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ABSTRACT 
 

Two different frameworks are used for variance estimation under imputation for missing survey data: (i) design-based; (ii) 
model-based. Under (i), uniform response is assumed within imputation classes, while (ii) uses the weaker assumption of 
ignorable response but assumes a population (or  imputation) model. In this paper, we show how to adapt these frameworks 
to the case of two-stage sampling. Variance estimation is performed using two methods using the model-based framework: 
(i) the method of Särndal (1992) and (ii) the method of Shao-Steel based on the reverse approach of Fay (1991).  A 
simulation study is conducted to evaluate the robustness of the two methods in terms of relative bias of the variance 
estimators when the imputation model is misspecified.  
 
KEYWORDS:  Design-Based Framework; Intracluster Correlation; Model-Based Framework; Variance Estimation. 

 
 

1.  INTRODUCTION 
 
Multi-stage sampling is often used in surveys, especially when direct element sampling is impractical (or 
impossible). In this paper, we confine to the case of two-stage cluster sampling. We adopt the following notation: 

Let a finite population consisting of N nonoverlapping clusters, iU  of size NiM i ,...,1 , = . Let ∑
=

=
N

i
iMK

1

 denote 

the total number of ultimate units (elements) in the population. Further, let ijy be the value of a variable of interest y 

for the thj  element in the thi  cluster, iMjNi ,...,1  ;,...,1 ==  and iY  be the i-th cluster total. The objective is to 

estimate the population total ,
1 11
∑∑∑

= ==

==
N

i

M

j
ij

N

i
i

i

yYY  by selecting a sample according to a two-stage design: at the 

first stage,  a random sample of clusters, s, of size n, is selected according to a given design ( )sp  from the 

population of clusters. At the second stage, a random sample of elements, is , of size ( )nimi ,...,1=  is selected 

according to a given design ( )ii sp  if the i-th cluster is sampled. Under complete response to item y, an estimator of 

Y, denoted Ŷ , is given by 

   ,ˆ ∑∑
∈ ∈

=
si sj

ijij

i

ywY                     (1) 

where ( ) ( )siPw iijiij ∈== − πππ  ,1
|  is the inclusion probability of cluster i in s, and ijπ  is the conditional probability 

of inclusion of element j belonging to cluster i in is , iMjNi ,...,1  ;,...,1 == . It is well-known that the estimator Ŷ  

given in (1) is design-unbiased for Y; that is, ( ) YYE p =ˆ , where ( ).pE  denotes the expectation with respect to the 

sampling design. In the case of two-stage sampling, note that ( ) ( )sEEE p .. 21= , where ( ).1E  and ( ).2E  denote 

respectively the expectation with respect to the first and second stages.  
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In the case of nonresponse to item y, it is not possible to compute the estimator given in (1) since some y-values are 

missing. We impute for the missing y-values and define an imputed estimator of Y, denoted IŶ , as 

  ( ) ,1ˆ *∑ ∑ ∑
∈ ∈ ∈ 











−+=

si sj sj
ijijijijijijI

i i

yawyawY                (2) 

where *
ijy  denotes the imputed value for missing ijy  and ija  is a response indicator such that 1=ija  if element  j in 

cluster i responds to item y and 0=ija  otherwise. For simplicity, we assume a single imputation class, but the 

results extend to multiple classes. We consider mean imputation that uses the imputed values  

  .*

∑ ∑
∑ ∑

∈ ∈

∈ ∈==
si sj ijij

si sj ijijij
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i

i

aw

yaw
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Using the imputed values (3) in (2), the imputed estimator IŶ  reduces to 

  .ˆ ∑∑∑ ∑
∑ ∑

∈ ∈∈ ∈

∈ ∈=
si sj

ijijij

si sj ijij

si sj ij

I

i
i

i yaw
aw

w
Y                (4) 

 

To study the properties (e.g., bias and variance) of the imputed estimator IŶ , two distinct frameworks have been 

used in the literature: (i) Design-based framework; see Rao (1990), Rao and Sitter (1995) and Shao and Steel (1999); 
(ii) Model-based framework ; see Särndal (1992), Deville and Särndal (1994) and Shao and Steel (1999). The 
customary design-based is based on: 
 

Assumption DB: ( ) 1paE ijr =  (uniform response) and ( ) ( ) ( ) 2
1paEaEaaE jirijrjiijr == ′′′′  except for ii ′=  and jj ′=  

(independence of the response statuses), where ( ).rE denotes the expectation with respect to the response 

mechanism. 
 
