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ABSTRACT 
 

Traditional area-specific direct estimators may not provide acceptable precision for small areas because sample sizes in 
small areas are seldom large enough.  This makes it necessary to “borrow strength” across related areas through indirect 
estimation based on linking models.  Both area level and unit level models have been extensively studied in the literature to 
derive empirical best linear unbiased prediction (EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB) estimators 
for small areas and associated measures of variability.  This paper covers several practical issues related to model-based 
small area estimation, including model determination, choice of priors on model parameters in HB estimation, 
benchmarking to reliable direct large area estimators and use of survey weights in model-based estimation. 
 
KEYWORDS: Area Level Model; Composite Estimate; Unit Level Model. 

 
 

1. INTRODUCTION 
 
Due to cost and other considerations, sample surveys are typically designed to provide area-specific (or direct) 
estimators with small sampling coefficient of variation (CV) for large areas (or domains).  In fact, survey 
practitioners often stress that nonsampling errors, including measurement and coverage errors, contribute much 
more than sampling errors to total mean squared error (MSE) which is often used as a measure of quality of 
estimators.  However, sampling errors play a dominant role in small area estimation because sample sizes in small 
areas are seldom large enough to provide direct estimators with acceptable quality in terms of sampling MSE (or 
CV).  In fact, sample sizes can be zero in many small areas of interest.  For example, data from the Current 
Population Survey (CPS) are used to estimate county (and school district) counts of poor school age children in the 
United States, but the CPS sample sizes are zero in many of the counties (National Research Council, 2000). 
 
Due to difficulties with direct estimators, it is often necessary to employ indirect estimates that borrow information 
from related areas through explicit (or implicit) linking models, using census and administrative data associated with 
the small areas.  Indirect estimators based on explicit linking models have received a lot of attention in recent years 
because of the following advantages over the traditional indirect estimators based on implicit models: (i) Explicit 
model-based methods make specific allowance for local variation through complex error structures in the model that 
link the small areas. (ii) Models can be validated from the sample data. (iii) Methods can handle complex cases such 
as cross-sectional and time series data, binary or count data, spatially-correlated data and multivariate data. (iv) 
Area-specific measures of variability associated with the estimates may be obtained, unlike overall measures 
commonly used with the traditional indirect estimators. 
 
Basic area level and unit level models have been extensively studied in the literature to derive empirical best linear 
unbiased prediction (EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB) small area estimators of totals (or 
means) and associated measures of variability. The EBLUP method is applicable for linear mixed models that cover 
the basic area level and unit level models.  On the other hand, EB and HB methods are more generally applicable, 
covering generalized linear mixed models that are used to handle categorical (e.g., binary) and count data.  MSE is 
used as a measure of variable under the EBLUP and EB approaches, while the HB approach uses the posterior 
variance as a measure of variability, assuming a prior distribution on the model parameters.  We refer the reader to 
Rao (2003) for an extensive account of EBLUP, EB and HB methods for small area estimation.  In this paper, I will 
cover several practical issues related to model-based small area estimation, including model determination, methods 
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for MSE estimation, choice of priors on model parameters in HB estimation, benchmarking to reliable direct large 
area estimators and use of survey weights in model-based estimation. 
 
 

2. SMALL AREA MODELS 
 
Two types of basic small area models have been studied in the literature.  In the first type, called the basic area level 

model, only area-specific auxiliary data ( )Tpilii zzz ,...,= , related to some suitable function ( )ii Yg=θ  of the small 

area total ( )miYi ,...,1= , are used to develop a linking model of the form i
T
ii vz += βθ  with ( )2,0~ v

iid

i Nv σ , where 
2
vσ  is the model variance.  The linking model is combined with the matching sampling model iii e+=θθ̂ , where 

( )ii Yg ˆˆ =θ  is a direct estimator of iθ  and ( )i

ind

ii Ne ψθ ,0~|  with known sampling variance iψ .  The combined 

model, ii
T
ii evz ++= βθ̂ , is a special case of the linear mixed model. 

 
The basic area level model has at least two limitations.  First, the assumption of known sampling variances, iψ , is 

restrictive, although methods based on generalized variance functions (GVF) have been proposed to produce 
smoothed estimates of the si 'ψ .  Secondly, the assumption ( ) 0| =iieE θ  may not be tenable if the small area 

sample size, in , is small and iθ  is a nonlinear function of the total iY , even if the director estimator iŶ  is design-

unbiased for iY .  It is more realistic to use the sampling model iii fYY +=ˆ  with ( ) 0| =ii YfE , which simply says 

that Ŷ  is design-unbiased for iY .  Further, we assume that ( ) 2| iii YfV σ= , where the sampling variance may 

depend on iY ; for example, 222
iii cY=σ , where ic  is the known coefficient of variation of iŶ  ascertained from 

fitting GVF's.  The sampling model is now unmatched with the linking model in the sense that they cannot be 
combined directly to produce a linear mixed model.  Various extensions of the basic area level (also called Fay-
Herriot model) have been proposed to handle correlated sampling errors, spatial dependence of the model errors iv  

and time-series and cross-sectional data (see Rao, 2003, Chapter 8). 
 

