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ABSTRACT

Two different frameworks are used for variance estimation under imputation for missing survey data: (i) design-based; (ii)
model-based. Under (i), uniform response is assumed within imputation classes, while (ii) uses the weaker assumption of
ignorable response but assumes a population (or imputation) model. In this paper, we show how to adapt these frameworks
to the case of two-stage sampling. Variance estimation is performed using two methods using the model-based framework:
(i) the method of Sarndal (1992) and (ii) the method of Shao-Steel based on the reverse approach of Fay (1991). A
simulation study is conducted to evaluate the robustness of the two methods in terms of relative bias of the variance
estimators when the imputation model is misspecified.

KEYWORDS: Design-Based Framework; Intracluster Correlation; Model-Based Framework; Variance Estimation.

1. INTRODUCTION

Multi-stage sampling is often used in surveys, especially when direct element sampling is impractical (or
impossible). In this paper, we confine to the case of two-stage cluster sampling. We adopt the following notation:

N
Let a finite population consisting of N nonoverlapping clusters, U, of size M,,i =1..,N. Let K = ZMi denote
i=1

the total number of ultimate units (elements) in the population. Further, let v, be the value of avariable of interest y

for the j™ element inthe i" cluster, i=1..,N; j=1..,M, and Y, be the i-th cluster total. The objective is to

N N M
estimate the population total Y =Y, => >y, by selecting a sample according to a two-stage design: at the

i=1 i=1l j=1

first stage, a random sample of clusters, s, of size n, is selected according to a given design p(s) from the
population of clusters. At the second stage, a random sample of elements, s, of size m (i :L...,n) is selected
according to agiven design p, (sI ) if thei-th cluster is sampled. Under complete response to item y, an estimator of

YA:ZZ\Nijyijv 1)

iOs [ §

where w; = (’Tiﬂ”i )‘1, 7= P(i Ds) istheinclusion probability of cluster i in s, and Ty is the conditional probability

Y, denoted Y , is given by

of inclusion of element j belonging to cluster i in s, i=1..,N; j=1..,M,. Itiswell-known that the estimator Y
given in (1) is design-unbiased for Y; that is, Ep(\?):Y, where Ep(.) denotes the expectation with respect to the
sampling design. In the case of two-stage sampling, note that E, ()= E,E,(|s), where E,() and E,() denote
respectively the expectation with respect to the first and second stages.
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In the case of nonresponse to itemyy, it is not possible to compute the estimator given in (1) since some y-values are
missing. We impute for the missing y-values and define an imputed estimator of Y, denoted Y, , as

Yo=Y Y wiayy W, (1—a“- )yu , 2
i0s | s s
where yIJ denotes the imputed value for missing y; and a; isaresponseindicator such that a; =1 if element j in
cluster i responds to item y and a; =0 otherwise. For simplicity, we assume a single imputation class, but the
results extend to multiple classes. We consider mean imputation that uses the imputed values
_ stzm s Wi & Yi

y:; =Y =
ZiDs s \Nij aij

Using the imputed values (3) in (2), the imputed estimator \?, reduces to

- Z Zm W
Y, = Wi &, Y- (4)
S5 2 Wiy

VVij aij iOs [ s

©)

To study the properties (e.g., bias and variance) of the imputed estimator \?I , two distinct frameworks have been
used in the literature: (i) Design-based framework; see Rao (1990), Rao and Sitter (1995) and Shao and Steel (1999);
(ii) Model-based framework ; see Sérndal (1992), Deville and Sérndal (1994) and Shao and Steel (1999). The
customary design-based is based on:

Assumption DB: E, (a”. ): p, (uniform response) and E, (aijai,j,): E, (a” )Er (ai.j,): p? except for i=i' and j=j'
(independence of the response statuses), where E, (.)denotec the expectation with respect to the response
mechanism.

