, but a 

simple solution might be to allocate the total ( row of 1 , ~th

B
d V the symbolɶ  denoting the reduced dimension D

~
) in 

the case of LMM to individual domains d ′  and d ′′  proportionally to 'dN  and "dN .  This essentially modifies 

somewhat the covariate of the random effect term in the original model before collapsing.  The case of GLMARC 

can be handled in a similar way. 

 

4. Application of GLMARC to the CCHS Data 

 
The proposed method was applied to the data of Cycle 1.1 of the Canadian Community Health Survey (CCHS) 

which was conducted in 2000-2001. The goal was to estimate the total number of daily smokers in 40 subpopulations 

or small areas of the province of Prince Edward Island (PEI). The subpopulations were defined by the four health 

regions (Queens, East Prince, West Prince and Kings) and by ten age-sex subgroups (12-19, 20-29, 30-44, 45-64 and 

65 and over). To have sufficient degrees of freedom for modeling, it was decided to model data from all four 

Atlantic provinces together resulting in a total of 23 health regions and 230 small areas.  

 

Benchmark subgroups were taken as the ten marginal age-sex subgroups and the four provincial subgroups of 

domains. This resulted in 13 non-redundant benchmark constraints. The model used for illustration was chosen as a 

subgroup common mean in which it is assumed that the mean number of daily smokers is common over domains 

with identical age-sex subgroup. The subgroup common mean model is a simple model often useful as a good 

starting point in the absence of other important predictor covariates. In future, it is planned to investigate the use of 

hospital admissions data and other administrative data for better model covariates. In the end, the models considered 

had 23 regression *α -parameters, 10 for the age-sex subgroup common means, and the additional 13 for the 

benchmarks.  

  

Some domain collapsing was also required to ensure that the input data of the models had the required properties. 

Certain rules of thumb were used to proceed such as no zero direct estimates, minimum effective sample size of at 

least 30 and effective sample size times the estimated probability of occurrence of at least one. Thus, the original 

domains were collapsed to a total of 217 collapsed domains for estimating fixed model parameters. Collapsing 

partners were chosen such that they are closest in Euclidean distance with respect to the domain-specific mean 

profiles of model covariates. Collapsing partners were restricted to lie within benchmark subgroups, but this 

restriction had to be relaxed occasionally to satisfy the three rules of thumb mentioned above. Keeping collapsing 

partners within benchmark subgroups gives self-benchmarking of the final small area estimates. However, a slight 

violation is not expected to seriously impact the benchmark constraints. 
 
Both LMM and GLMARC models were applied to the CCHS data. Several diagnostics analogous to Kalman filter 

innovations were performed. This was done by ranking the domains in decreasing order of effective sample size and 

then treating the rank as a pseudo-time variable as described in Singh (2006). The innovations produced by both the 

models LMM and GLMARC successfully  pass the Shapiro-Wilk normality test with respective p-values of 64.28% 



and 78.13%. Figures 4.1(a,b) for GLMARC and 4.2 (a,b) for LMM show the scatter plots and the Q-Q plots of 

innovations and show no sign for particularly unusual pattern.  
 

Table 4.1 gives the model estimates and R-square for both models. First, the random component variance estimate is 

smaller for the LMM model as expected because in GLMARC it appears as a multiplicative factor of a function  

known to be between 0 and 1. The overdispersion estimate being less than one for both models suggests some 

underdispersion. Finally, the R-square as a descriptive measure of model significance taking high values (over 90%) 

for both models shows no reason of concern.  The comparison of CVs or RRMSEs (Table 4.2) begins to show some 

interesting differences between the two models.  Out of 230 small areas, 76 of direct estimates were unpublishable 

using the criterion of CV being more than 33.3%.  However, with LMM-based SAE, only 10 small areas remain to 

be unpublishable but none under GLMARC. The final results in terms of estimates and their precision are 

summarized in Table 4.3. The precision columns (Mod-CV, Mod-RRMSE and RRMSE) were calculated by dividing 

the standard error or the root mean squared error by the GLMM-ARC estimate for ease in comparability of the 

methods. The first 13 rows give benchmark estimates and their precision while the last 11 rows give estimates and 

their precision for 11 of the 40 target domains (ranked from smallest sample size to biggest and correspond to the 

deciles of the sample size distribution). All benchmarks are exactly met except for the New Brunswick benchmark 

because some collapsing partners were chosen from the province of Newfoundland and Labrador. Also notice that 

even if benchmarks are exactly satisfied, their precision may vary over direct, LMM and GLMM-ARC estimates 

because of the use of adjusted MSE due to over-dispersion.  Finally we note that although in this example we didn’t 

observe the problem of negative estimates or negligible variance component with LMM, the estimates under 

GLMARC generally performed well in comparison to those under LMM especially when the RRMSE under LMM 

tended to be on the high side.  Moreover, in view of the theoretical desirable properties of GLMARC over LMM, it 

may be preferable in practice. 

