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ABSTRACT

Typical complex sample designs lead to informative samples, which means that the distribution of a variable in the sample
is different from its distribution in the population. To determine and measure the impact of informativeness, we compare
design-based and model-based variances of estimated parameters (as well as the estimated parameters themselves) in a
logistic model under the assumption that the postulated model is true. For an appropriate modelling of data from
informative samples we consider two possibilities: to use design-based inference about the model parameters or to use
model-based inference. We propose a new bivariate approach for assessing the informativeness of a sample design on data;
this approach accounts for effects on point estimates and on their standard errors. A large simulation study, based on
generating a population under the postulated model, using parameter estimates derived from the National Population
Health Survey (NPHS), allows us to detect and to measure the informativeness, and to compare the robustness of studied
approaches.

KEY WORDS: Design-based, model-based, mixed-model approach, informative clustering, power of test

1. INTRODUCTION

Informativeness of a sample is a model concept. If the distribution of the sampled units is different from the
distribution that would be obtained by sampling directly from the model, then the sampling is said to be
informative. The design is said to be ignorable for a particular analysis if it has the property that the results of the
analysis are not affected by the informativeness of the sample design. All non-informative designs lead to
ignorability, but not vice versa (Binder and Roberts, 2001).

Some analysts fit the same model to survey data using both a design-based and a model-based approach, and if the
point estimates of the model coefficients are similar under the two approaches, they make the conclusion that the
sampling was not informative, and carry on with a model-based approach. However, the design-based and model-
based point estimates can be similar even when the assumptions about the model distribution are incorrect for the
sample. Thus, when the point estimates are similar, but the estimates of the design-based variances are not close to
the estimates of the model-based variances, this could be an indication that the sampling is “informative”,
particularly when sample size is large. If the preference is still to take a model-based approach, then the model
should be modified to ensure that the sampling distribution for the sampled units is valid under the model. (This may
be difficult to achieve, however.)

Our goal in this paper is to investigate ways for assessing whether the survey design has an impact on the substantive
conclusions from an analysis. In this regard, we compare the standard design-based method of analysis to some
alternative frequently-used methods: standard model-based, model-based using standardized weights, and mixed
models with random effects for clustering. We proceed by means of a simulation study in which we generate a finite
population where our posited model is completely satisfied. Through stratification and clustering of the outcomes,
we control for the informativeness in the samples drawn from the finite population. We then assess and compare the
impact of the informativeness of the sampling design over the different methods.

Section 2 provides a description of the simulation study. The assessment measures used and the results obtained for
assessing the impact of informativeness on point and variance estimates are presented in Section 3. Section 4
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contains details of an investigation of the impact of informativeness on power and size of the tests. We propose an
approach for assessing the informativeness in sample data in Section 5. Some concluding remarks are given in
Section 6.

2. SIMULATION STUDY

2.1 Superpopulation (Model)

In order to have an empirical assessment of the impact of the informativeness of a sampling design on the analysis
of survey data we carried out an extensive simulation study. We simulated a model of the relationship between the
loss of independence among seniors (LOSS) and several factors associated with their health status and habits,
motivated by a model fitted to data from the first two cycles (1994/95 and 1996/97) of the Canadian National
Population Health Survey (NPHS), as presented in Martel, Bélanger and Berthelot (2002).

The model that we simulated expresses the probability of an independent senior losing his/her independence as a
function of the senior’s sex, age, body mass index, presence of chronic diseases and smoking habits. The model has
the form:

logit( LOSS) = By + 31 * SEX + B> * AGEGR + 3 * UNDERWGT

2.1
+ B4 *OVERWGT + B * CHRDS + B¢ * SMOK @1

All variables in the model are binary: LOSS (1, if person loses his independence within the two-year period studied,
0 otherwise), SEX (0 for women, 1 for men), AGEGR (0 for age in [65,75), | for age 75+), UNDERWGT (1 for BMI
(body mass index)< 18.5, 0 otherwise), OVERWGT (1 for BMI>25, 0 otherwise), CHRDS (1 if at least one of 10
chronic conditions is present, 0 otherwise), SMOK (1 if presently smokes daily or if quit recently, 0 otherwise). All
variables other than LZOSS are measured at the start of the two-year period.

