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ABSTRACT 
 

Due to the usual complexity of the sampling designs, survey data are neither independent nor identically distributed. 
Hence, estimation methods developed for independent and identically distributed data are not suitable for models based on 
complex survey data. The aim of this paper is to discuss such estimation methods with emphasis on semiparametric 
regression models for complex survey data, in which explanatory variables are composed of nonparametric and parametric 
parts. Estimation methods for this model combine the nonparametric local polynomial regression estimation and the classic 
least squares estimation in complex surveys. Moments and asymptotic properties of the estimators are discussed. 
Methodology and theoretical results will be illustrated using the 1990 Ontario Health Survey.  
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1. INTRODUCTION 
 
Given y is the response variable and X is a matrix of corresponding the explanatory variables, a conventional 
regression model is of the form: 

E(y|X) = G(X), 
 
where G(.) is called a regression function. Based on the assumption of the regression function, regression modelling 
can be divided into two major streams: parametric and nonparametric. A parametric regression is parameterized by 
an unknown p-dimensional parameter vector, β  and G(X) is usually denoted as G(X, β ). We estimate β  with the 

assumption on the functional form of G(. , . ). If the assumption for the form of G(. , .) is correct, the performance of 
the parametric regression model is very useful, however, once misspecification occurs, misleading results can be 
obtained. In a nonparametric regression model, we relax the assumption on the form of G(.) and use the local 
information to obtain the point estimates of the function G(.). A nonparametric regression model can be estimated by 
a smoother. Even though nonparametric regression techniques have demonstrated their usefulness, when we conduct 
flexible regression modeling we pay a price for relaxing the assumption of a specific functional form in 
nonparametric regression analysis. In particular, beyond the difficulty of choosing the right window size 
(neighbourhood), a more serious problem that relates to all smoothing methods for a multiple regression model is 
the "curse of dimensionality", which happens when neighborhoods with a fixed number of points become less local 
as the number of dimensions increases. The "curse of dimensionality" makes the rate of convergence of an estimator 
so slow that the performance of nonparametric estimation for multiple regressions is not promising. One result of the 
"curse of dimensionality" is the infeasibility of including discrete explanatory variables in the nonparametric 
regression analysis.  
 
To take advantage of the strength of parametric estimation and to minimize the occurrence of "curse of 
dimensionality", a so-called partial linear semi-parametric regression model is devised of the form, 
 

E(y|X,z) = Xβ  +G(z), 

 
where the explanatory variables are represented separately in two parts: the nonparametric part (G(z)) and the 
parametric linear part (X β ). In this semi-parametric regression model, both the functional form of the 
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nonparametric part of the model and the parameters will be estimated. This partial linear semiparametric model has 
a priori motivation as a data analytic tool and retains an important interpretive feature. We can put those variables 
with more known information on the functional form in the parametric part of the model and the variable with little 
information on the functional form in the nonparametric part of the model. In addition, discrete explanatory 
variables have always created problems in nonparametric regression estimation because of low effective sample 
sizes. It is very natural to include the discrete explanatory variables in the linear part of the model. 
 
The objective of this paper is to apply this partial linear semi-parametric regression model to complex surveys. We 
are interested in the estimating procedures developed independently by Robinson (1988) and Speckman (1988) for 
independent and identically distributed data. Due to the sampling design, data from a complex survey are neither 
independent nor identically distributed. Hence, we cannot directly apply the estimation method of Robinson (1988) 
and Speckman (1988) to complex survey data.  To solve the technical difficulty of complex data, we establish two 
superpopulations such that we can adapt the estimation method for independent and identically distributed data and 
make inferences for the survey sample estimators. 
 
