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ABSTRACT

Due to the usual complexity of the sampling designs, survey data are neither independent nor identically distributed.
Hence, estimation methods devel oped for independent and identically distributed data are not suitable for models based on
complex survey data. The aim of this paper is to discuss such estimation methods with emphasis on semiparametric
regression models for complex survey data, in which explanatory variables are composed of nonparametric and parametric
parts. Estimation methods for this model combine the nonparametric local polynomial regression estimation and the classic
least squares estimation in complex surveys. Moments and asymptotic properties of the estimators are discussed.
Methodology and theoretical resultswill beillustrated using the 1990 Ontario Health Survey.
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1. INTRODUCTION

Given y is the response variable and X is a matrix of corresponding the explanatory variables, a conventional
regression model is of the form:
E(yIX) = G(X),

where G(.) is called aregression function. Based on the assumption of the regression function, regression modelling
can be divided into two major streams: parametric and nonparametric. A parametric regression is parameterized by
an unknown p-dimensional parameter vector, p and G(X) is usually denoted as G(X, B). We estimate p with the

assumption on the functional form of G(. , .). If the assumption for the form of G(. , .) is correct, the performance of
the parametric regression model is very useful, however, once misspecification occurs, misleading results can be
obtained. In a nonparametric regression model, we relax the assumption on the form of G(.) and use the local
information to obtain the point estimates of the function G(.). A nonparametric regression model can be estimated by
a smoother. Even though nonparametric regression techniques have demonstrated their usefulness, when we conduct
flexible regression modeling we pay a price for relaxing the assumption of a specific functional form in
nonparametric regression analysis. In particular, beyond the difficulty of choosing the right window size
(neighbourhood), a more serious problem that relates to all smoothing methods for a multiple regression model is
the "curse of dimensionality”, which happens when neighborhoods with a fixed number of points become less local
as the number of dimensions increases. The "curse of dimensionality" makes the rate of convergence of an estimator
so slow that the performance of nonparametric estimation for multiple regressions is not promising. One result of the
"curse of dimensionality” is the infeasibility of including discrete explanatory variables in the nonparametric
regression analysis.

To take advantage of the strength of parametric estimation and to minimize the occurrence of "curse of
dimensionality”, a so-called partial linear semi-parametric regression model is devised of the form,

E(yIX,2) = XB +G(2),

where the explanatory variables are represented separately in two parts. the nonparametric part (G(z)) and the
parametric linear part (X B). In this semi-parametric regression model, both the functional form of the
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nonparametric part of the model and the parameters will be estimated. This partial linear semiparametric model has
a priori motivation as a data analytic tool and retains an important interpretive feature. We can put those variables
with more known information on the functional form in the parametric part of the model and the variable with little
information on the functional form in the nonparametric part of the model. In addition, discrete explanatory
variables have always created problems in nonparametric regression estimation because of low effective sample
sizes. It isvery natural to include the discrete explanatory variablesin the linear part of the model.

The objective of this paper is to apply this partial linear semi-parametric regression model to complex surveys. We
are interested in the estimating procedures developed independently by Robinson (1988) and Speckman (1988) for
independent and identically distributed data. Due to the sampling design, data from a complex survey are neither
independent nor identically distributed. Hence, we cannot directly apply the estimation method of Robinson (1988)
and Speckman (1988) to complex survey data. To solve the technical difficulty of complex data, we establish two
superpopulations such that we can adapt the estimation method for independent and identically distributed data and
make inferences for the survey sample estimators.

Due to Robinson (1988) and Speckman (1988), the estimation procedure for partial linear regression models consists
of a nonparametric estimation method and a least squares estimation method. As a result, we need a smoother to
accomplish the estimating procedure in the sampling context. The smoother we will use is developed by Bellhouse
and Stafford (2001) for complex surveys. One of the characteristics of complex survey data is that the size of the
data set can be very large. Usualy, there are multiple observations at distinct values in a large survey data set.
Large-scale data sets not only can result in non-informative trends between the response variable and the covariates
when plotting the data, they also make the estimation process very computationally cumbersome. Hence, it is very
natural in the complex survey data analysis to bin the data into domains according to the distinct values of the
characteristic variables. In Bellhouse and Stafford (2001), local polynomial regression methods are put forward for
large-scale surveys and rely on binning the data on the explanatory variable.