Note that the reference values for all variables included in the logistic model (2.1) are 0. The variables related to
BMI originate from a variable BMIGR with three categories (0 for BMI < 18.5, 1 for 18.5<BMI <25, and 2 for BMI
>25). The ten chronic conditions considered were asthma, arthritis, back problems, bronchitis/emphysema, diabetes,
heart disease, cancer, effects of stroke, urinary incontinence, and glaucoma/cataracts.

2.2 Simulated Finite Population

We simulated a finite population of 2.5 million individuals so that the individuals had some of the characteristics of
the Canadian NPHS subpopulation of senior people, aged 65 and more and independent in the first cycle. The
variables were generated as Bernoulli random variables using the joint probabilities estimated from the NPHS
sample at Cycle 1.

After having simulated values for SEX, AGEGR, etc., the dependent variable LOSS was also created as a Bernoulli
variable with probability equal to

~ -1
Px = P(LOSS =1 |x) = [1 + exp(_xlg)]> ,

where x and 8=(f, f,.,....37) are defined by model (2.1). and where @ was estimated from the NPHS sample to
be 6=(Bo. B Bas B3 Bas Ps. Be ) =(-3.799, 0.382, 1.388, 1.139, 0.406, 0.641, 0.484). The proportion of individuals

in the simulated finite population who lost their independence is 0.1009.

2.3 Simulated Clustering and Stratification of the Finite Population

We arranged the finite population into clusters in two different ways: one that is purely random (non-informative)
clustering and the other which is, to some extent, an ‘informative clustering.” In both cases the cluster sizes were
between 20 and 60 individual records.

For the random clustering we randomly ordered the individual records and then assigned them to clusters whose
sizes were generated as integers uniformly distributed between 20 and 60. For example, if the first random number



was 29 the first 29 individual records went into the first cluster; if the second random number was 43, the next 43
individuals made up the second cluster, etc. In this way, 62,600 clusters were created, and the intracluster correlation
was calculated to be 0.0001.

The informative clustering was done in the following way. From the first 1.875 million individual records, we
created 62,600 clusters by the same random clustering procedure as explained above except that the cluster sizes
were generated as random integers between 10 and 50. From the remaining 625 thousand records we created 62,500
groups of 10 records each, so that about 6260 groups had only records with LOSS =1, and the rest had only records
with LOSS =0. Then, to each of the approximately 6260 clusters with the largest proportion of records with
LOSS=1, we added a group with ten ‘LOSS =1’ records. All other clusters received a group of ten records with
LOSS =0. In this way, 62,600 clusters were created, with sizes between 20 and 60,and the intracluster correlation
was 0.2637.

For each of the clusterings of the finite population, we arranged the clusters into strata in two different ways: (i) no
stratification and (ii) two strata, where the first stratum contained the 25% of clusters having the largest proportion of
records with ‘LOSS =1", and the second stratum contained the remaining 75% of clusters.

2.4 Sample designs and generation of design information

We used a different sample design, depending on whether or not the population was stratified. In both cases, the
sample design consisted of a sample of clusters chosen without replacement with the probability of selection
proportional to the cluster size. The selection was done by the Sampford method as implemented in SAS procedure
SURVEYSELECT. In the case of the unstratified population, we chose a sample of 30 clusters. In the case of the
stratified population, we selected 15 clusters from each of the two strata, which meant that we were clearly

oversampling from the first stratum, thus giving a larger probability of selection to clusters with larger p; (ie.,
larger proportion of records with LOSS=1).

The original sampling weights for the records included in a sample would be constant within clusters, since there
was no subsampling within clusters. We then post-stratified these original weights to five poststrata based on
known counts of (AGEGR X SEX ) and URBRUR. After the poststratification, the weights of the records from the
same cluster were not necessarily all equal.

For each sample of clusters we produced 500 bootstrap replicates. In the case of the unstratified design, for each
bootstrap replicate we took a simple random sample with replacement of size n-1(=29) clusters. In the case of the
stratified design, we selected a random sample with replacement of size nj, (=14) from the h-th stratum, #=1,2. The

bootstrap weights in the b-th bootstrap replicate were then obtained by first adjusting the original sampling weights
to reflect the inclusion (possibly more than once) of some clusters and the exclusion of other clusters, following the
formula for the b-th bootstrap replicate:

(b) (b) _"n

Wy =Wpii ) — T
hij Yy " hi nh_l’

where w,; is the original sampling weight of the j-th individual from the i-¢4 cluster in the h-th stratum, h=1,2, and

k}(f;) is the number of repetitions of the i-th cluster in the b-th bootstrap replicate. Note that Zik}(lltf) =n;, -1

These weights were then poststratified to the known poststratum counts, in the same way as the original full-sample
weights were calibrated.