The customary model-based framework is based on:

Assumption MB: The response mechanism is ignorable or unconfounded in the sense that whether or not a unit
responds does not depend on the variable being imputed but may depend on the covariates in the assumed
imputation model. For mean imputation, the model is given by

Enly; )= 1.Vnly, )= 0%, Cov, [y, vy ) = 0if ()% 177 ©)
where E, (),V,,() and Cov,, () denote respectively the expectation, variance and covariance with respect to the
imputation model (5).

Imputation classes are usualy chosen to make the assumption DB or MB approximately valid. The response
mechanism in assumption MB is much weaker than the uniform response in assumption DB, but inferences depend
on the assumed imputation model. Note that the imputed estimator (4) is robust in the sense that it is approximately
unbiased under assumption DB as well as assumption MB.

Assumptions DB and MB may not be tenable in the case of two-stage sampling because the within cluster
correlations are not taken into account. Therefore, in section 2, we propose more realistic assumptions that reflect
dependence within a cluster and show that the imputed estimator (4) remains valid. Section 3 compares the
conditional variances, given the sample, to study the effect of within-cluster correlations. In section 4, we derive
variance estimators under the model-based framework, using Sérndal’s method and the Shao-Steel’ s method based
on the reverse approach of Fay (1991). In section 5, a simulation study is conducted to compare the two variance
estimation methods when the imputation model is misspecified. Finaly, in section 6, we briefly discuss some
possible extensions.
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2. FRAMEWORKSFOR TWO-STAGE SAMPLING

In this section we propose weaker assumptions, corresponding to the two frameworks, that reflect within-cluster
correlations. The design-based framework is now based on

Assumption DBC: E,( .j): p, ad E, (aijaij.)= p,, for j#j'. Note that, in generd,
E, (aij aij,)i E, (a”- )Er (a”.): pZ; that is, the response statuses between two units in the same cluster are not
independent.

The model-based framework is now based on

Assumption MBC: The response mechanism is ignorable or unconfounded in the sense that whether or not a unit
responds does not depend on the variable being imputed but may depend on the covariates in the assumed
imputation model. For mean imputation, the model is the well known one-way ANOV A model with random effects
given by

miy; =pd+a, +&, (6)

where p isthe general mean, a;isi-th cluster random effect and ¢ istheresidual error. We assume that
() Enfa)=Eqlg;)=0
(i) Cov,(e; &;)=0 exceptfor i=i' and j=j', Cov,(a,,a;)=0 0i#i' Cov,la,, &, )=0 Oi,i'and ',

(i) V, (@) = jml, Vg, )= 020, .

From (i)-(iii), we get

2

g, ifi=i'andj#j'
Covm(yij7yi’j'): o:+o? ifi=i'andj=j'
0 ifizi

Once again, the imputed estimator (4) is robust in the sense that it is approximately unbiased under assumption DBC
as well as assumption MBC.

3. COMPARISON OF CONDITIONAL VARIANCES

Thetotal error, \?I -Y , may be decomposed as

v, -y =V -v)+ (v -¥). ™
Theterm Y =Y in (7) is called the sampling error, whereas the term \? -Y iscalled the error due nonresponse and
imputation. Since the %u‘nplmg error does not depend on nonresponse and on the imputation method, we focus on
the nonresponse component Y -Y to study the conditional variance of Y -Y, under the design-based and the
model-based frameworks, given the full sample of elementss .

3.1 Design-based framework

In this section, we study the conditional variance V, (\?, —\?|§) , under assumption DB and assumption DBC. First,
using Taylor linearization, it iseasily seen that under assumption DB,

Vo7, -v[s)< 2 "1 PEZPIS S ey, - 3F, ®

iOs P s
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where y = stzm Wi Yy /stz w; . Similarly, under assumption DBC,

vl ~7)= BB S gy, - + BB S5 5w (-5 b, -9) ®

iOs P s iOs Ps s
i#)

