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ABSTRACT

Traditional methods for statistical disclosure limitation in tabular data are cell suppression, data rounding and data
perturbation. Each method is applicable to count data whereas only cell suppression is effective for magnitude data. Cell
suppression eliminates otherwise useful data, thwarting straightforward data analysis. Because the suppression mechanismis
not describable in probabilistic terms, suppressed tables are not amenable to statistical methods such as imputation. Data
quality characteristics of suppressed tables are consequently poor. An alternative to cell suppression, controlled tabular
adjustment (CTA), has been introduced. CTA replaces tabular cells that represent disclosure by safe values, uses linear
programming CTA to adjust remaining values to rebalance tabular equations, and does so optimally with respect to any of a
range of global and local measures of data “closeness”. Our recent research extends CTA to quality-preserving CTA, viz., in
addition to protecting confidentiality, important distributional parameters and statistics can be preserved in both univariate and
multivariate settings. Specifically, univariate quality-preserving CTA ensures that adjusted data preserve approximately
means and variances exhibited by original data and that original and adjusted data exhibit high positive correlation. In
addition to preserving univariate properties, multivariate CTA preserves correlations and regressions between two variables
exhibited by original data. All of these methods are based on linear programming formulations that are easy to implement or
enhance.
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1. INTRODUCTION

Tabular data are ubiquitous and are a staple of official statistics. Data confidentiality was first investigated for tabular
data (Fellegi 1972; Cox 1980). Tabular data are additive and thus naturally related to specialized systems of linear
equations: TX =0, where X represents the tabular cells and T the tabular equations, the entries of T are in the set {-1,
0, +1}, and each row of T contains precisely one -1.

A recent methodology for methodology for statistical disclosure limitation (U.S. Department of Commerce 1994) in
tabular data is known as controlled tabular adjustment (CTA). This development was motivated by computational
complexity, analytical obstacles, and general user dissatisfaction with the prevailing methodology, complementary cell
suppression (Cox 1980, 1995). Complementary suppression removes from publication all sensitive cells—cells that
cannot be published due to confidentiality concerns—and in addition removes other, nonsensitive cells to ensure that
values of sensitive cells cannot be reconstructed or closely estimated by manipulating linear tabular relationships.
Drawbacks of cell suppression for statistical analysis include removal of otherwise useful information and difficulties
analyzing tabular systems with cell values missing not-at-random. CTA replaces sensitive cell values with safe values,
viz., values sufficiently far from the true value. Because the adjustments almost certainly throw the additive tabular
system out of kilter, CTA adjusts some or all of the nonsensitive cells by small amounts to restore additivity. CTA is
implemented using mathematical programming methods in commercial software. Cox (2000) provides the first
mathematical model for CTA in the literature.

The main question surrounding CTA is the degree to which it distorts analytical outcomes, that is, whether analysis
based on adjusted data are in some sense equivalent to those based on original data. Here we demonstrate how using
CTA and linear programming it is possible to preserve means, variances, covariances, correlations and the regression
coefficient for univariate and multivariate data. Greater detail can be found for the univariate case in Cox and Kelly
(2004) and for the multivariate case in Cox, Kelly and Patil (2004). Our models are based on linear programming, thus
easy to develop and use and applicable to a range of problems.

Section 2 provides a summary of the original CTA methodology (Cox 2000; Dandekar and Cox 2002). Section 3
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provides linear methods in the univariate case for preserving means and variances of original data and for ensuring high
correlation between original and adjusted data (Cox and Kelly 2004). Section 4 extends this paradigm to the multivariate
case, providing linear programming formulations ensuring that covariances and correlations between two original
variables exhibited in original data are preserved in adjusted data (Cox, Kelly and Patil 2004). In Section 5, we report
computational results. Section 6 provides concluding comments.

2. CONTROLLED TABULAR ADJUSTMENT METHODOLOGY

CTA is applicable to tabular data in any form but for convenience we focus on magnitude data, where the greatest
benefits are to be found. A simple paradigm for statistical disclosure in magnitude data is as follows. A tabulation cell,
denoted 7, comprises k respondents (e.g., retail clothing stores in a county) and their data (e.g., retails sales and
employment data). The NSO assumes that any respondent is aware of the identity of the other respondents. The cell
value is the total value of a statistic of interest (e.g., total retail sales), summed over the (nonnegative) contributions of

each respondent in the cell to this statistic. Denote the cell value v? and the respondent contributions y j(l) , ordered

from largest to smallest. It is possible for any respondent J to compute v(i) -y, ,ﬁ) which yields an upper estimate ofthe

contribution of any other respondent. This estimate is closest, in percentage terms, when J =2 and j = 1. A standard

disclosure rule, the p-percent rule, declares that the cell value represents disclosure if this estimate is closer than p-
percent of the largest contribution. The sensitive cells are precisely those failing this condition.