The customary model-based framework is based on: 
 
Assumption MB: The response mechanism is ignorable or unconfounded in the sense that whether or not a unit 
responds does not depend on the variable being imputed but may depend on the covariates in the assumed 
imputation model. For mean imputation, the model is given by   

  ( ) ( ) ( ) ( ) ( ), if 0, , , 2 jiijyyCovyVyE jiijmijmijm ′′≠=== ′′σµ              (5) 

where ( ) ( ). ,. mm VE  and ( ).mCov  denote respectively the expectation, variance and covariance with respect to the 

imputation model (5). 
 
Imputation classes are usually chosen to make the assumption DB or MB approximately valid. The response 
mechanism in assumption MB is much weaker than the uniform response in assumption DB, but inferences depend 
on the assumed imputation model. Note that the imputed estimator (4) is robust in the sense that it is approximately 
unbiased under assumption DB as well as assumption MB. 
 
Assumptions DB and MB may not be tenable in the case of two-stage sampling because the within cluster 
correlations are not taken into account. Therefore, in section 2, we propose more realistic assumptions that reflect 
dependence within a cluster and show that the imputed estimator (4) remains valid. Section 3 compares the 
conditional variances, given the sample, to study the effect of within-cluster correlations. In section 4, we derive 
variance estimators under the model-based framework, using Särndal’s method and the Shao-Steel’s method based 
on the reverse approach of Fay (1991). In section 5, a simulation study is conducted to compare the two variance 
estimation methods when the imputation model is misspecified. Finally, in section 6, we briefly discuss some 
possible extensions.  
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2.  FRAMEWORKS FOR TWO-STAGE SAMPLING 
 
In this section we propose weaker assumptions, corresponding to the two frameworks, that reflect within-cluster 
correlations. The design-based framework is now based on 
 
Assumption DBC: ( ) 1paE ijr =  and ( ) 2paaE jiijr =′ , for jj ′≠ . Note that, in general, 

( ) ( ) ( ) 2
1paEaEaaE jirijrjiijr =≠ ′′ ; that is, the response statuses between two units in the same cluster are not 

independent. 
 
The model-based framework is now based on 
 
Assumption MBC: The response mechanism is ignorable or unconfounded in the sense that whether or not a unit 
responds does not depend on the variable being imputed but may depend on the covariates in the assumed 
imputation model. For mean imputation, the model is the well known one-way ANOVA model with random effects 
given by 
  ijiijym εαµ ++=: ,                 (6) 

where µ is the general mean, iα is i-th cluster random effect and ijε  is the residual error. We assume that 

(i)   ( ) ( ) ,0== ijmim EE εα   

(ii)  ( ) 0, =′′jiijmCov εε  except for ii ′=  and jj ′= , ( ) 0, =′iimCov αα    ( ) , and ,  0, , jiiCovii jiim ′′∀=′≠∀ ′′εα  

(iii) ( ) ( ) .,    , 22 jiViV ijmim ∀=∀= εα σεσα  

 
From (i)-(iii), we get 

( )














′≠

′=′=+

′≠′=

=′′

ii

jjii

jjii

yyCov jiijm

 if                     0

 and  if          

 and  if                  

, 22

2

εα

α

σσ

σ

 

 
Once again, the imputed estimator (4) is robust in the sense that it is approximately unbiased under assumption DBC 
as well as assumption MBC. 
 
