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ABSTRACT

Data swapping introduces noise in a dataset to improve the protection of statistical confidentiality. The noise is generated
by permuting selected characteristics (variables) among a small number of units (records). We demonstrate in this article
that this technique introduces a bias in the estimates. We provide explicit formulas for the mean square error. We will see
that the error is proportional to the size of the cell in a tabulation. Then we compare that technique to the random rounding
used in the Canadian Census of Population. We determine the permutation rate that produces the same amount of noise.
Having obtained that rate, we discuss the effectiveness of data swapping.
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1. INTRODUCTION

Statistics agencies typically have two conflicting mandates. On one hand, their mission is to publish statistical in-
formation about the activities and condition of the country’s people. On the other, they set stringent rules for them-
selves to preserve the confidentiality of the responses provided by respondents. They have to find methods of ensur-
ing that respondents’ information will never be disclosed without their permission to anyone in any form that would
make it possible to identify them. If respondents know that they will not be identified with the information they pro-
vide, they will be more likely to provide accurate information.

What are those methods? First, there are physical security methods: providing secure storage locations for paper
questionnaires, having intrusion-proof communications systems, restricting access to the information to employees
who have taken the oath of office, and so on. There are also measures that can be applied to information intended for
release. Such measures ensure that the reporting unit cannot be identified from the published information. Agencies
typically restrict access to data when statistical confidentiality is not guaranteed. They also protect the information
by modifying it, though they must simultaneously preserve its statistical value. Two examples of restricting access
to data are (1) requiring users to comply with certain conditions, such as taking an oath or signing an agreement on
how the released data will used, and (2) suppressing a variable in a microdata file. Random rounding of tabulations
to a multiple of a whole larger than the unit is an example of data modification.

Clearly, the trend in dissemination programs is to issue products containing more detailed data. It is also true that
users are increasingly sophisticated, using more precise methods of analysis than in the past. Statistical software
automatically compensates for cluster effects, thereby reducing certain survey design biases in statistical analyses
and tests. The value added is actually in the accuracy of the published information. From the standpoint of statistical
confidentiality protection, the methodological challenge for future information needs is to find ways of distorting the
data and calibrating the distortion to preserve the accuracy and reliability of the information. First, respondents must
be reassured that their information will always be treated as confidential so that they will provide accurate data, and
second, ways must be found of protecting the data without affecting their use. Consequently, the protection tech-
niques must be visible and known, and the distortion of the data must not generate additional phenomena; in other
words, the noise must be as “white” as possible.

There is a wide variety of methods for introducing noise in data. For example, sampling can be used to introduce
variation in the estimates. This method is also used to restrict access to the data: the designer of a microdata file can
resample to reduce the chances of identification. Two other ways of introducing noise are rounding aggregate data in
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tables (tabulations) and creating dummy units in the survey database. One of them involves swapping the values of
selected variables between records; this is known as “data swapping.”

In this article, we will study the noise generated by data swapping. Is it white? Does it reduce the chances of identi-
fication? The title of the article casts doubt on the method’s effectiveness. The method was tested because it is easy
to analyze. The value of this presentation lies in the fact that it provides an example of how a protection technique
can be analyzed. Identifying a protection technique’s strengths and weaknesses can only benefit everyone con-
cerned.

2. DEFINITION OF DATA SWAPPING

This section introduces the basic concepts needed for an informed discussion of data swapping. It also introduces the
various notations that will be used throughout the presentation.

Suppose we have a database consisting of a number of characteristics (variables) measured for respondents (units or
records). Let m and » represent the number of variables and the number of records respectively, and let the database
be represented by the matrix Y = (y;;), where i =1, ..., nandj =1, ..., m. y; represents the measured value of variable
j of record i. The database has a special variable for the weight of each record (the weight is usually the inverse se-
lection probability). That variable is denoted w = (w).

Given database Y, a swap is the specification of two objects £ = {(4 | B), X} where:
(a) (4| B)isa partition of the set {1, ..., m} of the variables of Y into two parts 4 and B;

(b) X is a probability distribution of the set of permutations of the set {1, ..., n}.

Performing the data swap { (4 | B), £} on Y will create a new database Y’ = (y;) where, in this case, y;=y;ifj € B,
Vi =Ysi;ifj € A. Permutation o is a realization of probability distribution X. All the estimates and analyses will ap-
ply to this database.