Due to Robinson (1988) and Speckman (1988), the estimation procedure for partial linear regression models consists 
of a nonparametric estimation method and a least squares estimation method. As a result, we need a smoother to 
accomplish the estimating procedure in the sampling context. The smoother we will use is developed by Bellhouse 
and Stafford (2001) for complex surveys. One of the characteristics of complex survey data is that the size of the 
data set can be very large. Usually, there are multiple observations at distinct values in a large survey data set. 
Large-scale data sets not only can result in non-informative trends between the response variable and the covariates 
when plotting the data, they also make the estimation process very computationally cumbersome. Hence, it is very 
natural in the complex survey data analysis to bin the data into domains according to the distinct values of the 
characteristic variables. In Bellhouse and Stafford (2001), local polynomial regression methods are put forward for 
large-scale surveys and rely on binning the data on the explanatory variable.  
 
Combining the well-established least squares estimation technique and the local polynomial regression techniques 
developed by Bellhouse and Stafford (2001) for complex surveys, we develop the survey sample estimators for the 
partial linear regression model and establish their asymptotic properties. The paper is organized as follows. In 
section 2, we introduce the partial linear regression model in the sampling context. In section 3, asymptotic 
properties of the survey estimators are discussed. An empirical illustration of the estimation method using the 1990 
Ontario Health Survey in are carried out in Section 4. The paper is concluded in section 5.  
 
 

2. A PARTIAL LINEAR MODEL IN THE SAMPLING CONTEXT 
 
2.1 Preliminary 
 
A semiparametric model is defined as:  

 
εXβz  y ++=    )G(         (1) 

 
where y is the vector of response variable and ε is independent and identically distributed with mean zero and 
constant variance. G(.) is an arbitrary function of z. Based on the model information on the independent variables, 
the independent variables are separated into two types. Independent variables included in the n × p matrix X 
correspond to the parametric or linear part of the model and independent variable, z, is the nonparametric part of the 
model.  Each parametric independent variable, xj, is a vector of random variables with distribution Fj. z is measured 
on a continuous scale and X contains either continuous or discrete explanatory variables. Both the functional form of 
G(.) and parameters β1, …, βp are unknown. Additionally, it is assumed that E(ε| z, X)=0 and that there are no 
interactions between X and z. 
 
The problem in estimating β  in the partial linear model as stated in (1) is that there is a function of unknown form, 

G(z). If it were possible to find a way to remove this function, the least squares procedure can be used to estimate 
the resulting linear regression model.  
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Taking the expectation of both sides of equation  (1) conditional on  z yields, 
  

 )G( )| E( )|E( z βzXzy +=      (2) 

 
given that E(ε | z) = 0. Now, subtract (2) from (1) to obtain 

 
εβzXXzyy  += ))|E(-(  )| E(-      (3) 

 
By defining Y  ≡ y - E(y|z) and X ≡ X - E(X|z), we get the linear regression model 

 
εβ +=   XY       (4) 

 
Now one obvious approach is to estimate β  by the method of least squares. Unfortunately, since E(y|z) and E(X|z) 

are unknown, least squares estimation of β  is not feasible. Consequently, we carry out the estimation of β  in two 

steps. In the first step, the conditional expectations appearing in equation (3) is estimated with Nadaya-Watson 
kernel smoothing technique. In the second step, E(y|z) and E(X|z) in (3) are replaced with their estimates obtained in 
the first step and estimate β  with the method of least squares. 

 

Once the estimate of β , β̂ , is obtained, the difference between the response variable y and the βX ˆ is treated as the 

dependent random variable and function G(⋅) is estimated in accordance with the following model, 
 

µzβX  y +=− )G(ˆ            (5) 

 
The advantage of this semiparametric method for independent and identically distributed data is that iteration is not 
required and root n consistencies of the estimators of the linear coefficients can be achieved. 
 
2.2 Sampling Design and Superpopulations 
 
Suppose that we have a population U consisting of N distinct units. The characteristic of interest is a vector valued 
unit (yk, xk, zk) for all the k=1,… ,N. yk represents the kth population value of the response variable and (xk, zk) 
represents the kth observation of the explanatory variables and is a vector with length p+1. Let s be a set of units in 
the sample with (yk, xk, zk, wk) for k∈ s obtained according to the sampling design with sample size n. The survey 
weight wk is attached to the kth sampling unit. Additionally, we assume that there is zero nonresponse to assure that 
the inclusion probabilities are equal to the reciprocal of the sampling weights.   
 