Let Ry, =V,>%¢ (\?l —Y|§)/VrDB(\?| —Y|§). Then, we have

Rpg =1+ Iop(EDB _1)7 (10)
where
b = Cov,(a,.8,) _ p,-p?
M ME] REp)
isthe intracluster correlation of the response indicators under assumption DBC and
—\]2
~ Zius(Zm 5 Wi (yij - y))
Cpg = 2( - _)2 .
ZiDsZm S \Nij yij y
Severa points may be noted from (10). First, if p, =0 then IiDB =1, asexpected. If p, islargethen IiDB may be
substantial. Hence, in this case, using assumption DB instead of assumption DBC may lead to severe
underestimation of the variance of the imputed estimator Y,. Using the Cauchy-Schwarz inequality,

(ZJ_DS by C; )2 < st b? 2o c¢?,with b, =1 and ¢; =w, [y, - ), we have

[wyu -y)} < Xuily, -5F

iOs iOs
which implies that

ZnZ il o9
Zleng lj(yu ) -

It follows that an upper bound for RDB isgiven by

Ros <1+ 0, (0o ~1) (11)
if p, 20.Inthe particular case of equal subsample sizes, m =m, (11) becomes
RDB <l+p, ( ) (12)

Expression (12) suggests that the ratio F~2DB increases, for fixed p, as the number of elements selected in each
cluster, m, increasesor as p, increases for fixed m.

3.2 Model-based framework
In this section, we study the conditional variance V,, (\?, —\?|§), under assumption MB and assumption MBC. First,

noting that
-Y =2 > widyy,

iOs s

_ZiDs msiwa

with

di' = g; _:L
J ZiDSZm S \N'J l
it iseasily seen that under assumption MB
Ve, -VE)= 07> S wid?. (13)

iOs P's
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Similarly, it is easily seen that under assumption MBC
Vel -Vs)= (02 + o] Y wie + 02 Y Y Y ww,dd (14)
i0s I s i0s 80" §
i#i
Noting that o2 = g% + 02, theratio R, =V, (\?, —\?|’§)/Vn“]’“3(\?, —\?|§) isequal to
ﬁMB =1+ p, (EMB _1)1 (15)
where
o = Covm(yij ) yij’) _ o’
; \/Vm(yij )\/m(yij') o, +0;
isthe intracluster correlation of the y-values under assumption MBC and
2
E _ ZiDs Ps \Nijdij )
MB T 242 ¢
stzm L Wi d;
Once again, using Cauchy-Schwarz inequality, we have
2
[Zwi,-di,} sm > widf,
iOsi iOsi
which implies that

6 < ZiDsZm Si mvv'fd'lz
MB =
Ziﬂszm si \N'lZd'lz

It follows that an upper bound for ﬁMB isgiven by

= dMB'

Rus <1+ oy (dys ~1) (16)
if p,=0.Inthe particular case m = m, the expression (16) becomes
Rys <1+ o, (m-1). (17)

It follows from (17) that the ratio ﬁMB increases as mincreases for fixed o, or as o, increases for fixed m.

4. VARIANCE ESTIMATION UNDER THE MODEL-BASED FRAMEWORK
Traditionally, researchers have used the following sample-response path (two-phase approach) for variance
estimation:

Population — complete sample — sample with nonrespondents.

Under assumption MB, Sarndal (1992) used the following decompostion of the total variance :

vl -v)=v, =E.EE N -v)f =V, +v,, +2v,.,, (18)
where V.., = E.V, IV = Y[} Vi, = E,EV, IV -V )andv,,, = £,E,|V - Y )& [V -V)5)|.
Under Sérndal’s method, an estimator of the total variance V(\?I —Y) is given by v, =vg, +V,, +2v,,, where

Ve ISanestimator of Vg, v, isan estimator of V, ,, and v,;, isan estimator of V,,, .

sam sam? Yimp

Fay (1991) used a different approach by reversing the order of sampling and response (we will cal it the reverse
approach) that can be depicted as:
Population - census with nonrespondents — sample with nonrespondents.