The choice of partition (4 | B) of E is crucial to its effectiveness in protecting statistical confidentiality. The most
discriminating variables must be separated by the permutation. In addition, for the file Y’ to remain useful, it is de-
sirable for the cardinality of 4 to be much smaller than the cardinality of B. We note that the error caused by E
comes into play only when the estimator formula includes at least one variable of 4 and one variable of B. Conse-
quently, if the relation between two variables is important to the objectives of the survey that generated the database,
the two variables should not be separated by the permutation of the variables. Then it must be determined whether w
should be in 4 or B. If the database contains certain stratification variables, all of them will have to be in 4 or B
along with w. Otherwise, an intruder might be able to determine that a particular record was swapped, which must
be avoided. In this article, we assume that w € 4.

As noted earlier, it is not necessary to swap the values of the variables of 4 for all records. It is sufficient to swap the
values among a smaller subset of records; this reduces the error caused by the swap. We use a distribution X that
permutes only the values of £ > 1 records. The permutation rate is defined as the proportion of records in which the
values have been permuted. We denote it as T = k / n. The distribution that governs the choice of permutations may
be a function of the values of selected variables. It is desirable a priori to preserve certain characteristics (such as the
person’s gender). These conditions characterize a particular allocation of the records into classes. Within each class,
we permute the records at a preset rate. To illustrate a swap, let’s start with the data in Figure 1. The selected permu-
tation replaces the values of the fourth record’s variables with the values of the sixth record’s variables, the values of
the fifth record’s variables with the values of the fourth record’s variables, the values of the sixth record’s variables
with the values of the seventh record’s variables, and the values of the seventh record’s variables with the values of
the fifth record’s variables.

Figure 1: Illustration of a Data Swap

Original database Data swap Modified database
Obs w 1p 1p Obs w 1p 1p




1 5.800281 0 1 1 5.800281 0 1
2 9.760256 1 1 lp,wed lpeB 2 9.760256 1 1
3 6.531695 1 0 3 6.531695 1 0
4 8829931 0 0 c=1236475 6 8347917 1 0
5 9.805243 0 1 4 8.829931 0 1
6 8347917 1 1 1=4/7 7 5952525 1 1
7 5.952525 1 1 5 9.805243 0 1
The designer has the choice of permutation types. Three types come to mind.
(a) For a number & (1 <k < n), we choose k£ whole numbers from {1, ..., n} to form a vector with k£ components.
We apply a permutation of the indices that cause them all to vary.
(b) For an even number & (1< k < n), we choose k£ whole numbers from {1, ..., n} to form a vector with £ compo-
nents. We substitute the vector’s components two by two.
(c) For an even number £ (1 < k < n), we divide the set {1, ..., n} into two parts, G, and G,, whose cardinality is

greater than £/2. We choose £/2 whole numbers from each part to form two vectors with 4/2 components. We
apply a general permutation to the indices of the first part’s components, and we permute the components of
both parts with the same indices two by two.

These permutations swap exactly £ out of n records. The distribution of the permutations is specified by the experi-
ence of a random choice of one permutation from among those which preserve the classes. For a given class, they
are uniform distributions whose probability mass is the inverse of the number of possible permutations. The last two
types of swaps simply reduce the number of possibilities. In general, parts G| and G, of the third type represent con-
tiguous geographies.

Let £ = {(4 | B), 2} be a data swap and let X be any estimate. We are interested in finding a measure of the error in
using X’ (the value found for X after the data swap) instead of X. To measure the error, we will compute the mean
square error,

MSE, X' =]V, X'+ B} X",

where V5 X'and By X'are the variance and the bias of distribution X applied to X. Returning to the example shown

in Figure 1, if X is the estimate of the total number of units that have attributes P and F (1= 1, 1= 1), we have X =
24.06. Table 1 shows the analysis of all X’ estimates that we can obtain by letting o run through all 315 possibilities.



Table 1: Analysis of the Sample Data Swap

X' Frequency (X’ - mean X') Frequency
12.48422 4 0.118036 30
1430044 2 2.168725 99
14.87961 4 3.083192 30
15.71278 2 4210004 30
16.29195 4 20.06919 22
18.10817 2 39.64072 4
20.83214 30 4726917 2
2224448 30 59.41984 4

24.0607 99 64.06968 48
24.63987 30 68.68426 22
30.59239 48 102.08716 4

Mean = 22,58804 315 Mean — 23.20468 315

By performing this swap, we generate a bias of 1.47 (24.06 — 22.59), with a variance of 23.2047. That yields a mean
square error of 5.03. In what follows, we will consider only swaps of the first type. We can show that reducing the
number of possibilities does not change the conclusions of this article.