2.5 Monte Carlo Setup

Considering the two types of clustering (non-informative and informative) and two stratification options (without and
with), we had four different population settings with different levels of informativeness. We selected 500 Monte
Carlo samples from each of the four population settings: (i)“Non-informative” clustering, no stratification, 30 clusters
(Low-Inf); (ii))“Informative” clustering, no stratification, 30 clusters; (iii) “Non-informative” clustering, stratification,
15 clusters per stratum; and (iv) “Informative” clustering, stratification, 15 clusters per stratum (High-Inf).



In order to check on achieved informativeness we calculated the conditional inclusion probabilities for given x and
variable LOSS, i.e., ploss(x)= Pr{i € sample|LOSS; =1, x}andqloss(x) = Pr{i € sample|LOSS; =0, x}. If the
sample design is non-informative these probabilities will not depend on LOSS, and for the same x the ratio
ploss(x)/ qloss(x) = 1. Note that there are only 48 different values for the vector x. In Chart 1 we present, for each
the four settings, these ratios on the vertical axis while the inclusion probabilities for records with loss=0 are on the
horizontal axis. The diameters of the circles represent the size of the x group in the population. From Chart 1 we see
that the informative clustering in combination with the stratification increased the ratio to 1.35 (on average). This

means that an individual with LOSS=1 has 1.35 times more chance to be in the sample than an individual of the same
x characteristics with LOSS=0.

Chart 1: Ratio of conditional inclusion probabilities for individuals with LOSS=0 and LOSS=1 for a given x
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For the remainder of this paper we present results for the two most extreme settings: Low-Inf and High-Inf.
2.6 Inferential approaches for logistic model

We considered the following five inferential approaches for fitting the logistic model to data from selected samples :
(i) [DESIGN] A full design-based approach where the variances are estimated by the linearized estimating equation
bootstrap method (see Binder, Kovacevic, Roberts, 2004). The resulting estimates of the parameters and their

variance estimates are denoted by 0 p and I}p (é p) - The programming was done in SAS using SAS IML.

(ii) [DESIGN-MODEL] A combination of weighted point estimation of the parameters,é and model-based

p b
estimation of the variances using the robust sandwich variance estimator unadjusted for clustering, I}g (é p) - This

approach was implemented using the LOGISTIC procedure in SUDAAN and setting DESIGN=SRS,
SEMETHOD=model and by specifying the survey weight variable in a WEIGHT statement.

(iii) [MODEL] A model-based approach (unweighted) where both the point estimates (9;: and their variances

I}g (ésr) are calculated as if the sample design was simple random sampling of individuals with replacement. This



approach was implemented using the LOGISTIC procedure in SUDAAN and specifying DESIGN=WR,
SEMETHOD=model and without using the WEIGHT statement.

(iv) [NLMIXED] A model-based approach where the effects of clustering #; are modeled as additive random
effects:
§1: logit(yy) =xj; O +u; + &

The model parameters & are estimated by a model-based (unweighted) estimate égl and the corresponding variance

matrix is estimated by the model-based variance estimator I}gl (égl) . The estimation was done using SAS PROC
NLMIXED. Note that the model did not account for the stratification in the survey design.

(v) [INLMIXED-WGT] Fitting the 981 model as in (iv) but using the survey weights, obtaining the point estimates
é
I}srl (éw) . Note that in (iv) and (v) we are not interested in estimating the variance components. The estimation was

done using SAS PROC NLMIXED with the weight variable specified in the REPLICATE statement. (Since the
variable specified in the REPLICATE statement must have integer values, and since the survey weights had 4 digits
after the decimal point, the variable specified in the REPLICATE statement was actually 10,000*weight.)