 

3.  COMPARISON OF CONDITIONAL VARIANCES 
 

The total error, YYI −ˆ , may be decomposed as  

  ( ) ( )YYYYYY II
ˆˆˆˆ −+−=− .                 (7) 

The term YY −ˆ  in (7) is called the sampling error, whereas the term YYI
ˆˆ −  is called the error due nonresponse and 

imputation. Since the sampling error does not depend on nonresponse and on the imputation method, we focus on 

the nonresponse component YYI
ˆˆ −  to study the conditional variance of YYI

ˆˆ − , under the design-based and the 

model-based frameworks, given the full sample of elements s~ .  
 
3.1 Design-based framework 
 
In this section, we study the conditional variance ( )sYYV Ir

~ˆˆ −  , under assumption DB and assumption DBC. First, 

using Taylor linearization, it is easily seen that under assumption DB,  

( ) ( ) ( ) ,
1~ˆˆ 22

2
1

11 ∑∑
∈ ∈

−
−

≈−
si sj

ijijI
DB

r

i

yyw
p

pp
sYYV               (8) 
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where ∑ ∑∑ ∑ ∈ ∈∈ ∈
=

si sj ijsi sj ijij
ii
wywy . Similarly, under assumption DBC,  

 ( ) ( ) ( ) ( ) ( ).1~ˆˆ
2
1

2
1222

2
1

11 yywyyw
p

pp
yyw

p

pp
sYYV jiji

si sj sj
ijij

si sj
ijijI

DBC
r

i
jj
ii

−−
−

+−
−

≈− ′′
∈ ∈ ∈ ′∈ ∈
∑∑∑∑∑

′≠

                     (9) 

Let ( ) ( )sYYVsYYVR I
DB

rI
DBC

rDB
~ˆ~ˆ~ −−= . Then, we have  

( )1~1
~ −+= DBpDB cR ρ ,               (10) 

where  

  
( )

( ) ( ) ( )11

2
12

1

,

pp

pp

aVaV

aaCov

jirijr

jiijr
p −

−==
′

′ρ  

is the intracluster correlation of the response indicators under assumption DBC and  

  
( )( )
( ) .~

22

2

∑ ∑
∑ ∑

∈ ∈

∈ ∈

−

−
=

si sj ijij

si sj ijij

DB

i

i

yyw

yyw
c  

Several points may be noted from (10). First, if 0=pρ  then 1
~ =DBR , as expected. If pρ  is large then DBR

~
 may be 

substantial. Hence, in this case, using assumption DB instead of assumption DBC may lead to severe 

underestimation of the variance of the imputed estimator IŶ . Using the Cauchy-Schwarz inequality, 

( ) ∑ ∑∑ ∈ ∈∈
≤

i ii sj sj ijijsj ijij cbcb 222
, with 1=ijb  and ( )yywc ijijij −= , we have 

  ( ) ( )∑∑
∈∈

−≤









−

ii sj
ijiji

sj
ijij yywmyyw 22

2

,  

which implies that  

( )
( ) .

~~
22

22

DB

si sj ijij

si sj ijiji

DB d
yyw

yywm
c

i

i ≡
−

−
≤
∑ ∑
∑ ∑

∈ ∈

∈ ∈
 

It follows that an upper bound for DBR
~

 is given by 

  ( )1
~

1
~ −+≤ DBpDB dR ρ                (11) 

if 0≥pρ . In the particular case of equal subsample sizes, mmi = , (11) becomes 

  ( ).11
~ −+≤ mR pDB ρ                (12) 

Expression (12) suggests that the ratio DBR
~

 increases, for fixed pρ  as the number of elements selected in each 

cluster, m, increases or as pρ  increases for fixed m. 