3. ERROR INTRODUCED BY DATA SWAPPING

Let X be an estimate from a database in which a data swap has been performed. We assume that X is a weighted sum
over domain D defined by discrete variables. In other words, X is a tabulation. We are examining only domains de-
fined as an intersection of sets of records that are defined on the basis of a single variable (e.g., married men). If the
variables (including w) that define D are all in either 4 or B, there is no swap error. Otherwise, domain D is written
as the intersection of two specific domains P and F' (D = P N F). P and F are the domains specified by D, but only
with variables of 4 and B respectively. P and F are the out-of-phase and fixed domains of D. Hence, if

X=X,=3 wly(i)=2" wly(i)1.(i),
the expression for X' will be
X'= ziwm'lp(o—i) 1.(1) = ZieP wile (o),

where the last term is simply a rearrangement of the order of the sum. We want to show in this section that the
square of the mean square error of a data swap is proportional to n. Let’s start with the number of possibilities. The

general binomial coefficient will be denoted C;’ .

Result 1. The number of permutations of k (k > 1) objects that leave no object fixed is given by
k
kle, =k! > (1) [ri=k! (1/2/ —1/30 4w (1) [k )
r=0
Hence, the number of permutations of n objects that leave n — k objects fixed is given by (ekn/)/ (n - k)/ .

Proof. We will prove this by induction. It is true for £ = 2. Now, the total number of permutations can be expressed
as the sum of permutations that leave exactly zero objects fixed, plus the permutations that leave exactly one object

fixed, plus those which leave exactly two objects fixed, and so on up to & objects. Since we have C” ways of choos-
ing » > 0 objects that remain fixed and (k—r)/ e, , possibilities of permuting the rest (induction hypothesis), the
number of possibilities we are seeking is written as

k/—rzil C'(k-r)e,, =k! [1 - Zk;%] = k/[zk: S ((r":?l)/ c;”] = k/[zk: (f)"jgl)/ cﬁ”] =kle, .



Let np and &p be the number of elements in D and its proportion in the database. The next result is the equation for
the bias.

Result 2. Let D = P N F, where P and F are the out-of-phase and fixed domains of D. The bias generated by using
X’instead of X is given by

, k
BE(XD):H(XD_SFXP)'

If w; ~ w, the equation becomes By(X!))= wnt (8, 8,8, ).

Proof. The bias is given in general by
M B.(Xp)=Yw BloicieF|icF) - Y whlc:cieF|ieF).

ieD ieP-D
Through a symmetry argument, we can show that these probabilities do not depend on i. Take the first probability.
Leti € F. To determine the number of ways, we remove i from the database, swap the remaining elements and re-
place i with an element from outside F. If we want to make sure that exactly & records have been swapped by the
end of the operation, we need to know whether the record being replaced with i has already been swapped or not.
The number of possible ways of swapping i with a record from outside F while keeping the number of swapped re-
cords at & is given by

k-1 k-2
e (k=1)1D (k=1=j)Cir Ci7, +e 5 (k=2)1D (n—np —(k=2—j)) Ci ™ Ci )
Jj=0 Jj=0

(We control the number of records swapped in F.) After dividing by (ekn/)/ (n —k)/ and simplifying with ke, = (k —
1ejy + ern, we obtain k/ (n —1) x 85 . Taking the complement of F, we find the second probability, i.c.,
k/ (n - 1) x 8, . Substituting these probability terms in (1), we obtain the result.

The probabilities in (1) are important. They are known as the first-order outgoing and incoming probabilities. Thus,
the bias is the outgoing proportion of the domain’s mass minus the incoming proportion of the out-of-phase do-
main’s mass. Clearly, an unbiased data swap for an estimate is a rare possibility. The quotient of the two domains
has to be exactly equal to the quotient of the incoming and outgoing probabilities. When w; ~ w, the relative bias
becomes approximately the product of the permutation rate and the covariance between P and F. Hence, as soon as
there is a non-negligible linear relation between the two domains, a bias will be present.

In what follows, we will denote &/(n — 1) as f}, the swap’s first-order factor. We have shown that the incoming and

outgoing probabilities are equal to f18r and f,8 respectively. To write the second-order incoming and outgoing

k(k—2)—(k-De, /e,
(n-2)(n-3)

probabilities, which will be defined later, we set f, = , the swap’s second-order factor. With

these new notations, we can find the variance.