,» and their model-based variance matrix using the “sandwich” estimator evaluated at the final estimate values,

3. IMPACT OF INFORMATIVENESS ON POINT AND VARIANCE ESTIMATES

We considered a variety of measures for comparing the different approaches. In the descriptions of the measures
below we use the subscript M to denote any one of the approaches and we use € to represent any one of the
coefficients in our model.

The first measure that we look at, which examines the impact of informativeness on point estimates, is the
standardized difference of a parameter estimate from the true value:

E sim (éM )— 0
V MSEsim (éM)

Egm (éM):S_(l)OZéM,k , MSE ;,, (éM)=$z(éM,k ~60)%, and @y is the estimate of 6 using the M-th
k k

approach with the k-t7 Monte Carlo sample. The closer this measure is to 0, the better is the parameter estimate. We

show our results in Chart 2 for the six model coefficients other than the intercept. The left-hand graph shows the

results for the Low-Inf case and the right-hand graph is for the High-Inf setting. The variables from the model are

given along the horizontal axis, and the magnitude of the measure is given along the vertical axis. Values of the

measure for the different variables for the same approach are connected by lines of particular colors.

, where 3.1

For the Low-Inf setting all approaches perform similarly, with the measure staying close to 0 for all variables; a
slight exception is the NLMIXED approach. For the High-Inf setting, the plots are more scattered for the different
approaches; however, the DESIGN and MODEL approaches yield very similar results and are the closest to the zero
line. The DESIGN-MODEL approach yields exactly the same results as the DESIGN approach, and thus is not
shown on these graphs. In a real survey situation, since we do not know the true value of @, we cannot calculate this
statistic.

Chart 2. Standardized difference of a parameter estimate from the true value
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A measure which can be calculated from survey data is the standardized difference between an alternative
parameter estimate 0 v and the design-based parameter estimate 0 p- This measure, which is an average over

the 500 Monte Carlo samples of the standardized difference, is defined as follows:

A

Om —‘91; 1 Om k —‘9p,k

|t =S
sim —
1“/1’ (91’) 500 k Vp (gp,k)

E (3.2)

The results are given in Chart 3.

Chart 3: Standardized difference between an estimate u and the design-based estimate 0 p (average over 500 samples)
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In the Low-Inf case, all the approaches yield lines close to 0, with the MODEL approach staying the closest. In the
High-Inf case there is a larger spread in the plots, although the model-based is still close to zero. The NLMIXED
shows the most extreme behaviour. Note that, again, there is no line for he DESIGN-MODEL approach since the
parameter estimates under this approach are the same as the DESIGN approach. Since this measure is calculable
from a single sample we want to consider it as a possibility for identifying informativeness.

The standardized difference measure defined above and illustrated in Chart 3 is an average of a standardized
difference over 500 Monte Carlo samples. We also studied the variability over the Monte Carlo samples in the
standardized difference for different estimation approaches. We found that the High-Inf setup generally yielded a
larger scatter of differences than the Low-Inf. Also, we found that even though NLMIXED WGT and MODEL
approaches have similar average values, the NLMIXED-WGT approach is much more variable than the MODEL
approach under both the Low-Inf and the High-Inf setups.

The previous two measures compared the point estimates. The next one compares variances by computing the ratio
of variance I}p (é p) from the design-based approach to the variance v M(é 'y ) from an alternative approach.

In Chart 4 we present the averages of these ratios over the 500 Monte Carlo samples:



)
E sim u AI’ . (3.3)

Chart 4: The ratio of variance I}p (é p) from the design-based approach to the variance I}M (é ) from an

alternative approach (average over 500 samples)
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In this chart the degree of closeness of an alternative approach to the design-based approach with respect to variance
estimation is indicated by how close the measure is to the value 1. In the Low-Inf case, all approaches were very
similar and all had measure values close to 1. In the High-Inf case, we see more spread in plots and none of the
approaches gives values of 1. The MODEL approach is the farthest away from the design-based for this particular
measure, while, for the previous two measures we couldn’t distinguish between these two approaches. These results
indicate that we need some comparison of variances when assessing informativeness. We will address the issue of
choice of measure in more depth in Section 5.

4. IMPACT OF INFORMATIVENESS ON POWER (AND SIZE)

We now consider the impact of informativeness on hypothesis testing about the model coefficients. We assess the
impact of informativeness on the power (and size) of tests by considering two examples: in the first example the null
hypothesis being tested is actually true in the population by construction, and in the second example, the null
hypothesis is false in the population by construction.