In the second type, called basic unit level model, unit level auxiliary variables ( )Tpijijij xxx ,...,1=  are related to the 

unit y-values ijy  through a nested error linear regression model iji
T
ijij evxy ++= β , where ( )2,0~ v

iid

i Nv σ  and 

independent of ( )2,0~ e

iid

ij Ne σ .  Various extensions of the basic unit-level model have been proposed to handle 

binary responses, two-stage sampling within areas, multivariate responses and others (see Rao, 2003, Chapters 8, 9 

and 10).  For example, for binary responses ijy , we may assume that 
ind

ijy ~  Bernoulli ( )ijp  and that the spij '  are 

linked by assuming a logistic regression model ( ){ } i
T
ijijij vxpp +=− β1/log , where ( )2,0~ σNv

iid

i .  This is a special 

case of generalized linear mixed models.   
 
 

3. BASIC AREA LEVEL MODEL: EB 
 
3.1 Estimation of iθ  
 
Under the basic area level model, the best estimator of iθ  in the sense of minimum MSE is given by 

( )2,,ˆ| viiE σβθθ  which depends on the model parameters β  and 2
vσ .  Replacing ( )2, vσβ  by suitable estimators 

( )2,ˆ
vσβ  obtained from the marginal distribution of siθ̂ , namely ( )iv

T
i

ind

i zN ψσβθ +2,~ˆ , we obtain the empirical 

Bayes or empirical best (EB) estimator: 
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( ) βγθγθ ˆˆ1ˆˆˆ T
iiii

EB
i z−+= ,     (3.1) 

 

where ( )ivvi ψσσγ += 22 ˆ/ˆˆ .  The form (3.1) shows that the EB estimator of iθ  is a weighted average of the direct 

estimator iθ̂  and the regression synthetic estimator β̂T
iz  with weights iγ̂  and iγ−1  respectively.  The weight iγ̂  is 

a measure of between area variability relative to total variability associated with area i.  The estimator EB
iθ̂  is 

unbiased for iθ  under the combined model, i.e., ( ) 0ˆ =− i
EB
iE θθ , and design-consistent as the sampling variance 

iψ  goes to zero, provided the direct estimator is design-consistent.  However, the resulting estimator ( )EB
ig θ̂1−  of 

iY  is biased if )(⋅g  is non linear.  Note that ( )EB
ig θ̂1−  is not equal to the EB estimator EB

iŶ  obtained by evaluating 

( )[ ]21 ,,ˆ| viigE σβθθ−  at β̂  and 2ˆ vσ .   

 
Under normality assumption, maximum likelihood (ML) or residual maximum likelihood (REML) method may be 

used to estimate β  and 2
vσ  from the marginal distribution ( )iv

T
i

iid

i zN ψσβθ +2,~ˆ .  Alternatively, 2
vσ  may be 

estimated by a simple method of moments (Prasad and Rao, 1990) or by solving the following moment equation 

iteratively for 2
vσ  (Fay and Herriot, 1979): 

 

( ) ( )( ) ( )∑
=

−=+−=
m

i
ivv

T
iiv pmza

1

2222 /
~ˆ ψσσβθσ ,   (3.2) 

 

where ( )2~
vσβ  is the weighted least squares estimator of β  for given 2

vσ .  The resulting estimators 2ˆ vσ  and 

( )2ˆ
~ˆ

vσββ =  lead to the EBLUP estimator of iθ  from (3.1).  The EBLUP estimator does not depend on normality. 

 
3.2 MSE Estimation 
 

Methods of estimating ( )EB
iMSE θ̂  that account for the variability of β̂  and 2ˆ vσ  have been studied extensively in 

the literature, where ( ) ( )2ˆˆ
i

EB
i

EB
i EMSE θθθ −=  and the expectation is with respect to the combined model (see Rao, 

2003, Chapter 7).  An accurate approximation to ( )EB
iMSE θ̂  under normality is given by 

 

( ) ( ) ( ) ( )2
3

2
2

2
1

ˆ
vivivi

EB
i gggMSE σσσθ ++≈     (3.3) 

 

where the leading term ( ) iivig ψγσ =2
1  with ( )ivvi ψσσγ += 22 /  is the contribution to MSE assuming β  and 2

vσ  

are known, 
 

( ) ( ) ( ) i

m

i
iv

T
ii

T
iivi zzzzg

1

1

222
2 /1

−

=








+−= ∑ ψσγσ    (3.4) 