 

5. Concluding Remarks 

 
In this paper, a model termed GLMARC was proposed for aggregate level small area modeling from survey data 

which uses LMM-type methods in the form of IBLUP for parameter estimation.  The proposed method provides a 

simple alternative to HB approaches as well as self-benchmarking and easily interpretable model diagnostics.  The 

method was illustrated for the CCHS data, and the idea of domain collapsing (Singh, 2006) was also illustrated to 

deal with the problem of domains with zero estimates or with small sample sizes.  For the CCHS example, it was 

found under a simple subgroup common mean model that such problem domains, reasonable point estimates as well 

as the corresponding MSE estimates can be obtained using the proposed method which tend to be generally superior 

to those under LMM.  This is an improvement over commonly used practice of keeping such problem domains 

outside the modeling process and later only synthetic estimates are reported for them.  In the proposed approach, it 

was shown how the method of self-benchmarking applicable to LMM can be suitably generalized to the case of 

GLMARC, and this can be done even under domain collapsing.  Note that self-benchmarking built in the modeling 

cannot be achieved if problem domains are not part of the modeling process.  Finally we note that although with the 

simple subgroups common mean model, the proposed method showed that CVs of many estimates could be 

improved, it would be useful to find better predictor covariates so that model error variance 
2
ζσ  could be reduced 

further resulting in further gains in efficiency. 
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Figure 4.1: Scatterplot and Q-Q plot of standardized innovations under the GLMARC model 
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Figure 4.2: Scatterplot and Q-Q plot of standardized innovations under the LMM model 
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 Table 4.1: Parameter estimates and R-square of the GLMARC and LMM models 

Parameter 

Benchmark Age Gender Geography 

LMM GLMARC 

•  20-29 Male  -0.0030 -0.0240 

•  30-44 Male  -0.0015 -0.0164 

•  45-64 Male  -0.0023 -0.0203 

•  65+ Male  -0.0009 -0.0076 

•  12-19 Female  0.0001 0.0018 

•  20-29 Female  -0.0013 -0.0125 

•  30-44 Female  -0.0025 -0.0228 

•  45-64 Female  -0.0017 -0.0154 

•  65+ Female  0.0001 0.0063 

•    PEI 0.0011 0.0067 

•    Nova Scotia -0.0006 -0.0031 

•    New Brunswick -0.0004 -0.0021 

•    Atlantic 0.0029 0.0235 

 12-19 Male  0.0853 -2.3091 

 20-29 Male  0.3776 -0.6017 

 30-44 Male  0.2865 -0.9313 

 45-64 Male  0.2471 -1.1227 

 65+ Male  0.1017 -2.1653 

 12-19 Female  0.0804 -2.3570 

 20-29 Female  0.2122 -1.3821 

 30-44 Female  0.2771 -0.9438 

 45-64 Female  0.1997 -1.4150 

β̂  

 65+ Female  0.0709 -2.5236 
2ˆησ  0.00123 0.06053 

2
0σ̂  0.95139 0.91428 

R
2 

0.9619 0.9865 

 

Table 4.2: CV categories of direct and SAE estimates under GLMARC and LMM models 

 

CLASS Mod-CV of the direct Mod-RRMSE of LMM RRMSE of GLMARC 

[0] 2 0 0 

(0-16.5%) 32 130 119 

[16.5%-33.3%) 120 90 111 

[33.3%-50%) 58 10 0 

[50%-100%) 14 0 0 

[100%-) 4 0 0 



   

 

 

 

 

   

 

   Table 4.3 Small area Estimates and their precision under GLMARC and LMM 

 

 

Geography Age Gender 
Sample 

size 

Direct 

Estimate 

LMM 

Estimate 

GLMARC 

Estimate 

Mod-CV 

Direct 

Mod-RRMSE 

LMM 

RRMSE 

GLMARC 

---  20-29  MALE  881 52496.97 52496.97 52496.97 5.85 5.71 5.63 

---  30-44  MALE  2153 90252.64 90252.64 90252.64 3.70 3.61 3.56 

---  45-64  MALE  2520 74592.38 74592.38 74592.38 4.10 4.00 3.95 

---  65+  MALE  1247 16720.60 16720.60 16720.60 8.99 8.77 8.65 

---  12-19  FEMALE  1256 15952.30 15952.30 15952.30 8.94 8.72 8.61 

---  20-29  FEMALE  1141 39406.69 39406.69 39406.69 5.92 5.77 5.69 

---  30-44  FEMALE  2605 82692.72 82692.72 82692.72 3.95 3.85 3.80 

---  45-64  FEMALE  2830 67787.47 67787.47 67787.47 4.52 4.41 4.35 

---  65+  FEMALE  1996 17095.44 17095.44 17095.44 8.42 8.21 8.10 

PEI  ---  ---  3651 27491.75 27491.75 27491.75 4.70 4.58 4.52 

NS  ---  ---  5319 184684.46 184684.46 184684.46 3.33 3.24 3.20 

NB  ---  ---  4996 147603.97 147733.11 147735.09 3.17 3.09 3.05 

ATLANT.  ---  ---  17836 474686.16 474686.16 474686.16 1.88 1.83 1.81 

1140  12-19  MALE  25 67.41 86.71 87.61 46.21 35.34 24.51 

1140  20-29  FEMALE  30 100.36 211.42 205.95 24.57 17.58 19.63 

1110  20-29  MALE  51 625.73 556.08 573.79 22.44 10.74 13.52 

1120  12-19  MALE  59 159.32 172.29 178.17 42.19 28.75 22.11 

1110  20-29  FEMALE  66 388.55 303.10 295.83 28.91 16.46 18.04 

1140  65+  FEMALE  79 123.87 102.39 88.01 38.85 28.15 19.40 

1120  30-44  MALE  92 1288.21 1213.87 1230.43 20.24 10.11 12.76 

1120  65+  FEMALE  115 230.57 222.06 208.74 36.78 27.08 20.49 

1110  65+  FEMALE  123 67.61 80.80 95.85 28.78 25.28 21.32 

1110  45-64  FEMALE  159 518.33 525.00 516.05 19.55 13.35 13.85 

1130  45-64  FEMALE  218 1592.19 1764.76 1734.63 15.48 11.83 12.39 

 