Combining the well-established least squares estimation technique and the local polynomial regression techniques
developed by Bellhouse and Stafford (2001) for complex surveys, we develop the survey sample estimators for the
partial linear regression model and establish their asymptotic properties. The paper is organized as follows. In
section 2, we introduce the partial linear regression model in the sampling context. In section 3, asymptotic
properties of the survey estimators are discussed. An empirical illustration of the estimation method using the 1990
Ontario Health Survey in are carried out in Section 4. The paper is concluded in section 5.

2. APARTIAL LINEAR MODEL IN THE SAMPLING CONTEXT

2.1 Preliminary
A semiparametric model is defined as:
y= G(2)+ Xp+e D

where y is the vector of response variable and € is independent and identically distributed with mean zero and
congtant variance. G(.) is an arbitrary function of z. Based on the model information on the independent variables,
the independent variables are separated into two types. Independent variables included in the n x p matrix X
correspond to the parametric or linear part of the model and independent variable, z, is the nonparametric part of the
model. Each parametric independent variable, x;, is a vector of random variables with distribution F;. z is measured
on a continuous scale and X contains either continuous or discrete explanatory variables. Both the functional form of
G(.) and parameters B4, ..., Bp are unknown. Additionally, it is assumed that E(g| z, X)=0 and that there are no
interactions between X and z.

The problem in estimating p in the partial linear model as stated in (1) is that there is a function of unknown form,

G(2). If it were possible to find a way to remove this function, the least squares procedure can be used to estimate
the resulting linear regression model.
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Taking the expectation of both sides of equation (1) conditional on z yields,
E(y 12) =E(X |2)B + G(2) 2
given that E(g | zZ) = 0. Now, subtract (2) from (1) to obtain
y-E(y2)=(X-E(X|2)p +e ©)
By definingY =y - E(y[2) and X = X - E(X|2), we get the linear regression model
Y =Xp+e (4)

Now one obvious approach is to estimate B by the method of least squares. Unfortunately, since E(y|z) and E(X|z)
are unknown, least squares estimation of B is not feasible. Consequently, we carry out the estimation of g in two

steps. In the first step, the conditional expectations appearing in equation (3) is estimated with Nadaya-Watson
kernel smoothing technique. In the second step, E(y|z) and E(X|z) in (3) are replaced with their estimates obtained in
the first step and estimate B with the method of least squares.

Once the estimate of B, ﬁ , 1S obtained, the difference between the response variable y and the X ﬁ is treated as the
dependent random variable and function G([)lis estimated in accordance with the following model,

y-Xp= G(2)+p 5)

The advantage of this semiparametric method for independent and identically distributed data is that iteration is not
required and root n consistencies of the estimators of the linear coefficients can be achieved.

2.2 Sampling Design and Super populations

Suppose that we have a population U consisting of N distinct units. The characteristic of interest is a vector valued
unit (Yi, Xk z) for al the k=1,... N. yi represents the K" population value of the response variable and (x, zJ)
represents the K" observation of the explanatory variables and is a vector with length p+1. Let s be a set of unitsin
the sample with (i, X« z, W) for ks obtained according to the sampling design with sample size n. The survey
weight w is attached to the k™ sampling unit. Additionally, we assume that there is zero nonresponse to assure that
the inclusion probabilities are equal to the reciprocal of the sampling weights.

Note that there are several estimation procedures needed to accomplish estimation for the partial linear model. In
order to obtain estimates and make inferences with them, we need to assume a superpopulation framework. What is
typically used in survey data analysis is to assume a working model or a superpopulation model on the finite
population. The parameter estimates of this model yield finite population parameters or census estimates based on
the model. The survey sample is used to obtain estimates of these census “estimates.” Asymptotic derivations to
justify inferences from the sampl e to the population are normally obtained through a second superpopulation model.

Super population 1

The N finite population units are a sample of independent and identically distributed units from the infinite
superpopulation. The units of afinite population are realization of the model defined in equation (1). We denote B =
(B1, ...,Bp) and g(2) as the finite population parameters of the linear coefficients and the regression function at fixed
point z in the working model, respectively. Based on this superpopulation, we can directly adopt the methodology
for the independent and identical distributed data to obtain finite population parameters of the interest that we can
estimate. Our concern is only that the finite population parameters are consi stent estimators of the superpopulation’s
parameters when the assumption of independence is withdrawn. Superpopulation 1 does not only alow usto derive
valid asymptotic results in the view of independence, it may also create specification problems if the finite
population units do not agree with the superpopulation model. Hence, once sample estimators are obtained, another
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superpopulation, which is composed of a nested sequence of finite populations, is used to establish the asymptotic
distribution and inferences from the estimators.