 
3.2 Model-based framework 
 
In this section, we study the conditional variance ( )sYYV Im

~ˆˆ − , under assumption MB and assumption MBC. First, 

noting that  

∑∑
∈ ∈

=−
si sj

ijijijI

i

ydwYY ˆˆ  

with  

  ,1−=
∑ ∑
∑ ∑

∈ ∈

∈ ∈
ij

si sj ij

si sj ijij

ij a
w

aw
d

i

i  

it is easily seen that under assumption MB 

  ( ) .~ˆˆ 222∑∑
∈ ∈

=−
si sj

ijijI
MB

m

i

dwsYYV σ               (13) 
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Similarly, it is easily seen that under assumption MBC 

  ( ) ( ) .~ˆˆ 22222 ∑∑∑∑∑
∈ ∈ ∈ ′

′′
∈ ∈

′≠

++=−
si sj sj

jiijjiij
si sj

ijijI
MBC

m

i
jj
ii

ddwwdwsYYV αεα σσσ           (14) 

Noting that 222
εα σσσ += , the ratio ( ) ( )sYYVsYYVR I

MB
mI

MBC
mMB

~ˆˆ~ˆˆ~ −−=  is equal to 

( ),1~1
~ −+= MBmMB cR ρ                (15) 

where  

  
( )

( ) ( ) 22

2,

εα

α

σσ
σρ
+

==
′

′

jimijm

jiijm
m

yVyV

yyCov
 

is the intracluster correlation of the y-values under assumption MBC and  

  
( )

.~
22

2

∑ ∑
∑ ∑

∈ ∈

∈ ∈=
si sj ijij

si sj ijij

MB

i

i
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dw
c  

Once again, using Cauchy-Schwarz inequality, we have 

,22

2

∑∑
∈∈

≤










ii sj
ijiji

sj
ijij dwmdw  

which implies that  
 

 

It follows that an upper bound for MBR
~

 is given by 

  ( ).1
~

1
~ −+≤ MBmMB dR ρ                (16) 

if .0≥mρ In the particular case mmi = , the expression (16) becomes 

  ( ).11
~ −+≤ mR mMB ρ                (17) 

It follows from (17) that the ratio MBR
~

 increases as m increases for fixed mρ or as mρ  increases for fixed m. 

 
 

4.  VARIANCE ESTIMATION UNDER THE MODEL-BASED FRAMEWORK 
 
Traditionally, researchers have used the following sample-response path (two-phase approach) for variance 
estimation:  

Population →  complete sample →  sample with nonrespondents. 
 

Under assumption MB, Särndal (1992) used the following decompostion of the total variance : 

 ( ) ( ) ,2ˆˆ 2

miximpsamIrpmtot VVVYYEEEVYYV ++=−=≡−                                       (18) 

where ( ) ( ) ( ) ( )( )[ ].~ˆˆˆ and ~ˆˆ ,~ˆ sYYEYYEEVsYYVEEVsYYVEV IrpmmixImrpimppmsam −−=−=−= . 

Under Särndal’s method, an estimator of the total variance ( )YYV I −ˆ  is given by ,2 miximpsamt vvvv ++=  where 

samv  is an estimator of impsam vV ,  is an estimator of impV  and mixv  is an estimator of mixV .  

 
Fay (1991) used a different approach by reversing the order of sampling and response (we will call it the reverse 
approach) that can be depicted as: 

Population → census with nonrespondents → sample with nonrespondents. 
 
In this case (Shao and Steel, 1999), 

( ) ( ) ( ),ˆˆˆ aa YYEVEYYVEEYYV IpmrIpmrI −+−=−             (19) 

.
~~

22

22

MB

si sj ijij

si sj ijiji

MB d
dw

dwm
c

i

i ≡≤
∑ ∑
∑ ∑

∈ ∈

∈ ∈
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where a is the vector of response indicators ija  and noting that ( ) 0ˆ =− aYYEEV Ipmr  since the imputed estimator 

IŶ  is unbiased under either assumption MB or assumption MBC. Under the reverse approach, an estimator of the 

overall variance ( )YYV I −ˆ  is given by 21 vvvt += , where 1v  is an estimator of ( )aYYV Ip −ˆ  conditional on the 

vector of response indicators a, and 2v  is an estimator of ( ).ˆ aYYEVE Ipmr − . The estimator 1v  does not depend on 

the response mechanism  and/or the imputation model. As a result, 1v  is valid regardless of the assumptions made 

on the response mechanism  and/or the imputation model. Since the component ( )aYYV Ip −ˆ  represents only 

sampling variability, its estimation may be readily implemented using any standard variance estimation method: 
Taylor linearization, Jackknife and Bootstrap. In the context of two-stage sampling, the second component 2v  of tv  

is typically negligible relative to 1v  if the overall sampling fraction is small. 