Result 3. With the same assumptions as for result 2, the variance is given by

Vz(X) (f fz 1 28, ZW +8 fl 128% ZW +(f2 -7 +2( fz) ”)

2 (=l =12)80 ) X0, 8, (18 - 178, ) X2
where &', = (n, —1)/(n—1). If w, ~ w, the formula can be written as
Va(Xp) = win (8, (/= £2) 1 =208, +8, =8, )+ (8,8, (1, =8.1,))

(2) wwin? (5, (f,  £2)(8, 28,8, )+835, (1,8, — /75, ).

Proof. As in the case of the bias, the expectation of the square of X" can be written as sums of weights over D or its
complement in P, and those sums are multiplied by the joint probabilities of two records being either outgoing if



they are already in the domain or incoming if they are not. Since the permutation is chosen at random, the joint
probabilities do not depend on the elements but only on whether they are in D or in P — D. They are referred to as
second-order outgoing, mixed and incoming probabilities respectively. Denoting the probabilities as 7, n** and

7", we can express the variance as

Ve (x')= (nﬁ —n" )Zwl2 +(nF —nFF)wa

ieD ieP-D

+(TEFF -n'n” )Xf) —2(nFF -nfn” )XDprD +(nFF -nfn” )XIZLD .

Here, 7" and n” are the first-order outgoing and incoming probabilities. The second-order probabilities are equal
to 7" = £,6,8,, 1" = £,8:8% and 1" = k/n(n—1)+ f,(8, —1/n) 8" . Let’s examine the formula for " . For i,
j ¢ F, using the same technique as for result 1, if we have to choose two records in F to be replaced at the end of the
process with i and j while controlling the total number of swaps, we have to control the number of elements in ' that

will be swapped. For example, the number of possibilities for the case in which i and j are replaced with two previ-
ously swapped elements is given by

k=2 _ _ -
k b /ek 221 _1 CrrCrt = €2 (k 2Xk 3) np (nF 1)‘
i=0

(n —2)(11—3)

To conclude the proof, we have to find the sum of this number of possibilities plus all the possibilities of i and j be-
ing swapped with one fixed element and one swapped element of F plus all the possibilities of i and j being swapped
with fixed elements of F. If we divide this number of possibilities by (ekn/)/ (n—k)/, we obtain the expression

138,8) .

It is easy to see that when &7 = 1, 8p = 3p and the variance vanishes. However, if 6p = 1, 8p = dr but there is still
variation. This is due to the fact that w is a member of P. Similarly, if w; ~ w, we can see, albeit after considerable

algebraic manipulation, that 5p = 1 is sufficient to make the variance zero. If we set 8, =, , an assumption shown

to be true for non-negligible domains, the final term of (2) can be written as w2n2( = flz)(SD -39, )2 . Since f; —

fi2 ~— 1/ n for sufficiently large n, it follows that the variance is proportional to #, which leads to the result we set
out to prove.

Result 4. With the same assumptions as for result 2, if w; ~w, the mean square error can be written as
MSE (X))~ nwr|5 5P5F|+0(\/;).

Proof. Under the assumptions mentioned, the variance is proportional to n. Hence, the dominant term of the error
under the radical is the square of the bias. |

4. DATA SWAPPING AND THE EXTREMES

As we saw in the previous section, if w is nearly constant (which is the case in the Canadian Census), the mean
square error is approximately the absolute value of the bias. Since the bias is proportional to n, if we apply this result
to tabulations, data swapping will cause greater distortion in the data in tables for higher-level geographies (e.g.,
geographies with millions of units) than in the data in tables for small communities. However, an efficient statistical
confidentiality protection technique should distort data only when the possibility of identification is non-negligible,
which is the case only for tabulations for small communities. This leads to the following questions: are we generat-
ing enough noise when # is small, and are we generating too much noise when # is large? We will illustrate this
point by comparing the noise produced by data swapping to the noise produced by random rounding in tabulations
for two communities of very different sizes in Canada. We have chosen random rounding as the reference point be-



cause it is used by the Canadian Census. We will take age-marital status tabulations and subject them to data swap-
ping of the second type with a permutation rate of 5% (AGE € 4 and STATUSe B). Table 2 shows the tabulations
before the protection measures were applied. Region II requires a substantial amount of protection (especially for
widowed persons aged 65 and over). Region I needs essentially no protection.