Super population 2

Superpopulation 2 consists of a nested sequence of finite populations indexed by v such that all the finite population
guantities and the sample quantities depend on the index v and all the asymptotic frameworks are established as
U — 00,

2.3. Estimation

Using the framework of Superpopulation 1, we extend the estimation procedure in Section 2.1 to the complex survey
data with some modifications. Specifically, instead of the Nadaya-Watson kernel smoothing technique used in
Robinson (1988), we will use the local polynomial regression technique to estimate the conditional expectations. As
mentioned in Wand and Jones (1995), the Nadaya-Watson kernel smoothing technique can be considered as local
constant fitting and it has been shown to have higher boundary bias than some other degrees of loca polynomial
regression fits. It is noted that estimation of the linear coefficients and the nonparametric regression function are
accomplished in two steps. In the first step, we estimate the linear coefficients and in the second step we estimate the
nonparametric function.

When conducting the first step in the estimation procedure, a smoother is needed to estimate the conditional
expectations of the response variable and the parametric explanatory variables on the nonparametric explanatory
variable, z. We denote my(2) and m, (2) the population conditional expectations of 'y and x; on a fixed point z,

respectively. In order to estimate m,(z) and m, (2) , we bin the observed data according to z. Suppose that z hasm

distinct values in the finite population. Let z denote the i™ distinct value or the i bin and assume that the values of
z are equally spaced with length z - z_;. The finite population proportion of the observations with z is denoted by p;.
Let the vector of finite population means for response variable y at distinct values of zbe y =(y;,---,¥,,) and the

vector of finite population means for the | independent variable xiforj=1,..,pbe X; =(X;, ", Xy) - §7i , ;‘qj and

P arethe survey estimators of ¥; , X; and p foralli=1, ..., m respectively.

Based on the binned sample means and sample proportion, we have the survey estimator of my(z) and m,, (2)at z
forali=1, ..., mas,

Ex; [z=2) =1, (z)=€"(Z] KW, z,)'z] KW, X, (6)
and
B(ylz=2) =1 (2) =€ (2] KW Z,)Z] KW, 7, @)
where
1 z-z - (z-7)
1 2,-2 - (2,-3)°
and
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\ 1. . -z R -z
KW, =~ diag(p,K (2 2).... K (* )

K(-) isakernel function satisfying | K(t) dt = 1 and [ K(t)?dt < o and q is the degree of polynomial the model fits. h
is the bandwidth that controls the size of neighbourhood. The vector e is the m x 1 vector of the form (1,0, ..., 0)".

The vector ? isthe m x 1 vector of theform(f/l, f/m)T, and ii isthe m x 1 matrix of the form (ilj ,~--,§mj)T.

In order to estimate the finite population B, we need to reconstruct the data in such a way that the working model
shown in equation (3) can be used. Let N; be the number of observations that fall in the i bin and Zin:lNi =N.

M, isaN x p matrix consisting of all the population conditional expectationsof X and of the form,
m,(z) m,(z) - m, (z)
mx1 (Zl) m><2 (Zl) mxp (21) Nyxp

My = : : €S)
mxl(zm) mxz(zm) mxp(zm)

m@) M @) - m, ()
Similarly, we set up aN x1 vector, M, suchthat m, (z) is repeated for N; timesin thei™ bin,
myle)
myka)

: 9
m, (z,)

My (z) ),
Lety = (Y1, .-y YN)» Xi= (Xj1s -5 Xin) @0d X=(Xy, ..., Xp). Using M, andM , wehave Y=y - M, and X=X - M, .

With these transformed data and the working model in equation (3), we have the multiple regression least squares
census estimates without constant term:

B=(X"X)X"Y.

Following the population counterpart, we represent the sampling data as (X, y, z, w) with sample size n and n,
observations within each bin such that > %;n, =n.yisan x 1 vector and of the form (yy, ..., y,) and x isan x p

matrix and of the form (xy, ..., X,). We can construct M « and M ,With the same way as we construct M, and
M, in equations (8) and (9). That is, we use sampling estimates r°nxj (z) and M, (z) that are shown in (6) and (7)
to obtain,
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m (z) m(z) - m (2) , (z,)

r’hxl(zi) r’hxz(zi) r’hxp(zl) N,xp r:hy(zi) NyxL
M, = : : adM, =

My (Z0) M (Z) -+ M (2) m, (z.)