Example 1: The initial model augmented by a SEXX AGEGR term is fit to sample data sets. The null hypothesis is
then formulated as “Hy: There is no interaction between SEX and AGEGR.” The test statistic generally used for

this hypothesis is the Wald statistic X I,2V = ég‘exx Agegr | I}(é Sexx Agegr ) Which is then compared to the 95" percentile
ofa y{ distribution ( y{(.95) = 3.841).

We developed a strategy for deriving power curves y(6,) for testing the hypothesis that a coefficient is equal to
zero. In this strategy, the Wald statistic for approach M, denoted by X I,ZV( M) » 18 assumed to be proportional to a non-

central ;(2 variable with one degree of freedom so that the power curve for approach M is

A Pmb{f(fV(M) >3.84110 =04, X5 ~ Cm 21 (b,,(M))},
where the non-centrality parameter is b,(pr) = d;(M)V(;‘})da(M) with d,pr) =0, +bias, (éM) =E, (éM |0=6,),

and the proportionality parameter is ¢y, = VA}IV(M) , where V) = E, (I}M (éM ) and Vi =V, (éM) . For the

simulated power curves, both of these variances are estimated by taking averages of appropriate estimates over 500
samples as shown in Table 1. A new approximation was developed for the non-central case for more than 1 df and
will be reported elsewhere.



Table 1. Variance approximations for power calculations

Approach M
DESIGN DESIGN-MODEL MODEL NLMIXED NLMIXED-WGT
VM E sim ( (9 ) E sim ( (9 ) E sim ( (9§ ) Esim (V§1 (9951 ) Esim (Vsrl (gw )
V(M) Vsim (‘91)) Vsim (‘91)) Vsim (9§) Vsim (9951 ) Vsim (gw)
Chart 5. Power curves for testing the hypothesis that there is no interaction between SEX and AGEGR
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In Chart 5, we give just half of each power curve since the curves are symmetric around 0. The low-informativeness
power curves are very similar across the methods. The informativeness power curves spread farther apart with the
NLMIXED most separated from the others.

Table 2 shows the value of the proportionality coefficient ¢, the value of the theoretical power curve at the true
alternative (which is 0) and the empirical rejection rate when the hypothesis was tested using the 500 Monte Carlo
samples. The power and rejection rate values are quite close, regardless of approach, indicating that the power curve
at 0 is well approximated by the empirical rejection rate. The power and the rejection rates are closer to the nominal
5% level for the Low-Inf case than for Inf. The fact that the values for the DESIGN approach are above the nominal
5% level might be attributed to the small sample sizes. The NLMIXED approach seems to be performing differently
from the other approaches.

Table 2. Proportionality coefficient, theoretical power at 6,=0, and the empirical rejection rates

Informativeness Low High

Approach _p-l Theoretical | Empirical _p-l Theoretical Empirical
ppM «=VuVon power at RejIe)ction «=VuVon power at RejIe)ction

0.,=0 (size) Rate 0.,=0 (size) Rate

DESIGN 1.029 0.053 0.058 1.143 0.067 0.080

DESIGN-MODEL 1.084 0.060 0.051 1.277 0.083 0.082

MODEL 0.999 0.050 0.053 1.102 0.063 0.058

NLMIXED 0.870 0.036 0.014 0.657 0.016 0.014

NLMIXED-WGT 0.948 0.044 0.049 1.038 0.054 0.060

Example 2: Consider a case where the null hypothesis is not true in the population. In particular, consider the
hypothesis “Hy: SEX has no impact on the probability of losing independence.” The coefficient on the SEX variable
is actually equal to 0.384 and this value is indicated by a vertical line on Chart 6. The order and spread of the power
curves remain quite similar to those seen in the previous example; however, this means that, for the High-Inf case,
there is a much wider range in the values of the curves at the true value. Nonetheless, as can be seen in Table 3, the
theoretical power and the empirical rejection rates are quite close for both High-Inf and Low-Inf.