The NSO may also assume that any respondent can use public knowledge to estimate the contribution of any other
respondent to within g-percent (q > p, e.g.,  =50%). This additional information allows the second largest to estimate
v(i) -y I(i) -y 2(i) , the sum of all contributions excluding itself and the largest, to within q-percent. This upper estimate

provides the second largest with a lower estimate of y, 1(') . The lower and upper protection limits for the cell value
equal, respectively, the minimum amount that must be subtracted from (added to) the cell value so that these lower

(upper) estimates are at least p-percent away from the true value y, 1(') . Numeric values below the lower or above the
upper protection limit are safe values for the cell. A common NSO practice assumes that these protection limits are
equal, to p,. Complementary cell suppression suppresses all sensitive cells from publication, replacing sensitive values

by variables in the tabular system TX = 0. Because, almost surely, one or more suppressed sensitive cell value can be
estimated to within p-percent of it true value, it is necessary to suppress some nonsensitive cells until no sensitive
estimates are within p-percent.

Controlled tabular adjustment replaces each sensitive value with a safe value. This is an improvement over
complementary cell suppression as it replaces a suppression symbol by an actual value. However, safe values are not
necessarily unbiased estimates of true values. To minimize bias, Dandekar and Cox (2002) replace the true value with

one of its protection limits, v(i) -p,; or v(i) + p; , viz., with either of the two safe values closest to the original value.

Because these assignments almost surely throw the tabular system out of kilter, CTA adjusts nonsensitive values to
restore additivity. Because choices to adjust each sensitive value down or up are binary, combined these steps define a
MILP (Cox 2000). Using heuristics for the binary choices, the resulting linear programming relaxation is easily
solved.

A (mixed integer) linear program in itself will not assure that analytical properties of original and adjusted data are
comparable. Cox and Dandekar (2003) address these issues in three ways. First, sensitive values are replaced by closest
possible safe values. Second, lower and upper bounds (capacities) are imposed on changes to nonsensitive values to
ensure adjustments to individual datum are sufficiently small. Statistically sensible capacities would, e.g., be based on
estimated measurement error for each cell g;. Third, the linear program is optimized with respect to an overall measure
of data distortion such as minimum sum of absolute adjustments or minimum sum of percent absolute adjustments, as
follows.

Assume there are » tabulation cells of which the first s are sensitive, original data are represented by the nx1 vector a,

adjusted databya + y+ -y and y= y+ -y . The MILP of Cox (2000) for minimizing sum of absolute adjustments

18:



n
min Z(yi_ + y:) subject to:  I; binary,i=1, ..., s
i=1

T(y)=0 (1)
yvi=p(-1.)., ¥y, =pl i=1,..,s
OSyl.', yl.+ <e; i=st+l,..,n

The Cox and Dandekar (2003) constraints are useful. Unfortunately, choices for the optimizing measure are limited to
linear functions. In the next two sections, we extend this paradigm in two separate directions, focusing on approaches to
preserving mean, variance, correlation and regression between original and adjusted data.

Formulation (1) is a mixed integer linear program, the integer part of which can be solved by exact methods in small to
medium sized problems or via heuristics to fix integer variables followed by a linear program relaxation (Dandekar and
Cox 2002; Cox and Kelly 2004). The remainder of this paper focuses on the problem of preserving data quality under
CTA, and is not concerned with how the integer portion is being or has been solved.

3. USING CTA TO PRESERVE UNIVARIATE RELATIONSHIPS

We present linear programming formulations for preserving exactly or approximately mean, variance, correlation and
regression slope between original and adjusted data.