In this case (Shao and Steel, 1999),
v, -Y)=E.EV, 1, -Yja)+ EV,E, [V, ~Y]a) (19)

rVYm-=p
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where a is the vector of response indicators a; and noting that V, EmEp(\?I —Y|a): 0 since the imputed estimator
\?, is unbiased under either assumption MB or assumption MBC. Under the reverse approach, an estimator of the
overall variance V(\?, —Y) isgiven by v, =v, +v,, where v, is an estimator of Vp(\?, —Y|a) conditiona on the
vector of response indicators a, and v, is an estimator of EerEp(\?I —Y|a). The estimator v, does not depend on
the response mechanism and/or the imputation model. As aresult, v, is valid regardless of the assumptions made

on the response mechanism and/or the imputation model. Since the component Vp(\?, —Y|a) represents only

sampling variability, its estimation may be readily implemented using any standard variance estimation method:
Taylor linearization, Jackknife and Bootstrap. In the context of two-stage sampling, the second component v, of v,

istypically negligiblerelative to v, if the overall sampling fraction is small.

In this paper, we focus on the case of simple random sampling without replacement at the first and second stages, so

M, . . AL
that w; = %FI . Under compl ete response, an estimator of variance of Y isgiven by

For(-LheMyu( 1L @

i0s
AN2
, 1 2 N v , 1 IR
where s2 —mzims(\ﬁ —N] with Y, —WZ]_DS y; and s _FLZJ'DS (yij yi) with y =Y, /M,. We
will use (20) to estimate Vp(\?, —Y|a) in section 4.2.
4.1 Sarndal’s method

In this section, we derive an estimator of the variance under assumption MBC and simple random sampling without
replacement at the first and second stages. The estimation of V., V,,,, and V,;, may be performed as follows:

(i) Let v, bethe variance estimator under full response and let v, bethe “naive” variance estimator of \?l obtained
from (20) by treating the imputed values as if they were observed. It is well known that for several imputation
methods (in particular, for the deterministic methods), v, underestimates V_,. To compensate for this
underestimation, eval uate the following expectation:

Em(vp -V, |§) =V .
Then, determine a model unbiased estimator of V,, , denoted v, . Thiswill usually require the estimation of certain
parameters of the imputation model m. Then,

Vam =V + Vg
is model unbiased for V.

(i) Then, determine a model unbiased estimator of V,,,, denoted v,

imp

reguire the estimation of unknown parameters of the imputation model m.

. Again, this may

e, En(imf5)=V,

mp

denoted v, i.e., Em(vmix|§)zvm'x' Again, this may

mix !

reguire the estimation of unknown parameters of the imputation model m.

(i) Finally, determine a model unbiased estimator of V,

mix !

Finally, an estimator of V,, , denoted by v, , isgiven by
Vie =V Ve F Vi T2V, (21)

ot 7
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We now give the expressions of the different componentsin (21). First, note that the component v, isobtained by
replacing s; and s; by s}, and s, in(20), where s, and s;, are computed the sameway as s; and s by
treating the imputed values as if they were true values. After tedious but straightforward algebra we obtain:

m

]

: [ZDS(Mi . j{%}zrfh } - =

21
-1 M.
n Ziﬂsﬁlri

I (=

where r; isthe number of respondentsto itemyin s,

Var = NZ(E—ijiz(ﬂjz 6z +62)-2al-s

n N/n&(m

@

Vip = (ﬁjzz(&ﬂ(ﬁﬂ ~1f'r +o ]&5 + Bﬁ&j}, (23)

n i0s rT.Ii
where o, isthe number of nonrespondentstoitemyin s, B, = p~'r, —m with

=Y. Y wa, /Y3, w, . Finall,
v, = (ﬁjzz[ﬂjz{a (moz +62} -Ns Mifg (w62 +62). 24)

n is ”\ n i0s ”\

Note that 62 and &7 are estimators of o> and o? respectively that can be obtained using available methods such
as ML, REML or MINQUE methods. Also, note that the variance estimators under assumption MB are obtained by
setting 62 =0 in (22)-(24).