 

accounts for the variability of β̂  and the term 

 

( ) ( ) ( ) ( )224222
3

ˆ/ v
T
iiivivi hzEg σβθψσψσ −



 +=    (3.5) 

 

( ) ( )2322 / vivi h σψσψ 



 +=       (3.6) 
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accounts for the variability of 2ˆ vσ , where ( )2
vh σ  is the asymptotic variance of 2ˆ vσ  for large m.  Neglected terms in 

the approximation (3.3) are of lower order than 1−m , and the approximation is valid for the Prasad-Rao (PR), Fay-

Herriot (FH), ML and REML methods of estimating 2
vσ .  

 

Comparing the leading term iiψγ  of (3.3) with iψ , the MSE of the direct estimator iθ̂ , it is clear that the EB 

estimator EB
iθ̂  leads to large gain in efficiency when iγ  is small, i.e., when 2

vσ , the variability of the model errors 

iv , is small relative to the total variability, iv ψσ +2 .  Note that iψ  is also the design variance of iθ̂ . 

 
Turning to MSE estimation, an estimator correct to the same order approximation as (3.3) is given by 
 

( ) ( ) ( ) ( )2
3

2
2

2
1 ˆ2ˆˆˆ

vivivi
EB
i gggmse σσσθ ++≈ .    (3.7) 

 

The estimator (3.7) is approximately unbiased for ( )EB
iMSE θ̂  in the sense that its bias is of lower order than 1−m , 

provided 2ˆ vσ  is based on REML or PR.  For ML and FH methods of estimating 2
vσ , an extra term ( )2

0 ˆ vig σ  is added 

to (3.8).  This extra term for ML is positive (Datta and Lahiri, 2000).  Therefore, ignoring this term and using (3.8) 

with ML estimator 2ˆ vσ  would lead to underestimation of MSE.  On the other hand, the extra term for FH is negative 

(Datta, Rao and Smith, 2002).  Therefore, ignoring this term and using (3.8) with FH estimator 2ˆ vσ  would lead to 

overestimation of MSE. 
 

Lahiri and Rao (1995) showed that the MSE estimator (3.8) using the PR estimator of 2
vσ  is robust to nonnormality 

of the random effects in the sense that approximate unbiasedness remains valid, provided the normality of the 
sampling errors, ie , holds.  The latter assumption is less restrictive than the normality of the svi '  because of the 

central limit theorem effect on the direct estimators iθ̂ .  It is not known if the robustness property is also valid under 

REML, ML and FH methods. 
 
A criticism of the MSE estimator (3.8) and its modification for ML and FH is that it is not area-specific in the sense 

that it does not explicitly depend on iθ̂  although the area-specific auxiliary data iz  is involved in the ( )2
2 ˆ vig σ -term.  

Rao (2000) used the expression (3.5) for ( )2
3 vig σ  to get an alternative area-specific estimator of ( )2

3 vig σ : 

 

( ) ( ) ( ) ( )224222
3 ˆˆˆ/ˆ,ˆ~

v
T
iiiviivi hzg σβθψσψθσ −



 += .    (3.8) 

 
Using (3.8), we get two different area-specific MSE estimators for REML or PR: 
 

( ) ( ) ( ) ( ) ( )ivivivivi
EB
i ggggmse θσσσθθ ˆ,ˆ~ˆˆˆˆ 2

3
2

3
2

2
2

11 +++≈    (3.9) 

 
and 
 

( ) ( ) ( ) ( )ivivivi
EB
i gggmse θσσθθ ˆ,ˆ~2ˆˆˆ 2

3
2

2
2

12 ++≈ .    (3.10) 

 

The term ( )ivig θσ ˆ,ˆ~ 2
3  is less stable than ( )2

3 ˆ vig σ  but it is of lower order than the leading term ( )2
1 ˆ vig σ  in (3.9) and 

(3.10).  As a result, the coefficient of variation (CV) of ( )EB
imse θ̂1  should be comparable to the CV of ( )EB

imse θ̂ , at 

least for moderate to large m.  Fuller (1989) estimated the conditional MSE of EB
iθ̂  given the i-th area direct 
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estimator iθ̂ .  His area-specific MSE estimator is closely related to the unconditional MSE estimator (3.9).  Butar 

and Lahiri (1997) obtained an area-specific MSE estimator by correcting the bias of Laird and Louis' (1987) 
estimator of variability based on the parametric bootstrap method.  This bias-corrected MSE estimator is identical to 

(3.9) which is obtained in a straightforward manner from the formula (3.5) for ( )2
3 vig σ . 