Preserving mean values is straightforward. Any cell value a; can be held fixed by forcing its corresponding adjustment
variables yl.+ R yl._ to zero, viz., set each variable’s upper capacity to zero. Means are averages over sums. So, for
example, to fix the grand mean, simply fix the grand total. To fix the mean of over any set of variables for which a
corresponding variable has not been defined, incorporate a new constraint into the linear system: > ( y l.+ -y, )=0,

where the sum is taken over the set of variables of interest. The corresponding MILP is:

min ¢(y) subject to: I; binary,i=1, ..., s
T(y)=0 2
Z(yi+_yi-):0
i=1
P,-(]-Ii)ﬁyi_ﬁ%(]'lt): pilisyi+sqili i=1,...s
OSyl.', yl.+ <e; i=st+l,..,n

c('y) is used to keep adjustments close to their lower limit, e.g., ¢(y) =2y +y .

For variance, any subset of cells of size s with y =0,

Var(a+y) =110 ((a +y,-(@+y)))
= Var(a)+ (2/t) X(a;-a) y, + Var(y)
Define L('y) =Cov(a,y)/Var(a). As ; =0,then L(y)= (1/(tVar(a)))Zt: (a;- 5) Y. 0
Var(a+y)/Var(a)=2L(y) + (1+ Var(y)/Var(a)) and }
|Var(a+y)/Var(a)-1]=|2L(y) + (Var(y)/Var(a))|

Thus, it suffices to minimize | L('y) | ;as follows:

a) incorporate two new linear constraints into the system (2):



w >L(y), w=-L(y) 3)

b) minimize w

Regarding correlation, the objective is to achieve high positive correlation between original and adjusted values. We

seek Corr (a, a +y) = 1, exactly or approximately. As y =10,

Corr(a,a+y)=Cov(a,a+y)/.Var(a)Var(a+y)

= (1+ L(»))// Var(a+y)/ Var(a)

With Var(y)/Var(a) typically small, the denominator should be close to one, and min | L('y) | subject to (2) should do
well in preserving correlation. Note that denominator equal to one is equivalent to preserving variance, which as we
have seen also is accomplished via min | L('y) |.

Finally, we seek to preserve ordinary least squares regression ¥ = ﬂ ; X+ ﬂ , ofadjusted data Y = a +y on original

data X = a, viz., we want /3, near one and /3, near zero.

B,=Cov(a+y,a)/ Var(a)=1+L(y), ﬂOZ(;JF;’)‘ﬂlg

As ; =0,then B,= 0, f,= I whenever L(y) =0 is feasible. Again, this corresponds tomin | L('y) | subject to the

constraints of (2), viz., to (3).

4. USING CTA TO PRESERVE MULTIVARIATE RELATIONSHIPS

In place of'a single data set of data a organized in tabular form, viz., Ta = 0, to which adjustments y are to be made for
confidentiality purposes, henceforth we assume there are multiple data sets, all organized within a common tabular
structure T. For concreteness, we focus on bivariate case. Original data are denote a and b and corresponding
adjustments to original values are denoted by variables y and z. In the multivariate situation, preserving covariance and
variance is of key importance. Namely, if we can preserve mean values and the variance-covariance matrix of original
data, then we have preserved essential properties of original data, particularly for the case of linear statistical models.
We also would like to preserve simple linear regression of original data b on original data a in the adjusted data. These
are the objectives of this section.

4.1 Preserving the variance-covariance matrix

The separate copies of model (3) of the preceding section preserve univariate variances Var (a) and Var (b). To
preserve Cov (a, b), we require:

Cov (a,b)=Cov(a+y,b+2z)
= Cov (a, b) + Cov (a, z) + Cov (b, y) + Cov (y, z)

Consequently, we seek a precise or approximate solution to:

min | Cov (a, z) + Cov (b, y) + Cov (y, z)| , subject to (3) 4)

One linear approach to solving (4) is to perform successive alternating linear optimizations, viz., solve (2) fory =y,
substitute y, into (4) and solve for z = z, and continue in this fashion until an acceptable solution is reached.