M (@) (@) o (2] My (@)

Defini ng\? =y-M, and X=X-M +« » We have the estimator of B in the context of the complex survey:

B=(X"TWX)IXTwy.
where W isthe n xn weight matrix with design weight, wy, on the diagonal entry.

Once we obtain the sampling estimator, B, we can estimate the population parameter g(0) by taking equation (5) as
the working model. By applying the local polynomial technique again and using the sampling estimates B, we have

4z )=e"(Z, KWz Z,)'Z] KW; R, (10)

where R = y - xB and ﬁ isthe vector of binned means of survey estimate R.

3. ASYMPTOTIC PROPERTIES

Let 87 = (B 1xp, My (2)"1xpmy My(2)"1xm) be @ vector of size 1x (p+(p+1)m) and containing all the finite population
parameters. Following Binder (1983) and basing the working model in equation (3), we can express the finite
population parametersin a normal equation in the following fashion,

U(O) = 30, =M. (% =My, ) = 20 =M,y )T (6 =M, )B =0, ay

where My, isthe k™ row of the N x p matrix M and My, is the K" elements of the N x 1 vector M,. Both My and
M, are defined in equations (8) and (9), of which matrices consist of all the estimated conditional expectations on z.
The objective of setting up equation (11) is to obtain the solution of B, which is the least squares estimator of the
superpopulation regression model in equation (2).

Analogous to the population normal equation, the survey estimates of u(0) is
a(B,m, (2),my (2)) = k%s(xk -M i) (Vi = M y )W = %s(xk -M )T (X = M xi ) BW,

where rhy(z) is a vector whose elements are the estimated conditional expectations of y on all the distinct point of z
and m,(z) is a vector of the form (m, (2), ..., rﬁxp(z)), where eachrhxj (z) is composed of estimated

conditional expectations of x; on al the distinct point of z. Given that Bisthe survey least squares estimator of B
and 8 = (B, (2),1 (2)) , we have,
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G8) = X (% =M ) (Ve =My, JWh = X (% =M )T (X, = M) BW, =0,

Taking a Taylor expansion of (i(8) a 6 =8, we obtain,

1820, =0(8)+ )

(B B) + U (mg(z) m. (2)) (12)
where M, (z) and m, (z) aretwo vectorsin the form of (m, (z),m, (2)) and (™, (), M, (2)) respectively. LAJE(G) is
ap x (p+1)m matrix whose components are the first derivatives of G(6) with respect to my(z) and m,, (z) forallj
=1,...,pandi=1, ..., m Notethat § inthe model of interest representsy or a covariate x;. Rearranging equation
(12), we have,

au(e)

((8) + Uy (e (2) -y (2)) = - (B-B).

Taking variances of both sides, we obtain in the limit,

(au(e)}/( )(au(e)j

Q = V({(8)) + U, V(g (2))UI +2COV(i(8), g (2))U7] .

where

Providing that the matrix al;g))

is of full rank, we obtain the variance of the sampling estimator of linear

coefficientsto be

V(é):(ag(;)j Q(aua(g) j . (13)

Intuitively, equation (13) suggests that the variability of B is caused by the estimated conditional expectations, the
survey total from the estimating equation and the covariance between the survey total and the estimated conditional
expectations. Given that

Q = V((8)) + U, V(M (2)U5 +2COV({i(B), ¢ (2)) U7,

an estimator of V(I§) is

V(B) :("g(;)) g‘z("f‘a(g) J

Note that all the estimates of derivatives in equation (12) are of the form of a survey total and domain totals. In
addition, the survey estimates of the conditional expectations are dependent of the domain means and the domain
proportions. Consequently, B defined in equation (12) is merely a function of survey means and domain means.
Hence, under superpopulation 2 framework and some regularity conditions stated in the literature (for example,

Shao (1998) and Krewski & Rao (1981)), we state the following asymptotic properties of B .
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Theorem 1:
Under regularity conditions and a multi-stage sampling design, the asymptotic distribution of Jn ( B- B) is normal
with mean zero and variance V(E) and \A/(IAB) convergesto V(E) in probability.

If we define A, =¢' (Z, KW, Z,)"Z] KW, equation (10) can be rewritten as §(z ) = Aiﬁ. Naturally, A; and
R are the survey estimators of A, =e'(Z]KW,Z,)"Z KW, and R, where Ris the vector of the binned
population meansof R =Y - XB. Taking Taylor expansionon §(z ) a A; and R, we have

3z)=9z)+(A -A)R+A (R-R).