 

It is more appealing to survey practitioners to consider the estimation of sampling MSE of EB
iθ̂ , i.e., 

( ) ( )2ˆˆ
i

EB
ip

EB
ip EMSE θθθ −= , where the expectation pE  is with respect to the sampling design ( )⋅p , i.e., the 

distribution of sampling errors given the si 'θ .  Rivest and Belmonte (2000) derived a design-unbiased estimator of 

( )EB
iMSE θ̂  using the PR estimator of 2

vσ .  The leading term of this MSE estimator is area-specific, i.e., depends on 

iθ̂ , unlike the leading term ( )2
1 ˆ vig σ  of the model-based MSE estimator, ( )EB

imse θ̂ .  However, it is highly unstable 

relative to ( )EB
imse θ̂  unless more weight is attached to the direct estimator iθ̂ , i.e., iγ̂1−  is small. 

 
3.3 Unknown Sampling Variances iψ  
 
In sections 4.1 and 4.2 we assumed that the sampling variances, iψ , are known, but this is a restrictive assumption.  

Wang and Fuller (2003) and Rivest and Vandal (2002) studied the effect of estimating iψ  on the MSE of the EB 

estimator (4.1) with iγ̂  replaced by ( )ivv ψσσ ˆˆ/ˆ 22 + , where iψ̂  is an estimator of iψ .  For example, suppose that we 

have a random sample ( ) ( )2,...1,,~ 2 ≥= ii

iid

ij njNy σθ  from the i-th area and ii y=θ̂ , the sample mean.  In this case 

iii ns /ˆ 2=ψ  is design-unbiased for iψ , where 2
is  is the sample variance.  Further, iy  and iψ̂  are independently 

distributed with ( )[ ]1/2,ˆ 2 −=≈ iiiii nN ψδψψ .  Under this set-up, Rivest and Vandal (2002) obtained an 

appropriate MSE estimator by adding the term ( )324 ˆˆ/ˆˆ2 vivi σψσδ +  to (3.8) to account for the estimation of iψ , 

where ( )1/ˆ2ˆ 2 −= iii nψδ .  If the sample sizes in  are small, then (3.8) can underestimate the MSE quite severely, 

unlike the Rivest-Vandal MSE estimator.  If iψ̂  is a smoothed estimator of iψ  based on GVF model fitting, the 

contribution from the extra term is of the same order, ( )1−mO , as the ig3 -term. 

 
 

4. JACKKNIFE ESTIMATION OF MSE 
 
Jiang, Lahiri and Wan (2002) proposed a jackknife method of estimating MSE of EB estimators that is applicable to 
generalized linear mixed models with block diagonal covariance structures, where the blocks correspond to small 
areas.  This method also leads to approximately unbiased estimators of MSE of EB estimators.  For example, 

consider the case of binary responses 
iid

ijy ~  Bernoulli ( ) ii njp ,...,1, =  and ( ){ } mivzpp i
T
iii ,...,1,1/log =+=− β , 

where iz  is the vector of area-specific covariates, ( )2,0~ v

iid

i Nv σ  and ip  is the i-th area proportion.  The minimum 

MSE (or Bayes) estimator of ip  is given by ( ) ( )2
.

2
. ,,:,,|ˆ vivii

B
i ykypEp σβσβ == , where ∑=

j iji yy . .  The EB 

estimator of ip  is ( )2
. ˆ,ˆ,ˆ vi

EB
i ykp σβ= , where β̂  and 2ˆ vσ  are suitable estimators of β  and 2

vσ  obtained from the 

marginal distribution of syi ' . 

 

The jackknife method makes use of the following orthogonal decomposition of ( )EB
ipMSE ˆ : 

 

( ) ( ) ( )22
ˆˆˆˆ B

i
EB
ii

B
i

EB
i ppEppEpMSE −+−= .     (4.1) 
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Based on the decomposition (4.1), Jiang et al. (2002) proposed the following jackknife steps to estimate ( )EB
iMSE θ̂ : 

 

(1) Calculate ( )lβ̂  and ( )l2σ̂  deleting the R-th area data ( )ii xy , .  Let ( ) ( ) ( ){ }lll 2
. ˆ,ˆ,ˆ σβi

EB
i ykp =  be the EB 

estimator of ip  based on ( )lβ̂  and ( )l2σ .  Note that iy  remains unchanged. 

 
(2) Calculate the jackknife estimator of the last term in (4.1) as 
 

( )[ ]∑
=

−−=
m

EB
i

EB
ii pp

m

m
M

1

2
2 ˆˆ

1ˆ
l

l .     (4.2) 

 

(3) The first term ( )2
ˆ i

B
i ppE −  may be written as ( )[ ] ( )2

1
2

.1 ,:,,~
vivii gygE σβσβ = , where 

( ) ( )2
.