Note that there are several estimation procedures needed to accomplish estimation for the partial linear model. In 
order to obtain estimates and make inferences with them, we need to assume a superpopulation framework. What is 
typically used in survey data analysis is to assume a working model or a superpopulation model on the finite 
population. The parameter estimates of this model yield finite population parameters or census estimates based on 
the model. The survey sample is used to obtain estimates of these census “estimates.” Asymptotic derivations to 
justify inferences from the sample to the population are normally obtained through a second superpopulation model. 
 
Superpopulation 1 
 
The N finite population units are a sample of independent and identically distributed units from the infinite 
superpopulation. The units of a finite population are realization of the model defined in equation (1). We denote B = 
(B1, …,Bp) and g(z) as the finite population parameters of the linear coefficients and the regression function at fixed 
point z in the working model, respectively. Based on this superpopulation, we can directly adopt the methodology 
for the independent and identical distributed data to obtain finite population parameters of the interest that we can 
estimate. Our concern is only that the finite population parameters are consistent estimators of the superpopulation’s 
parameters when the assumption of independence is withdrawn. Superpopulation 1 does not only allow us to derive 
valid asymptotic results in the view of independence, it may also create specification problems if the finite 
population units do not agree with the superpopulation model. Hence, once sample estimators are obtained, another 
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superpopulation, which is composed of a nested sequence of finite populations, is used to establish the asymptotic 
distribution and inferences from the estimators. 
 
Superpopulation 2 
 
Superpopulation 2 consists of a nested sequence of finite populations indexed by υ such that all the finite population 
quantities and the sample quantities depend on the index υ and all the asymptotic frameworks are established as 

∞→υ . 
 
2.3. Estimation 

 
Using the framework of Superpopulation 1, we extend the estimation procedure in Section 2.1 to the complex survey 
data with some modifications. Specifically, instead of the Nadaya-Watson kernel smoothing technique used in 
Robinson (1988), we will use the local polynomial regression technique to estimate the conditional expectations. As 
mentioned in Wand and Jones (1995), the Nadaya-Watson kernel smoothing technique can be considered as local 
constant fitting and it has been shown to have higher boundary bias than some other degrees of local polynomial 
regression fits. It is noted that estimation of the linear coefficients and the nonparametric regression function are 
accomplished in two steps. In the first step, we estimate the linear coefficients and in the second step we estimate the 
nonparametric function.  
 
When conducting the first step in the estimation procedure, a smoother is needed to estimate the conditional 
expectations of the response variable and the parametric explanatory variables on the nonparametric explanatory 
variable, z.  We denote my(z) and )(m z

jx  the population conditional expectations of  y and xj on a fixed point z, 

respectively. In order to estimate my(z) and )(m z
jx , we bin the observed data according to z.  Suppose that z has m 

distinct values in the finite population. Let zi denote the ith distinct value or the ith bin and assume that the values of  
zi are equally spaced with length zi - zi-1. The finite population proportion of the observations with zi is denoted by pi. 
Let the vector of finite population means for response variable y at distinct values of z be )( m1 y,,y L=y and the 

vector of finite population means for the jth independent variable xj for j = 1,…, p be ),,( 1 mjjj xx L=x . iŷ , ijx̂  and 

ip̂  are the survey estimators of iy , ijx  and ip  for all i =1, …, m, respectively.  

 
Based on the binned sample means and sample proportion, we have the survey estimator of my(z) and )(m z

jx at zi  

for all i =1, …, m as,  
 

j
TTT

ij ij
xKWZZKWZex

^^

x
ˆ)()(m̂)|(Ê 1

iiii zzzzzi zzz −=== ,   (6) 

 
and  
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K(·) is a kernel function satisfying ∫ K(t) dt = 1 and ∫ K(t)2 dt < ∞  and q is the degree of polynomial the model fits. h 
is the bandwidth that controls the size of neighbourhood. The vector e is the m × 1 vector of the form (1,0, …, 0)T. 