Chart 6. Power curves for testing the hypothesis that SEX has no impact on probability of losing independence
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Table 3. Proportionality coefficient, theoretical power at §,=0.384 and the empirical rejection rates
Informativeness Low High
App]r“;ach c= Vﬂ}l Vo Theoretical Em.piri.cal c= VMI an Theoretical Em.piri.cal
power at Rejection power at Rejection
6,=.384 Rate 6,=.384 Rate
DESIGN 0.989 0.483 0.505 1.070 0.416 0.450
DESIGN-MODEL 1.061 0.511 0.510 1.261 0.475 0.484
MODEL 0.971 0.510 0.527 1.006 0.566 0.584
NLMIXED 1.131 0.453 0.448 0.636 0.275 0.246
NLMIXED-WGT 0.889 0.488 0.480 0.997 0.483 0.485

5. PROPOSED MEASURE OF INFORMATIVENESS

We are presuming that the researcher wishes to have as his basis for statistical inference the distribution of the
observations resulting from generating a finite population under a model and then selecting the sample using the
sampling design. Since the true model generating the finite population was the one used in the MODEL approach,
we are going to restrict our attention to that model in this section. If the sample design is not informative, we know

that Eg,(0,)=Eg ;) and Eg(Ve(0,))=EgV ,(0,)) (Binder and Roberts, 2003). Based on this and on
what we have observed in previous sections, we propose a bivariate measure for assessing informativeness: one
component should compare the point estimates and the other should deal with the variance estimation. We thus

suggest the following measure — which can be calculated from a single sample - for comparing the DESIGN and
MODEL approaches:

A A

The particular transformation of the variance estimates shown here has been chosen to ensure that it is of the same
order of magnitude as the first component. Both components would be close to 0 in the situation of non-
informativeness.

We have created a scatter plot of the simulation average versions of this measure in Chart 7:




Chart 7:

There is a clear separation between the Low-Inf and High-Inf cases in the average variance values of the bivariate
measure which are plotted on the vertical axis, while any distinction regarding the average point estimate values is

Average values of proposed measure of informativeness over 500 samples
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less obvious except for the larger spread for the high informativeness case.

In Chart 8, we use the individual results from the 500 Monte Carlo samples under the Low-Inf and High-Inf cases to
display a scatter plot of the proposed measure for the coefficient on CHD, the variable with the least difference in
point estimates between the MODEL and DESIGN approaches. On both axes we show the 5™ and the 95"
percentiles of the points from the Low-Inf case. While a very high percentage of the Low-Inf points are within the

square, only 50% of the High-Inf points are there.

Chart 8. Scatter plot of the proposed measure obtained over 500 samples for the variable CHD for two level of

informativeness.
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It should be noted that there are other measures of informativeness proposed in the literature (e.g., Dumouchel and
Duncan (1983), Pfeffermann (1993), and Asparouhov (2004)). However, all of them are univariate and only
compare point estimates. In the following chart we present the averages over 500 samples of the Pfeffermann Index
and the Asparouhov Index. Obviously, these two measures are not distinguishing the low and high informativeness
cases when the model-based and design-based point estimates are very similar.

Chart 9. Pfeffermann’s (1993) Informative Index and Asparouhov’s (2004) Informative Index averaged over 500

samples
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6. CONCLUDING REMARKS

In this paper we study the impact of informativeness on some of the substantive conclusions from an analysis of
survey data. We generated a finite population and developed a tool for varying the level of informativeness of the
sample design in order to compare the performance of several different analytical approaches under different levels
of informativeness. We found that, for every approach considered, there were differences in the results between the
low informativeness and the high informativeness cases, and that approaches differed. Thus, informativeness — and
how it is handled - does matter.

We included two simple mixed model approaches having a random component that was intended to account for the
clustering in the survey designs. In general, the mixed model did not perform well, indicating that it is not sufficient
to account for the sample design simply by including a random cluster effect in the model as is often recommended
in analytic papers. We found that using weighted estimation in the mixed model improved results slightly. We also
noted that the design-based approach was not clearly best across all measures used in this simulation study. One of
the reasons for this could be the small sample sizes used in this simulation study. We anticipate that the
performance of the design-based approach would considerably improve with an increase of sample sizes or an
increase in the complexity of the sampling design. We would like to study this further. For assessing
informativeness we suggested that a bivariate approach is required but we need more research before we can
propose a formal bivariate test for significant informativeness of the sample design.
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