2
.1 ,,|,,~

viivii ypVyg σβσβ =  is the posterior variance of ip  given iy  and ( )2, vσβ .  Adjust the bias 

of ( )2
1 ˆ,ˆ

vig σβ  (as an estimator of ( )2
1 , vig σβ ) using the jackknife bias reduction method.  The bias-

adjusted estimator is given by 
 

( ) ( ) ( )( ) ( )[ ]∑
=

−−−=
m

vivivii gg
m

m
gM

1

2
1

2
1

2
11 ˆ,ˆˆ,ˆ1

ˆ,ˆˆ
l

ll σβσβσβ .   (4.3) 

 

Note that the leading term ( )2
1 ˆ,ˆ

vig σβ  is not area-specific in the sense of not depending on .iy . 

(4) Calculate the jackknife estimator of MSE as 
 

( ) ii
EB
iJ MMpmse 21

ˆˆˆ += .      (4.4) 

 
Booth and Hobert (1998) argued that for non-normal responses the MSE estimator should be area-specific because 

the posterior variance of ip  given ( )2, vσβ  depends on .iy , unlike the case of linear mixed models.  They proposed 

the conditional MSE, given the i-th area data ( )ii zy , , as the relevant measure of variability, and estimated the 

conditional MSE.  Rao (2003, Chapter 9) addressed this criticism by simply modifying the bias-adjusted estimator 

iM1
ˆ .  Instead of evaluating the expectation of ( )2

.1 ,,~
vii yg σβ  with respect to the  marginal distribution of iy  (using 

numerical integration), he proposed to adjust the bias of ( )2
.1 ˆ,ˆ,~

vii yg σβ  as an estimator of ( )2
.1 ,, vii yg σβ .  This 

leads to 
 

( ) ( ) ( ) ( )( ) ( )[ ]∑
=

−−−=
m

viiviiviiii ygyg
m

m
ygyM

1

2
.1

2
.1

2
.1.1 ˆ,ˆ,~ˆ,ˆ,~1

ˆ,ˆ,~~

l

ll σβσβσβ   (4.5) 

 

which is area-specific including the leading term ( )2
.1 ˆ,ˆ,~

vii yg σβ .  The modified jackknife estimator of MSE is given 

by 
 

( ) ( ) iii
EB
iJ MyMpmse 2.1

* ˆ~
ˆ += .     (4.6) 

 
Note that (4.6) is not only area-specific but also computationally simpler than (4.4) because it avoids the evaluation 

of the expectation of ( )2
.1 ,,~

vii yg σβ  with respect to the marginal distribution of iy .  For the case of a linear mixed 

model, ( ) iii MyM 1.1
ˆ~ =  and hence (4.6) is identical to (4.4). 
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5. BASIC UNIT LEVEL MODEL: PSEUDO-EB 
 

We now turn to the basic unit level model, iji
T
ijij evxy ++= β , and assume that the model holds for the sample, i.e., 

no sample selection bias within areas.  If the areas are also sampled, then we assume the absence of selection bias 

for sampled areas as well.  The mean for the i-th area, iY , may be approximated as i
T
ii vX += βµ , assuming that 

the number of population units in the i-th area, iN , is large, where .iX  is the population mean of x for the i-th area.  

Assuming ( )2,0~ v

iid

i Nv σ  and independent of ( )2,0~ σNe
iid

ij  and estimating the model parameters β  and 2
vσ  from 

the marginal distribution of the sampled syij ' , we get the EB estimator of iµ  as 

 

( ) ( ) βγβγµ ˆˆ1ˆˆˆ T
ii

T
iiii

EB
i XxXy −+



 −+= ,     (5.1) 

 

where ( )ievvi n/ˆˆ/ˆˆ 222 σσσγ += , ( )ii xy ,  are the i-th area sample means and ( )2ˆ,ˆ
vσβ  are the estimators of ( )2, vσβ ; 

see Battese, Harter and Fuller (1988).  This estimator is also the EBLUP estimator without normality assumption, 

provided β and 2
vσ  are estimated by a moments method such as the method of fitting-of-constants.  As ∞→in , the 

EB estimator converges to the “survey regression” estimator ( ) β̂T
iii xXy −+ , while it converges to the “synthetic 

regression” estimator β̂T
iX  as in  decreases.  We refer to Rao (2003), Chapter 7 for a detailed discussion of 

EBLUP estimation and MSE estimation.  A drawback of (5.1) is that it is purely model-based and does not take 
account of the survey weights ijw .  As a result, it is not design-consistent as in  increases, unless the sampling 

design is self-weighting within areas, i.e., iij ww = .  On the other hand, the EBLUP estimator under the area level 

model is design-consistent.  It is desirable to ensure design-consistency for the unit level models as well because in  

could be moderately large for some of the areas under consideration.  Also, it is desirable to ensure that the 
estimators of area totals automatically add up to the direct survey regression estimator of the large area total. You 
and Rao (2002a) developed a pseudo-EBLUP estimator of iµ  that satisfies both the desirable properties. 