Table 2: Age Groups by Marital Status for Two Regions

Region I
(wi=w) Never married Married Separated Divorced Widowed Total
0-15 165,268 - - - - 165,268
16 - 35 148,313 21,316 1,524 973 120 172,246
36-65 73,508 294,438 21,130 44,795 10,051 443,922
65 + 8,830 65,701 2,170 6,248 43,614 126,563
Total 395,919 381,455 24,824 52,016 53,785 907,999
Region 11
w=1) Never married Married Separated Divorced Widowed Total
0-15 20 - - - - 20
16 - 35 14 1 - - - 15
36-65 19 18 3 8 - 48
65 + - 3 1 1 1 6
Total 53 22 4 9 1 89

Source: Canadian Census of Population. The geographies are not identified because confidentiality measures require rounding of all fre-
quency counts.

After the data swap, we have Table 3. This process is somewhat unrealistic, of course, as we have just created wid-
owed persons under the age of 15. It shows that we have to make sure that the newly created persons can pass all the
survey controls. Data swapping is not as easy to implement as one might think. This way of implementing it is also
unrealistic because it separates age from marital status. Ordinarily, the data swap designer will want to control this
cross-tabulation of variables (e.g., swap selected variables within the unmarried 15-and-under group). However, we
want to illustrate the damage caused by the proportionality of noise to cell size.

Table 3: Age Groups by Marital Status for Two Regions (t = 5%)

Region I
(unequal w) Never married Married Separated Divorced Widowed Total
0-15 161,108 3,021 187 411 541 165,268
16 - 35 144,962 23,557 1,655 1,339 733 172,246
36 - 65 79,115 289,028 20,609 44,047 11,123 443,922
65+ 11,019 65,003 2,242 6,192 42,107 126,563
Total 396,204 380,609 24,693 51,989 54,504 907,999
Region 11
(equal w) Never married Married Separated Divorced Widowed Total
0-15 20 - - - - 20
16 - 35 13 2 - - - 15
36 - 65 20 17 3 8 - 48
65 + 3 1 1 1 6
Total 53 22 4 9 1 89

Let’s look at the count of married persons aged 36 to 65 for region 1. There is a difference of 5,410 (the calculated
error is 5,800). The bias accounts for 99% of the theoretical value for the error. In each age group, the modal status
loses mass to the other statuses. This phenomenon can be identified statistically, revealing a fictitious macroscopic
property. If we look at the table for region II, on the other hand, we have to ask ourselves whether data swapping
provides adequate protection for respondents. The error for the number of married persons aged 36 to 65 is 0.66,
42% of which is explained by the bias. Clearly, in this case, it is not the possibility of identifying a new phenomenon
that causes the problem but the inability to protect the data.

Table 4 shows the same tabulations computed with unbiased random rounding. The noise generated by this method
is less than 2.5 for a given frequency count. Thus, when the count is large, the noise becomes marginal. In the case
of married persons aged 36 to 65 in region I, for instance, noise accounts for less than 0.0008% of the count. By



comparison, noise accounts for 14% of the corresponding count for region II. Since we know the formulas for the
mean square error of such swaps, we can work backwards and determine how many records have to be swapped to
obtain the same amount of noise as random rounding generates for the same count. For regions I and II, the values
are k=2 and k =30 respectively. The obvious conclusion is that data swapping has difficulties when the frequencies
are either very small or very large.

Table 4: Age Groups by Marital Status for Two Regions (Rounding with b =5)

Region I
(unequal w) Never married Married Separated Divorced Widowed Total
0-15 165,265 - - - - 165,270
16 - 35 148,310 21,315 1,525 975 120 172,245
36 - 65 73,510 294,440 21,130 44,795 10,055 443,925
65 + 8,830 65,700 2,170 6,250 43,615 126,565
Total 395,920 381,455 24,825 52,015 53,785 908,000
Region 11
(equal w) Never married Married Separated Divorced Widowed Total
0-15 20 - - - - 20
16 - 35 15 - - - - 15
36 - 65 15 20 - 5 - 45
65 + — — — — — 10
Total 55 25 5 10 85

S. CONCLUSION

As defined in this article, data swapping introduces noise in the data; fictitious persons are created by swapping the
values of selected variables for a small number of records. We have shown that, for tabulations, the noise introduced
is proportional to cell size and is therefore highly coloured. This results in a substantial loss of efficiency at the up-
per and lower ends of the distribution of cell sizes: significant erosion of the modes for large frequency counts and
inability to protect the data for small counts. Designers of confidentiality measures can always use this method to
complement other measures. In the case of a microdata file, for example, after applying all of the standard tech-
niques, such as collapsing categories, the designer has the option of swapping the geographies of certain records
which, in his view, are still at risk.

It is important to obtain an accurate measurement of the distortion added to the data by any confidentiality protec-
tion measure. Because of its probabilistic properties, data swapping is a good example because its efficiency can be
analyzed methodically.
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