Defining C =KW -KW and expanding the inverse of the matrix in Ai with the expansion of the inverse of two

matrices, we can show that Ai is asymptotically unbiased for A;. Since ﬁ is a vector of binned sample means, it
is asymptotically unbiased estimator of R . Hence, the asymptotic expectation of §(z) is g(z) and the design
based variance of g(z) is

V(@(z)) = A, V(R)AT (14)

where V(R)=(QO1.)COV(X,§)(QO1,.) +X V(B)X" giventhat X isthem x p matrix of the form (X7 , ...,
7;), i isthe m x p matrix of the form (i;, %,TJ) and Q= (1, -By, ..., - Bp). Replacing all the variances and
population parameters in equation (14), we obtain variance estimator of V(g(z)) as

V(@(z)) = A, V(RIAT
where V(R) = (Q01,.)COV(X, ) Q01.)" +X V(B)X".
Additionally, we establish the asymptotic normality of g(z) , that s,

Theorem 2:

Jn@(z)-9(z)) converges to normal with mean 0 and variance of V(3(z))and V(3(z)) converges to
V(9(z)) in probability.

4. DATA ANALYSIS

In this analysis, we illustrate semiparametric partial linear regresson model with data from the Ontario Health
Survey (OHS). The Ontario Health Survey was conducted with a stratified two-stage clustered design. The strata
were the public health units in the province of Ontario and within each stratum neighborhoods were randomly
selected as were househol ds within each neighborhood. The purpose of this survey isto measure the health status of
the people of Ontario and to collect data relating to the risk factors of major causes of mortality in Ontario.

For the purpose of illustrating the partial linear model, we examine the effects of age, gender, smoking status and
physical activeness on the body massindex (BMI) and the desired body mass index (DBMI). The BMI is a measure
of actual weight status and the DBMI is a measure of desired weight measure. Both of the BMI and the DBMI are
calculated asfollows:
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_ weight in kg
(height in meters)?

desired weight in kg

DBMI =
(height in meters)?

We use age as a continuous variable and treat the other factors as discrete variables. The working model is defined
as.

BMI =g, (age) + XB +¢,
DBMI =g,(age) + Xp +¢,

where X isthe design matrix including all the indicator variables from the factors.

Among all the explanatory variables, we focus on the continuous variable -- age. Since the BMI is not applicable to
adolescents, we only pick the respondents whose ages are between 18 and 64. After deleting all the missing values
and “not stated” observation, in the data file there are a total of 21968 observations. Since there are only 46 distinct
points in the age variable, we bin the data set according to age. The bin size is set to be unity such that there are 46
bins with midpoints being 18,19,..., 64.

Table 1 lists al the survey estimates of the linear coefficients of the first model. On comparing BMI by gender, we
found that male BMI is higher. Using former smoker as the base category, the coefficients of the smoking status are
all negative and significant, which suggests that former smokers tend to be heavier than people with other types of
smoking status.

Table 1: Estimates of the Linear Coefficients

Factors B SE(B) | t-value
Gender 1.45 | 0.052 27.90
Never Smoked -1.45 | 0.065 -22.27
Occasional Smoker | -1.72 | 0.12 -14.41
Daily Smoker -1.48 | 0.072 -20.63
Moderate Active 0.66 | 0.095 6.96
Inactive 143 | 0.078 18.45

In Figure 1 and Figure 2, the estimated functions of age, §,(age) and §,(age), and their confidence intervals are

plotted versus different ages. It is found that, in both cases, the BMI and the DBMI are increasing nonlinear
functions of age. A comparison of g,(age) with §,(age) isshown in Figure 3. It is found on average that for every
individual who is either active or moderate active, the DBMI is lower than the BMI.
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Figure 1: Estimated Age Trend in BMI with Confidence Intervals Figure 2: Estimated Age Trend in DBMI with Confidence intervals
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5. CONCLUSION

With the assistance of a partial linear model, we extend semi-parametric regression techniques to complex survey
data. Asymptotic properties of the survey estimators are developed. Computation of the variance estimates of both
linear coefficients and the regression function rely on variance of survey total and means. Provided that we obtain
the required variance estimates, we can apply this method using standard statistical packages. In the partia linear
working model, we assume that there is no interaction between the parametric component and the nonparametric
component. This assumption can be relaxed in such a way that nonparametric component appears linearly in the
interaction term. When estimating conditional expectation on the nonparametric components for indicator discrete
random variables, we propose to use generalized linear or additive models to conduct the estimation.
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