 
We have assumed that the random small area effects iv  are normally distributed in the basic unit level model 

iji
T
ijij evxy ++= β .  The MSE estimator of the purely model-based estimator EB

iµ̂  derived under normality of the 

svi '  is not robust to deviations from normality, unlike the case of basic area level model studied in Section 3.2.  It 

would be worthwhile to study EB inference under semi-nonparametric (SNP) representations of the density of iv .  

Zhang and Davidian (2001) approximated the density of iv  by a SNP representation which includes normality as a 

special case, and it provides flexibility in capturing nonnormality through a user-chosen tuning parameter.  Maiti 
(2001) used a finite mixture of normal distributions for the distribution of iv , and developed hierarchical Bayes 

(HB) estimates of small area means, assuming a prior distribution on the model parameters.  EB estimation of small 
area means and associated MSE estimation under broad classes of densities of iv , such as the above, would be 

practically useful. 
 
 

6. HIERARCHICAL BAYES (HB) APPROACH 
 
We illustrate the HB approach using the basic area level model of Section 2.  Under this approach, a prior 

distribution on the model parameters ( )2, v
T σβδ =  is specified, and inferences are then based on the posterior 

distribution, ( )θθ ˆ|if , of iθ  given the data ( )Tmθθθ ˆ,...,ˆˆ
1= .  In particular, iθ  is estimated by its posterior mean 

( )θθ ˆ|iE , called the HB estimator HB
iθ̂ .  The variability of HB

iθ̂  is measured by the posterior variance ( )θθ ˆ|iV .  

The calculation of HB
iθ̂  and ( )θθ ˆ|iV  involves integrations with respect to the posterior distribution of β , 2

vσ , 

Statistics Canada International Symposium Series - Proceedings, 2003
___________________________________________________________________________________________________________

 

Statistics Canada - Catalogue no. 11-522-XIE

________________________________________________________________________________________________________

8



( )θσβ ˆ|, 2
vf .  However, Monte Carlo Markov chain (MCMC) methods can be used to generate J simulated samples 

{ }Jjj
m

j ,...,1;,..., )()(
1 =θθ  directly from the joint posterior ( )θθ ˆ|f , where ( )T

mθθθ ,...,1=  and J is sufficiently large.  

Using the simulated samples, we approximate HB
iθ̂  by the mean ∑−=

j
j

ii J )(1(.) θθ  and ( )θθ ˆ|iV  by the variance 

( )∑ −−
j i

j
iJ

2(.))(1 θθ  of the simulated samples )( j
iθ .  The HB estimator of the total iY  is approximated by the mean 

∑−=
j

j
ii YJY )(1(.)  and the posterior variance of iY , ( )θ̂|iYV  by the variance ( )∑ −−

j i
j

i YYJ
2(.))(1 , where 

( ))(1)( j
i

j
i gY θ−= . 

 
An advantage of the HB approach is that it is straightforward, the inferences are “exact” unlike the EB (or EBLUP) 
approach, and it can handle complex small area models using MCMC methods, but it requires the specification of a 

prior ( )2, vf σβ  on the model parameters.  It would be desirable to select a “matching” prior ( ) ( )22, vv ff σσβ ∝  that 

leads to well-calibrated inferences.  In particular, the posterior variance should be approximately unbiased for 

( )HB
iMSE θ̂ , i.e., ( )[ ] ( ) ( )1ˆ| −=− moMSEVE HB

ii θθθ ; asymptotically, EB
i

HB
i θθ ˆˆ ≈ .  This will provide a frequentist 

justification for the posterior variance as a measure of variability Data, Rao and Smith (2002) showed that the 
matching prior is given by 
 

( ) ( ) ( )∑
=

−
++∝

m

vivvif
1

22222

l
lψσψσσ .    (6.1) 

 
This prior depends collectively on the sampling variances, lψ , for all the areas R as well as on the area-specific 

sampling variance iψ .  For the balances case, ψψ =i , the matching prior reduces to the “flat” prior ( ) 12 ∝vf σ .  

Note that the prior (6.1) on the common parameter 2
vσ  is designed for inference on the i-th area so that its 

dependence on iψ  may not be problematic. 