4.2 Shao-Stedl’s method

To apply the Shao-Steel method, we first express Y, as Y, = KR,, where K = stzm , W and R, =Y,/K,,
with Y, = stzm L Wia,y; and K, = stzm  W;a. Now, denote the estimator of the variance of

Y = stzm . w;y; based on the full sample asv(y). Then, one can show, using Taylor linearization, that v,

reducesto

v =v{g), (25

where

Statistics Canada - Catalogue no. 11-522-XIE 8
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éij =a;Y; +(1_aij )éa +Maﬁ (yij - Iia) (26)

a

A

In the case of simple random sampling without replacement at the first and second stages, the component v, is
obtained from (20) by replacing y; by 3” where 3”. isgiven by (26) . To obtain v, , note that

g, -YR)=3 > by, where by =(K/K,)a, -1 with K, =¥ K, and K, =Y a . Also,itis
easy to show that

EV,E, (Y -Y)= afK(E—(KK—5—1J+J§{E—?%); E (k2) _ZHKK_}%M‘E' (Km)+;Mf}. @)

The component v, isthen obtained by substituting estimators for the unknown quantitiesin (27), which leads to

~ < A2 ~ ~ ~ % ~
v, = 62K K4 +4? %ZW[K; —VZ(KJ —2LZwiMiKa. +Zwi|\/|f}, (28)
Ka Ka ids Ka ids i0s
where w, :i, Kaj :st w8, and W is the survey weight of element j at the second stage given that cluster
P .

i has been selected in the first stage sample. Noting that VZ(IZBJ.): EZ(KaZj)— KZ, an estimate of K7 is given by
Kazj —\72 (IZaj ) where \72 (Ra,) is an estimate of VZ(Kaj) The sum of (25) and (28) gives v, . Note that the variance
estimators under assumption MB are obtained by setting 62 =0 in (28). Also, note that theratio v, /v, is O(n/K),
where K is the total number of ultimate units. Hence, the component v, may be negligible with respect to v, even

when the first-stage sampling fraction n/ N islarge. Asaresult, when n/K is negligible (asit is frequently the case
in multistage designs), the computation of v, may be omitted.

5. SSIMULATION STUDY

We conducted a limited simulation study on the relative performance of the variance estimators obtained by
Séarndal's method and the Shao-Steel’s method. We generated several populations of N =120 clusters with
M, =M =5,20 elements in cluster i such that the intracluster correlation p,, =0.05,0.1,0.2. To do this, we first
generated i.i.d. random variables
y, ~N(u,02)i =1...N,

with £ =200 and ¢ =100. Then, we generated i.i.d. random variables

& ~N0.0?2) j=1..M,
1- P

m

with 0?2 = o’ for p,, #0.They-values are then generated by letting

Yi =Y T&.

From each generated population, we selected R=5000 samples of clusters of size n according simple random
sampling without replacement, where n/N = 0.1, 0.5. To simplify the discussion, we consider single-stage cluster

sampling, i.e., m, =M, . In each sample of cluster, we assigned a probability p; to cluster i,i =1,...,n, where
p, was generated from a beta distribution. Then, response indicators a; were generated from a Bernoulli
distribution with parameter p. . The overall response rate was set to 0.65.

From each sample, the imputed estimator \?l , given by (2), was computed and its variance was estimated using both
Sarndal's method and the Shao-Steel’ s method. For each method, the variance estimators were cal culated under

9 Statistics Canada - Catalogue no. 11-522-XIE
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assumption MBC and assumption MB. The imputed estimator \?l was approximately unbiased for all the scenarios
with aMonte Carlo relative bias less than 0.3%.