The vector ŷ  is the m × 1 vector of the form ( 1ŷ , …, mŷ )T, and jx̂  is the m × 1 matrix of the form T)ˆˆ( mj1j x,,x L .  

 
In order to estimate the finite population B, we need to reconstruct the data in such a way that the working model 

shown in equation (3) can be used. Let Ni be the number of observations that fall in the ith bin and ∑ =
=

m

i i NN
1

. 

XM  is a N × p matrix consisting of all the population conditional expectations of  X  and of the form,  
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Similarly, we set up a N ×1 vector, yM , such that )(m izy is repeated for Ni  times in the ith bin, 
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Let y = (y1, …, yN), xj= (xj1, …, xjN) and X=(x1, …, xp). Using XM and yM , we have YY≡≡ y − yM and X ≡ X − XM . 

With these transformed data and the working model in equation (3), we have the multiple regression least squares 
census estimates without constant term: 

 

 .)(= −1 YXXX ΤΤB  

 
Following the population counterpart, we represent the sampling data as (X, y, z, w) with sample size n and ni 

observations within each bin such that ∑ ==
m
i i nn1 . y is a n × 1 vector and of the form (y1, …, yn) and x is a n × p 

matrix and of the form (x1, …, xn). We can construct XM̂ and yM̂ with the same way as we construct XM and 

yM in equations (8) and (9). That is, we use sampling estimates )(m̂ ij
zx  and )(m̂ izy  that are shown in (6) and (7) 

to obtain, 
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Defining yMy ˆˆ −=Y   and XMX ˆˆ −=X , we have the estimator of  B in the context of the complex survey: 

 

 .)(= Τ−1Τ ŶX̂X̂X̂ˆ WWB  

 
where W is the n × n weight matrix with design weight, wk, on the diagonal entry. 
 

Once we obtain the sampling estimator, B̂ , we can estimate the population parameter g(⋅) by taking equation (5) as 

the working model. By applying the local polynomial technique again and using the sampling estimates B̂ , we have 
 

RKWZZKWZe
^^ ˆ)(ĝ 1

iiii zzzzzi )(z TTT
i

−= ,    (10) 

 

where BxyR ˆˆ −=  and R̂  is the vector of binned means of survey estimate R̂ . 

 
 

3. ASYMPTOTIC PROPERTIES 
 
Let θT = (BT

1×p, mx (z)T
1×pm, my(z)T

1×m) be a vector of size 1× (p+(p+1)m) and containing all the finite population 
parameters. Following Binder (1983) and basing the working model in equation (3), we can express the finite 
population parameters in a normal equation in the following fashion, 
 

1pkk

N

i
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N

k
k y ×

==
=−−∑−−−∑≡ 0BMxMxMxu xxyx )()()M()()(

11

T
k

Tθ    (11) 

 
where MXk  is the kth row of the N × p matrix MX and Myk is the kth elements of the N × 1 vector My. Both MX and 
My are defined in equations (8) and (9), of which matrices consist of all the estimated conditional expectations on z. 
The objective of setting up equation (11) is to obtain the solution of B, which is the least squares estimator of the 
superpopulation regression model in equation (2). 
 
Analogous to the population normal equation, the survey estimates of u( θ ) is  
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s
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s

Xy )ˆ()ˆ()M̂()ˆ())(ˆ),(ˆ,(ˆ k
T
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∈∈

, 

 
where )(ˆ zmy is a vector whose elements are the estimated conditional expectations of y on all the distinct point of z 

and )(ˆ zmX  is a vector of the form ( )(ˆ
1

zmx , …, )(ˆ zmx p
), where each )(ˆ zmx j

 is composed of  estimated 

conditional expectations of xj on all the distinct point of z. Given that B̂ is the survey least squares estimator of  B 

and ))(ˆ),(ˆ,ˆˆ zmzmB Xy(=θ , we have, 
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Taking a Taylor expansion of  )ˆ(ˆ θu  at θθ =ˆ , we obtain, 