 

A disadvantage of the EB estimator EB
iθ̂  is that the weight iγ̂  attached to the direct estimator takes zero value when 

0ˆ 2 =vσ , in which case it reduces to the regression synthetic estimators β̂T
iz .  Thus, all the direct estimator iθ̂  

receive zero weight even when the sample sizes in some areas are not small.  This difficulty was encountered in 
using a state model to produce EB state estimates of poor school-age children in the United States (National 
Research Council, 2000).  The HB approach avoids this difficulty by producing positive weights in all cases.  Bell 

(1999) applied the HB approach to the state model using the prior ( ) ( ) ( )22, vv fff σβσβ =  with ( ) 1∝βf  and 

( ) 12 ∝vf σ , and obtained positive weights in all cases.  But it is not clear if his method leads to well-calibrated 

inferences since the matching prior (6.1) is different from the flat prior, especially when the iψ -values vary 

significantly, as in the case of Bell (1999) with max ( )iψ / min ( )iψ  as large as 20. 

 
You and Rao (2002b) used the HB approach to handle the case of unmatched sampling and linking area level 
models (Section 2) and applied it to Canadian census undercount estimation.  In this application, =iC census count, 

=iY  number missing and iŶ  is a post-census survey estimator of iY  with known sampling variance 2
iσ  for the i-th 

province in Canada ( )10,...,1 == mi .  The si '2σ  were estimated by fitting a GVF model of the form ( ) γ
ii CYV ∝ˆ  

and then treating as if known in the sampling model ( )2,~|ˆ
ii

ind

ii YNYY σ .  The linking model is given by 

( ){ } iiiiii vCCYY ++=+= log/log 10 ββθ  with ( )2,0~ v

iid

i Nv σ .  HB estimates of undercounts, iY , and 

undercoverage rates, ( )iiii CYYU += / , and associated coefficients of variation (based on the posterior variance) 

were calculated, using MCMC methods. 
 

___________________________________________________________________________________________________________
Statistics Canada International Symposium Series - Proceedings, 2003

___________________________________________________________________________________________________________

9 Statistics Canada - Catalogue no. 11-522-XIE



Singh, Folsom and Vaish (2003) studied the basic unit level model, iji
T
ijij evxy ++= β  with ( )2,0~ v

iid

i Nv σ  

independent of ( )2,0~ e

iid

ij Ne σ , for the population, and allowed sample selection bias within small areas.  They used 

methods based on survey-weighted estimating functions (EF) to account for the sample selection bias.  They also 

extended the method to generalized linear mixed model such as the logistic mixed model 
ind

ijij py ~|  Bernoulli ( )ijp  

and logit ( ) ( ){ } i
T
ijijijij vxppp +=−= β1/log ; see Rao (2003, pp. 253-254) for a brief account of the EF method.  In 

situations where a sample of areas is selected, the random effects iv  are assumed to be free of sample selection bias. 

 
The HB approach is powerful and attractive, but caution should be exercised when using MCMC methods.  For 
example, MCMC algorithms could lead to seemingly reasonable inferences about a non-existent posterior 
distribution.  This happens when the posterior distribution is improper and yet all the Gibbs conditional 
distributions, used in generating the MCMC simulated samples, are proper (Hobert and Casella, 1996).  Another 
difficulty with MCMC is that the convergence diagnostic tools can fail to detect the sort of convergence failures 
they were designed to identify (Cowles and Carlin, 1996).  We refer the reader to Rao (2003), Section 10.2.4 for a 
discussion of practical issues associated with MCMC. 
 
MCMC methods are also extensively used for model determination which plays a vital role in developing model-
based small area estimates.  In particular, methods based on Bayes factors, posterior predictive densities and cross-
validation predictive densities are employed for model determination; see Rao (2003), Section 10.2.6.  The criterion 
of posterior predictive probability is often used to check the overall fit of a proposed model.  Sinharay and Stern 
(2003) conducted a simulation study to investigate the effectiveness of this criterion for model checking, using the 
basic area level model with no covariates.  Their study indicates that it is difficult to detect nonnormality of the 
random effects iv  using this criterion, unless the extent of violation is huge.  Therefore, caution should be exercised 

in using HB criteria for model determination. 
 
 

7. SOME PRACTICAL CONSIDERATIONS 
 
In this section, we provide brief remarks on practical issues related to small area estimation. 
 
(i) Design issues 
 
It is important to consider design issues that have an impact on small area estimation.  A proper resolution of design 
issues could lead to enhancement in the reliability of direct as well as indirect estimates for both planned and 
unplanned domains (areas).  The following measures at the design stage might be useful in minimizing the need for 
indirect estimators, at least for some planned domains: Use of list frames to replace clusters wherever possible, use 
of many small strata from which samples are drawn, compromise sample allocations to satisfy reliability 
requirements at a small area level as well as large area level, integration of surveys through harmonizing questions 
across surveys of the same population, use of multiple frame surveys, use of “rolling samples” as a method of 
cumulating data over time.  We refer the reader to Rao (2003), Chapter 2, Singh et al. (1994) and Marker (2001) for 
further details. 
 