 
In this paper, we focus on the case of simple random sampling without replacement at the first and second stages, so 

that 
i

i
ij m

M

n

N
w = .  Under complete response, an estimator of variance of Ŷ  is given by 

  ( ) ,
1111ˆ 2222
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            (20) 

where ∑ ∈ 
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=
isj ij
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M
Ŷ  and ( )∑ ∈

−
−

=
isj iij

i
iy yy

m
s 22

1

1
 with ./ˆ

iii MYy =  We 

will use (20) to estimate ( )aYYV Ip −ˆ  in section 4.2. 

 
4.1  Särndal’s method 
 
In this section, we derive an estimator of the variance under assumption MBC and simple random sampling without 
replacement at the first and second stages. The estimation of samV , impV  and mixV  may be performed as follows: 

 

(i) Let pv  be the variance estimator under full response and  let Iv  be the “naïve” variance estimator of IŶ  obtained 

from (20) by treating the imputed values as if they were observed. It is well known that for several imputation 
methods (in particular, for the deterministic methods), Iv  underestimates samV . To compensate for this 

underestimation, evaluate the following expectation: 
  ( ) difIpm VsvvE ≡− ~ . 

Then, determine a model unbiased estimator of difV , denoted .difv  This will usually require the estimation of certain 

parameters of the imputation model m. Then, 
  difIsam vvv +=  

is model unbiased for samV . 

 
(ii) Then, determine a model unbiased estimator of impV , denoted impv , i.e., ( ) impimpm VsvE =~  . Again, this may 

require the estimation of unknown parameters of the imputation model m.  
 

(iii) Finally, determine a model unbiased estimator of mixV , denoted mixv , i.e., ( ) mixmixm VsvE =~ . Again, this may 

require the estimation of unknown parameters of the imputation model m.  
 

Finally, an estimator of totV , denoted by totv , is given by 

  .2 miximpdifItot vvvvv +++=                         (21) 
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We now give the expressions of the different components in (21). First, note that the component Iv  is obtained by 

replacing 2
Ys  and 2

iys  by 2
IYs  and 2

Iiys  in (20), where 2
IYs  and 2

Iiys  are computed the same way as 2
Ys  and 2

iys  by 

treating the imputed values as if they were true values. After tedious but straightforward algebra we obtain: 
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where ir  is the number of respondents to item y in ,is  
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  ( )[ ]{ },ˆˆ1ˆ 22221
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where io  is the number of nonrespondents to item y in ,is iii mrpB −= −1ˆ  with 

∑ ∑∑ ∑ ∈ ∈∈ ∈
=

si sj ijsi sj ijij
ii
wawp̂ . Finally,  
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Note that 2ˆασ  and 2ˆεσ  are estimators of 2
ασ  and 2

εσ  respectively that can be obtained using available methods such 

as ML, REML or MINQUE methods. Also, note that the variance estimators under assumption MB are obtained by 

setting 0ˆ 2 =ασ  in (22)-(24). 