As ameasure of the bias of a variance estimator, v(\?, ) , we used the relative bias

RB(V(\?I )) _ E[v(Y'.V?]S-E'i\/'(IS)E(\G ) x100,

where MSE(\?I ) denotes the mean squared error of \?l . Table 1 and 2 report the relative bias values for n/N = 0.1
and 0.5, respectively.

From Table 1 and Table 2, we note that both Sérndal's and Shao-Steel’ s method perform well when the intracluster
correlation is taken into account (i.e., when the variance estimators are derived under assumption MBC) since the
absolute value of the relative bias of the variance estimators isless than 7% in all cases. Note that the component
Vi, i Sérndal’s method is equal to O under this particular design. When the intracluster correlation is not taken into
account (i.e., when the variance estimators are derived under assumption MB), Sarndal's method leads to
underestimation of the true variance. The underestimation increases as the intracluster correlation coefficient p,,
and/or the cluster size M, increases. For example, whenn/N =0.1and p,, =0.1, therelative biasis -9.2% for

M, =5 and -30.1% for M, =20. Also, whenn/N=0.1and M, = 20, therelative biasis-17.6%if p, =0.05and -
39.8%if p,, =0.2. Note that the sampling fraction n/N does not seem to have a significant impact on the relative
bias of the variance estimators. Also, it isinteresting to note that Sarndal's method performs poorly when the
imputation model is incorrectly specified mainly because the component v, tendsto be severely biased in those

cases. The Shao-Steel’s method, on the other hand, performs fairly well when the imputation model is incorrectly
specified as the absolute value of the relative biasisless than 5% in all cases. Thisresult isnot surprising since the
first component, v;, of the total variance is robust in the sense that it does not depend on the assumptions made
about the imputation model and since the second component Vv,, is negligible with respect to v; when n/K is
negligible. Note that, even when /N =0.5and M, =5, we have n/K = 0.1, which may be considered as small. In

summary, the Shao-Steel’ s method seems to be robust unlike Sérndal's method, when the assumptions about the
model are violated.

Tablel
Relative bias (%) of the variance estimatorswith n/N =0.1
Pm =0.05 Pm =01 Pm =02
M;=5| M;=20 | M;=5 | M, =20 | M, =5 | M, =20
Sérndal’ s method ( under MBC) 6.5 6.7 6.3 3.3 1.6 2.3
Shao-Steel method (under MBC) -4.0 0.2 -1.2 -1.6 -3.2 -1.6
Sérndal’ s method (under MB) -6.2 -17.6 -9.2 -30.1 -19.6 -39.8
Shao-Steel method (under MB) -4.7 -0.2 -1.5 -1.8 -3.6 -2.1
Table2
Relative bias (%) of the variance estimatorswith n/N =0.5
P =0.05 Pm =01 Pm =02
M, =5 | M;=20 | M;=5| M,=20 | M, =5 | M, =20
Sérndal’ s method ( under MBC) 1.3 14 2.6 3.3 24 3.2
Shao-Steel method (under MBC) 0.2 0.3 1.2 0.2 0.6 15
Sérndal’ s method (under MB) -4.9 -18.0 -8.8 -27.1 -15.7 -38.1
Shao-Steel method (under MB) -0.4 -1.6 -1.5 -2.1 -2.2 -2.6
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6. EXTENSIONS

In this paper, we have investigated the case of mean imputation in two-stage sampling. The results obtained may be
extended to the case of two-stage sampling and regression imputation. For example, suppose that a vector of g
auxiliary variables z = (21 zq) is observed on all the sampled elements (respondents and nonrespondents). In the

case of assumption MBC, the imputation model is given by
Vi =Z;B+a +¢

ij?

where B isan unknown g-vector of fixed effects parametersand a; and &; are as before. Regression imputation

uses y; = z’ijﬁ ory; = z’ijﬁ +4,, where B isthe ordinary or weighted least squares estimators of g and &, isthe
predictor of the random effect.
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