Despite the above preventive measures at the design stage, indirect estimates will be needed in practice because it is 
not possible to anticipate and plan for all possible areas (or domains) and uses of survey data: “the client will always 
require more than is specified at the design stage” (Fuller, 1999, p. 344). 
 
(ii) Model selection and validation 
 
Methodological developments and applications of model-based estimation are impressive, but caution should be 
exercised because of the model assumptions.  Good auxiliary information related to the variables of interest plays a 
vital role in determining suitable linking models.  Therefore, more attention should be given to the compilation of 
auxiliary variables that are good predictors of study variables.  Subject matter specialists or end users should have 
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influence on the choice of models, particularly on the choice of auxiliary variables.  However, model diagnostics 
should be used to find suitable model(s) that fit the data well.  Such model diagnostics include residual analysis to 
detect departures from assumed models, selection of auxiliary variables and case-deletion diagnostics to detect 
influential observations.  We refer the reader to Rao (2003), Chapter 6 for some methods of model validation in the 
frequentist framework. 
 
Hierarchical Bayes (HB) approach has become very popular in recent years due to its ability to handle complex 
models using MCMC methods.  However, caution should be exercised in the choice of improper priors on model 
parameters, as noted in Section 6.  Limitations of MCMC methods, such as shortcomings of available convergence 
diagnostics, should also be noted.  Carlin and Louis (2000) made an important observation on the dangers of “plug 
and play” implementation via MCMC: “Worse, the sheer power of MCMC methods has led to the temptation to fit 
models larger than the data can readily support without a strongly informative prior structure - now something of a 
rarity in applied Bayesian work”. 
 
HB methods for model validation via MCMC have been extensively developed, but the effectiveness of some 
criteria for model checking is questionable as noted in Section 6.  Further work on effective HB methods for model 
checking is needed. 
 
(iii) Area level vs. unit level models 
 
Area level models have wider scope than unit level models because area level auxiliary information is more readily 
available than unit level auxiliary data.  Also, design weights are incorporated by modelling design-weighted direct 
estimators, and the resulting EB or HB estimators are design consistent.  But the assumption of known sampling 
variances, iψ , is quite restrictive.  Smoothed estimates of si 'ψ  based on GVF model fitting can also cause 

difficulties in MSE estimation, as noted in Section 3.3.  We need more work on obtaining good approximations to 
the sampling variances as well as methods that incorporate the variability associated with estimated sampling 
variances in MSE estimation.  This task becomes more difficult when using multivariate or time series area level 
models because sampling covariances are also needed. 
 
Recent work on incorporating survey weights into model-based estimation, via pseudo-EB or pseudo-HB, is 
promising; in particular, the self-benchmarking property noted in Section 5.  But the assumption that the sample 
selection bias is absent may not be true for some applications.  The estimating functions (EF) approach of Singh, 
Folsom and Vaish (2003), mentioned in Section 6, allows sample selection bias within sampled areas but it assumes 
that the random effects iv  are free from sample selection bias in situations where a sample of areas is selected.  

Methods for handling the latter case are needed.  Moreover, their method assumes known sampling variances, as in 
the area level model, and this assumption may be restrictive (see Rao, 2003, Section 10.5.4). 
 
(iv) “Triple-goal” estimation 
 
We focussed on model-based estimation of small area totals or means, but such estimates may not be suitable if the 
main objective is to produce an ensemble of parameter estimates whose distribution is in some sense close enough to 
the distribution of area-specific parameters.  For example, we may be interested in ranking areas or identifying areas 
that fall below or above some prespecified level.  Shen and Louis (1998) proposed “triple-goal” estimators that can 
produce good ranks, a good histogram and good area-specific estimators, assuming simple linking models.  It would 
be useful to extend their methods to handle more complex models that are suitable for small area estimation. 
 
(v) Nonsampling errors 
 
We have assumed the absence of measurement errors in the responses and/or the covariates as well as nonresponse.  
But nonsampling errors can have a substantial effect on small area estimation, and it would be useful to develop 
suitable designs as well as methods of estimation that can account for nonsampling errors.  Nandram and Choi 
(2002) used HB nonresponse models for binary data, and applied the theory to data from the U.S. National Crime 
Survey to estimate small area proportions.  Measurement errors in the responses, even under an additivity 
assumption, can lead to biased estimators of quantiles and histograms.  In the context of direct estimation, Fuller 
(1995) proposed methods at the design stage that can lead to bias-adjusted estimators of quantiles and histograms. 
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