 
4.2 Shao-Steel’s method  
 
To apply the Shao-Steel method, we first express IŶ  as aI RKY ˆˆˆ = , where ∑ ∑∈ ∈

=
si sj ij

i
wK̂ and aaa KYR ˆˆˆ = , 

with ∑ ∑∈ ∈
=

si sj ijijija
i

yawŶ and .ˆ ∑ ∑∈ ∈
=

si sj ijija
i

awK  Now, denote the estimator of the variance of 

∑ ∑∈ ∈
=

si sj ijij
i

ywŶ  based on the full sample as ( )yv . Then, one can show, using Taylor linearization, that 1v  

reduces to 

  ( )ξ̂1 vv = ,                (25) 

where 
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  ( ) ( ) ( ).ˆ
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ˆ1ˆ

aijij
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a
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KK
Raya −−+−+=ξ             (26) 

 
In the case of simple random sampling without replacement at the first and second stages, the component 1v  is 

obtained from (20) by replacing ijy by ,îjξ  where ijξ̂ is given by (26) . To obtain 2v , note that 

( ) ∑ ∑∈ ∈
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Ui Uj ijijIp
i
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=
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easy to show that 

 ( ) ( ) ( ) ( )



+








−≈− ∑

∈ Ui
air

arar
Ipmr KE

KE

K

KE

K
KYYEVE 2

2

2
22 1ˆ
αε σσ ( ) ( ) .2 2





+− ∑∑

∈∈ Ui
iai

Ui
ri

ar

MKEM
KE

K
     (27) 

The component 2v  is then obtained by substituting estimators for the unknown quantities in (27), which leads to 
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where ,
1

i
iw

π
=  ∑ ∈

=
isj ijijai awK̂  and ijw  is the survey weight of element j at the second stage given that cluster 

i has been selected in the first stage sample. Noting that ( ) ( ) 22
22

ˆˆ
aiaiai KKEKV −= , an estimate of 2

aiK  is given by 

( )aiai KVK ˆˆˆ
2

2 − , where ( )aiKV ˆˆ
2  is an estimate of ( ) .ˆ

2 aiKV  The sum of (25) and (28) gives tv . Note that the variance 

estimators under assumption MB are obtained by setting 0ˆ 2 =ασ  in (28). Also, note that the ratio 21 / vv  is ),/( KnO  

where K is the total number of ultimate units. Hence, the component 2v  may be negligible with respect to 1v even 

when the first-stage sampling fraction Nn /  is large. As a result, when n/K is negligible (as it is frequently the case 
in multistage designs), the computation of 2v  may be omitted. 

 
 

5.  SIMULATION STUDY 
 
We conducted a limited simulation study on the relative performance of  the variance estimators obtained by 
Särndal's method and the Shao-Steel’s method. We generated several populations of 120=N  clusters with 

20 ,5== MM i  elements in cluster i such that the intracluster correlation 2.0 ,1.0 ,05.0=mρ . To do this, we first 

generated i.i.d. random variables 

  ( ) ,,...,1,,~ 2 NiNyi =ασµ  

with 200=µ  and .1002 =ασ  Then, we generated i.i.d. random variables 

( ) ,,...,1,,0~ 2
iij MjN =εσε  

with 22 1
αε σ

ρ
ρσ
m

m−
=  for 0≠mρ . The y-values are then generated by letting 

  .ijiij yy ε+=  

 
From each generated population, we selected 5000=R  samples of clusters of size n according simple random 
sampling without replacement, where .5.0 ,1.0=Nn  To simplify the discussion, we consider single-stage cluster 

sampling, i.e., ii Mm = . In each sample of cluster, we assigned a probability ip  to cluster ,,...,1 , nii =  where 

ip was generated from a beta distribution. Then, response indicators ija  were generated from a Bernoulli 

distribution with parameter ip . The overall response rate was set to 0.65. 

From each sample, the imputed estimator ,ÎY  given by (2), was computed and its variance was estimated using both 

Särndal's method and the Shao-Steel’s method. For each method, the variance estimators were calculated under 
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assumption MBC and assumption MB. The imputed estimator IŶ  was approximately unbiased for all the scenarios 

with a Monte Carlo relative bias less than 0.3%. 
 

As a measure of the bias of a variance estimator, ( )IYv ˆ , we used the relative bias   

 ( )( ) ( )[ ] ( )
( ) ,100
ˆ

ˆˆ
ˆ ×−=

I

II
I

YMSE

YMSEYvE
YvRB  

where ( )IYMSE ˆ  denotes the mean squared error of  IŶ . Table 1 and 2 report the relative bias values for n/N = 0.1 

and 0.5, respectively. 
 