 

))()(ˆ(ˆ)ˆ(
)(ˆ

)(ˆ)ˆ(ˆ zmzmUBB
B

u
u0u ξξ −+−

∂
∂+≈≡ × ξ

θθθ 1p    (12) 

 

where )(ˆ zmξ and )(zmξ  are two vectors in the form of ( ))(),( zmzm Xy and ( ))(ˆ),(ˆ zmzm Xy  respectively. )(ˆ θξU  is 

a p × (p+1)m matrix whose components are the first derivatives of )(ˆ θu  with respect to my(zi) and )(m iz
jx  for all j 

= 1, …, p and i = 1, …, m. Note that ξ  in the model of interest represents y or a covariate xj.  Rearranging equation 
(12), we have, 
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Taking variances of both sides, we obtain in the limit, 
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 is of full rank, we obtain the variance of the sampling estimator of linear 
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Intuitively, equation (13) suggests that the variability of B̂  is caused by the estimated conditional expectations, the 
survey total from the estimating equation and the covariance between the survey total and the estimated conditional 
expectations. Given that  

 
TT
ξξξξξ θθ UzmUzmU ˆ))(ˆ),(ûV(ÔC2ˆ))(ˆ(V̂ˆ))(û(V̂ˆ ++=Ω , 

 

an estimator of )ˆV(B  is 
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Note that all the estimates of derivatives in equation (12) are of the form of a survey total and domain totals. In 
addition, the survey estimates of the conditional expectations are dependent of the domain means and the domain 
proportions. Consequently, B defined in equation (12) is merely a function of survey means and domain means. 
Hence, under superpopulation 2 framework and some regularity conditions stated in the literature (for example, 

Shao (1998) and Krewski & Rao (1981)), we state the following asymptotic properties of B̂ .  
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Theorem 1: 

Under regularity conditions and a multi-stage sampling design, the asymptotic distribution of )( BB −ˆn  is normal 

with mean zero and variance )V(B̂ and )(V B̂ˆ  converges to )V(B̂  in probability.  

 

If we define iiii zzzzzi

^^

KWZZKWZeA TTT
i

1)(ˆ −= , equation (10) can be rewritten as RA ˆˆĝ ii )(z = . Naturally, iÂ  and 

R̂  are the survey estimators of 
iiii z

T
zz

TT KWZZKWZeAi
1)( −≡ zzi

 and R , where R is the vector of the binned 

population means of XBYR −=  . Taking Taylor expansion on )(ziĝ  at iA  and R , we have 

 

)ˆ()ˆ(gĝ RRARAA −+−+= iiiii )(z)(z . 
 

Defining KWWKC −= ˆˆ and expanding the inverse of the matrix in iÂ with the expansion of the inverse of two 

matrices, we can show that iÂ  is asymptotically unbiased for iA . Since R̂  is a vector of binned sample means, it 

is asymptotically unbiased estimator of R .  Hence, the asymptotic expectation of )(ĝ iz  is )g( iz  and the design 

based variance of )(ĝ iz  is 

 
T
iiiz ARA )ˆV())(ĝV( =       (14) 

 

where T
mm XBXIQy,XIQR )ˆV())(ˆˆCOV()()ˆV( +⊗⊗≈ T  given that X  is the m × p matrix of the form ( T

1x , …, 

T
px ), X̂  is the m × p matrix of the form ( T

1x̂ , …, T
px̂ ) and Q= (1, -B1, …, - Bp). Replacing all the variances and 

population parameters in equation (14), we obtain variance estimator of ))(ĝV( iz as 

 
T
iiiz ARA ˆ)ˆ(V̂ˆ))(ĝV( =  

 

where T
mm XBXIQy,XIQR ˆ)ˆ(V̂ˆ)ˆ)(ˆˆV(ÔC)ˆ()ˆ(V̂ +⊗⊗≈ T . 