4.2 Preserving the simple linear regression coefficient

Our objective is to preserve the estimated regression coefficient under simple linear regression of' b on a. We do not
address here related issues of preserving the standard error of the estimate and goodness-of-fit. We seek exactly or
approximately:



Cov (a,b)/Var (a) = Cov(a+y,b+2z)/Var(a+ty)

Var (a+y)/Var(a) = Cov(a+y,b+2z)/Cov(a,b)
= 1+Cov(a,z)/Cov (a,b) + Cov (b,y)/Cov (a,b) + Cov (y, z) / Cov (a, b)

Recall: Var(a + y)/Var(a)=2L(y) + 1 + Var(y)/Var(a)
2L(y) + Var(y)/Var(a) = Cov (a, z) / Cov (a, b) + Cov (b, y) / Cov (a, b)
+ Cov (y, z) / Cov (a, b)

To preserve univariate properties L (y) = 0 exactly or approximately. To preserve bivariate covariance Cov (y, z) =0
exactly or approximately. So, ifin addition we seek to preserve the regression coefficient, then we must satisfy the linear
program:

min |(Cov (a, z) + Cov (b, y)) / Cov (a, b)|, subject to (4) 5)

In implementation, the objective is represented as a near-zero constraint on the absolute value.

4.3 Preserving correlations

The objective here is to ensure that correlations between variables computed on adjusted data are close in value to
correlations based on original data, viz., that, exactly or approximately Corr (a, b) = Corr (a +y, b + z). After some
algebra, preserving correlation is equivalent to satisfying, exactly or approximately:

Var(a+y) (Var(b+z) Cov(a+y,b+z)
Var(a) Var(p)y ~  Cow(a,b)

Methods already included in (5) for preserving both univariate variances and the covariance in manycases will preserve
correlation. Otherwise, it may be helpful to employ iteration aimed at controlling the right hand product.

5. RESULTS OF COMPUTATIONAL SIMULATIONS

We tested our methods on three two-dimensional tables to analyze the performance of the proposed linear formulations
on both univariate and bivariate statistical measures. Three tables were taken from a 4x9x9 three-dimensional table. This
table contained actual magnitude data and disclosure was defined by (1 contributor, 70%) dominance rule, viz, a cell is
sensitive if the largest contribution exceeds 70% of the cell value. This results in protection levels

pi = (vll ) / ()7 — vi. Tables A, B, C contain 6, 5, 4 sensitive cells respectively. Upper bounds (capacities) for

adjustments to sensitive and non-sensitive cells were set at 20-percent of cell value.

First, we used the MILP formulation to compute exact solutions for the three instances AB, AC, BC. The MILP
formulation used the mean and variance preserving constraints and a covariance change minimization objective, aimed at
preserving both univariate and bivariate measures.

Table 1 reports performance on the covariance, correlation, regression coefficient, A data variance, B data variance
measures. Table values are percent change in the original statistical measure. Means were preserved for all three
instances.

Cases Covariance Correlation | Regress. Coeff. Variance i Variance j Original
change change change change change Corr. Coeft.

AB 3.15 1.09 5.94 -3.22 6.2 0.77




AC 1.13 2.63 1.14 -2.43 0.1 0.40
BC 3.6 6.12 6.7 -3.6 -1.89 0.49
Average 2.62 3.28 4.59 -3.08 1.47 0.55

Table 1: Performance of the linear formulations on statistical measures (in percent change)

The ordering heuristic (Dandekar and Cox 2002) first sorts the sensitive cells in descending order and then assigns the
directions for the sensitive cells in an alternating fashion. It is intended to find good solutions with respect to absolute
cell deviation in a computationally efficient manner. We studied its performance on preserving statistical measures by
comparing its performance to that of the exact MILP method and to an optimal (nonlinear) solution. Table 2 reports this
comparison. Given the variation in the quality of the solutions on the covariance and variance measures, the performance
of'the ordering heuristic was good. In fact, the ordering heuristic improved performance on absolute cell deviation. This
finding is consistent with the literature, which demonstrates the better performance of the ordering heuristic on cell
deviation.

Solution Covariance Correlation Variance A Variance B Absolute Cell
Method change change change change Deviation
Exact 3.15 1.09 5.94 -3.22 8.81e+7
Ordering 5.34 2.19 4.49 -4.56 8.78et7
Heuristic

Performance 69 100 -24 41 -0.34

w.r.t. optimal

Table 2: Performance of ordering heuristic (in percent)

6. CONCLUDING COMMENTS

Developments over the past two decades have resulted in a variety of methods for statistical disclosure limitation in
tabular data. Among these, controlled tabular adjustment yields the most useable data product, thereby supporting broad
opportunities to analyze released data. The question is then how well adjusted data preserve analytical outcomes of
original data. Cox and Kelly (2003) addressed this issue in the univariate case. This paper has reported effective linear
formulations for preserving key statistics in univariate and multivariate cases, also reported in Cox (2004).
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