From Table 1 and Table 2, we note that both Särndal's and  Shao-Steel’s method perform well when the intracluster 
correlation is taken into account (i.e., when the variance estimators are derived under assumption MBC) since the 
absolute value of the relative bias of the variance estimators is less than 7% in all cases. Note that the component 

mixv in Särndal's method is equal to 0 under this particular design. When the intracluster correlation is not taken into 

account (i.e., when the variance estimators are derived under assumption MB), Särndal's method leads to 
underestimation of the true variance. The underestimation increases as the intracluster correlation coefficient Mρ  

and/or the cluster size iM  increases. For example, when n/N = 0.1 and ,1.0=mρ  the relative bias is -9.2% for 

5=iM  and -30.1% for .20=iM  Also, when n/N = 0.1 and ,20=iM  the relative bias is -17.6% if 05.0=mρ and -

39.8% if .2.0=mρ Note that the sampling fraction n/N does not seem to have a significant impact on the relative 

bias of the variance estimators. Also, it is interesting to note that Särndal's method performs poorly when the 
imputation model is incorrectly specified mainly because the component difv  tends to be severely biased in those 

cases. The Shao-Steel’s method, on the other hand, performs fairly well when the imputation model is incorrectly 
specified as the absolute value of the relative bias is less than 5% in all cases. This result is not surprising since the 
first component, ,1v of the total variance is robust in the sense that it does not depend on the assumptions made 

about the imputation model and since the second component ,2v  is negligible with respect to 1v  when n/K is 

negligible. Note that, even when n/N = 0.5 and 5=iM , we have n/K = 0.1, which may be considered as small. In 

summary, the Shao-Steel’s method seems to be robust unlike Särndal's method, when the assumptions about the 
model are violated. 
 
 

Table 1 
Relative bias (%) of the variance estimators with 1.0=Nn  

 05.0=mρ  1.0=mρ  2.0=mρ  

 5=iM  20=iM  5=iM  20=iM  5=iM  20=iM  

Särndal’s method ( under MBC)   6.5 6.7 6.3 3.3 1.6 2.3 
Shao-Steel method (under MBC) -4.0 0.2 -1.2 -1.6 -3.2 -1.6 
Särndal’s method (under MB)   -6.2 -17.6 -9.2 -30.1 -19.6 -39.8 
Shao-Steel method (under MB) -4.7 -0.2 -1.5 -1.8 -3.6 -2.1 

 
 

Table 2 
Relative bias (%) of the variance estimators with 5.0=Nn  

 05.0=mρ  1.0=mρ  2.0=mρ  

 5=iM  20=iM  5=iM  20=iM  5=iM  20=iM  

Särndal’s method ( under MBC)   1.3 1.4 2.6 3.3 2.4 3.2 
Shao-Steel method (under MBC) 0.2 0.3 1.2 0.2 0.6 1.5 
Särndal’s method (under MB)   -4.9 -18.0 -8.8 -27.1 -15.7 -38.1 
Shao-Steel method (under MB) -0.4 -1.6 -1.5 -2.1 -2.2 -2.6 
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6.  EXTENSIONS 
 
In this paper, we have investigated the case of mean imputation in two-stage sampling. The results obtained may be 
extended to the case of two-stage sampling and regression imputation. For example, suppose that a vector of q 
auxiliary variables ( )qzz ,...,1=z  is observed on all the sampled elements (respondents and nonrespondents). In the 

case of assumption MBC, the imputation model is given by 
 

,ijiijijy εα ++′= βz  
 

where β  is an unknown q-vector of fixed effects parameters and iji εα  and  are as before. Regression imputation 

uses βzij
ˆ* ′=ijy or ,ˆˆ*

iijy α+′= βzij  where β̂ is the ordinary or weighted least squares estimators of β and iα̂  is the 

predictor of the random effect. 
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