 
Additionally, we establish the asymptotic normality of )(ĝ iz , that is,  

 
Theorem 2: 
 

))g()(ĝ( ii zzn −  converges to normal with mean 0 and variance of ))(ĝ( izV and ))(ĝ( izV  converges to 

))(ĝ( izV in probability. 

 
 

4. DATA ANALYSIS 
 

In this analysis, we illustrate semiparametric partial linear regression model with data from the Ontario Health 
Survey (OHS). The Ontario Health Survey was conducted with a stratified two-stage clustered design. The strata 
were the public health units in the province of Ontario and within each stratum neighborhoods were randomly 
selected as were households within each neighborhood. The purpose of this survey is to measure the health status of 
the people of Ontario and to collect data relating to the risk factors of major causes of mortality in Ontario.  
 
For the purpose of illustrating the partial linear model, we examine the effects of age, gender, smoking status and 
physical activeness on the body mass index (BMI) and the desired body mass index (DBMI). The BMI is a measure 
of actual weight status and the DBMI is a measure of desired weight measure. Both of the BMI and the DBMI are 
calculated as follows: 
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2meters) in(height 

kg inweight 
 BMI =    

 

2meters) in(height 

kg in weight desired
 DBMI =  

 
We use age as a continuous variable and treat the other factors as discrete variables. The working model is defined 
as: 

 

11 )(gBMI εXβage ++=  

22 )(gDBMI εXβage ++=  

 
where X is the design matrix including all the indicator variables from the factors. 
 
Among all the explanatory variables, we focus on the continuous variable -- age. Since the BMI is not applicable to 
adolescents, we only pick the respondents whose ages are between 18 and 64. After deleting all the missing values 
and “not stated” observation, in the data file there are a total of 21968 observations. Since there are only 46 distinct 
points in the age variable, we bin the data set according to age. The bin size is set to be unity such that there are 46 
bins with midpoints being 18,19,…, 64.  
 
Table 1 lists all the survey estimates of the linear coefficients of the first model. On comparing BMI by gender, we 
found that male BMI is higher. Using former smoker as the base category, the coefficients of the smoking status are 
all negative and significant, which suggests that former smokers tend to be heavier than people with other types of 
smoking status. 

 
 
 

Table 1: Estimates of the Linear Coefficients 
 

Factors B̂  SE( B̂ ) t-value 
Gender 1.45 0.052 27.90 
Never Smoked -1.45 0.065 -22.27 
Occasional Smoker -1.72 0.12 -14.41 
Daily Smoker -1.48 0.072 -20.63 
Moderate Active 0.66 0.095 6.96 
Inactive 1.43 0.078 18.45 

 
 
In Figure 1 and Figure 2, the estimated functions of age, )(ĝ1 age and )(ĝ2 age , and their confidence intervals are 

plotted versus different ages. It is found that, in both cases, the BMI and the DBMI are increasing nonlinear 
functions of age. A comparison of )(ĝ1 age  with )(ĝ2 age  is shown in Figure 3. It is found on average that for every 

individual who is either active or moderate active, the DBMI is lower than the BMI.  
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Figure 1: Estimated Age Trend in BMI with Confidence Intervals
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Figure 2: Estimated Age Trend in DBMI with Confidence intervals
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Figure 3: Estimated Age Trend in BMI and DBMI
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5. CONCLUSION 
 
With the assistance of a partial linear model, we extend semi-parametric regression techniques to complex survey 
data. Asymptotic properties of the survey estimators are developed.  Computation of the variance estimates of both 
linear coefficients and the regression function rely on variance of survey total and means. Provided that we obtain 
the required variance estimates, we can apply this method using standard statistical packages. In the partial linear 
working model, we assume that there is no interaction between the parametric component and the nonparametric 
component. This assumption can be relaxed in such a way that nonparametric component appears linearly in the 
interaction term. When estimating conditional expectation on the nonparametric components for indicator discrete 
random variables, we propose to use generalized linear or additive models to conduct the estimation.  
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