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ABSTRACT 
 

Linearization and the jackknife are widely used to estimate standard errors for the coefficients of linear regression models 
fit to multi-stage samples.  For some designs, linearization estimators can have large negative bias, while the jackknife has 
a correspondingly large positive bias.  We propose an alternative estimator, bias reduced linearization (BRL), based on 
residuals adjusted to better approximate the covariance of the true errors.   When errors are iid, the BRL estimator is 
unbiased.  The BRL method applies to samples with nonconstant selection weights and to generalized linear models such 
as logistic regression.  We also discuss BRL standard error estimators for generalized estimating equation models that 
explicitly model the dependence among observations from the same PSU.  Simulation study results show that BRL 
standard errors combined with the Satterthwaite approximation to determine the reference distribution yield tests with Type 
I error rates near nominal values. 
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1. INTRODUCTION 
 

Linearization is a widely used nonparametric method for estimating the standard errors of coefficients from linear 
and generalized linear regression models (Binder, 1983; Skinner, 1989).  Although the traditional linearization 
estimator for standard errors performs well for samples with large numbers of primary sampling units (PSUs), the 
estimator can be biased, in particular biased low, when the number of PSUs is small or when the predictor variables 
are unbalanced across the PSUs (Bell and McCaffrey, 2002; Kott, 1994; Mancl and DeRouen, 2001).  For example, 
Bell and McCaffrey (2002) show that the traditional linearization standard error estimator for ordinary least squares 
is biased low except under very restrictive assumption on the distribution of the explanatory variables.  Bell and 
McCaffrey show that under similar conditions the jackknife estimator is biased high. 
 
Kott (1996) proposed a method for reducing the bias in the linearization estimator for linear least squares regression.  
Mancl and DeRouen (2001) developed a different alternative in the context of generalized estimating equations 
(GEE).  Both approaches suggest modifying residual vectors used in the traditional linearization estimator.  Details 
are provided below.  In Bell and McCaffrey (2002), we suggest an alternative method for adjusting residuals called 
biased reduced linearization (BRL).  
 
In this paper, we review our results for ordinary least squares and discuss extensions of the BRL method to: 1) 
weighted least squares; 2) generalized least squares; 3) generalized linear models; 4) generalized estimating 
equations.  We conclude with an application of logistic regression used to estimate the treatment effect in a cluster-
randomized experiment.   
 

 
2.  ORDINARY LEAST SQUARES 

 
We use ordinary least squares on a two-stage sample to develop the BRL estimator.  We highlight the key steps in 
finding the estimator for least squares and these key steps suggest natural extensions for generalized linear models, 
GEE and weighted analyses. 
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2.1  Linearization and the Jackknife 
 
Let n equal the number of PSUs and mi equal the number of final sampling units from the i-th PSU, for i = 1,…, n.  
The overall sample size is ∑= i imM .  We assume that yij = β ′xij + εij, where ε has mean 0 and covariance matrix V, 

and where yij, xij, and εij all refer to the j-th observation from the i-th PSU.  We drop the standard OLS assumption of 
i.i.d. errors, assuming only that errors from distinct PSUs are uncorrelated.  Specifically, we assume that V is block 
diagonal, with mi × mi blocks Vi for i = 1,…, n.  In addition to the notation of this model, throughout the paper, we 
let I denote an M × M identity matrix and Ii equal a mi × mi identity matrix.    
 

Let β̂ denote the estimated coefficients of the linear regression model.  To simplify presentation, we generally 

discuss a linear combination of the regression coefficients, β̂l′ , for an arbitrary column vector l.  For the special 

case where one element of l is 1 and the rest are 0, β̂l ′ equals a single estimated coefficient.  If errors are 

uncorrelated across PSUs, the variance of β̂l ′  is 
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where X and Xi are the design matrices for the entire sample and for PSU i, respectively.   
 

The standard linearization estimator of the variance of β̂l ′  is given by: 
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where ri is the vector of residuals for the i-th PSU.  The unknown matrices Vi are estimated by criri', and c typically 
equals n/(n –1).    
 

The jackknife is sometimes used as an alternative to linearization (Rust and Rao, 1996).  Let { [ ]iβ~ } be a set pseudo 

values or estimates of β from data that exclude the i-th PSU.  A jackknife estimator for multi-stage samples is:    
  

vJK = [(n – 1)/n] [ ]( ) [ ]( )∑
′

−−′i ii ll ββββ ˆ~ˆ~        (2.3) 

 

In Bell and McCaffrey (2002) we show that the jackknife can be written as vJK = c l'(X'X)-1 {∑ =
n
i 1  Xi' (Ii – Hii)

-1 

riri'(Ii – Hii)
-1Xi}l, with c=(n-1)/n, where H = X(X'X)X', and Xi and Hii denote the submatrices of X and H 

corresponding to the ith PSU.  Thus, the jackknife is similar to the linearization estimator, but with the outer product 
of the raw residuals replaced by the outer product of adjusted residual.  Theorems 1 and 2 of Bell and McCaffrey 
(2002) show that when V = I, linearization will be biased low except under restrictive conditions while the jackknife 
over corrects and ends up biased high. 
 
Other authors have proposed adjustments to reduce the bias of linearization.  Kott (1996) suggests calculating the 

ratio of Var( β̂l ′ ) to E(vL) under the assumption that V = I and adjusting vL by the ratio.  If V = σ2I then the resulting 

estimator will be unbiased. In the context of generalized estimating equations, Mancel and DeRouen (2001) suggest 
adjusting the residuals from each PSU to reduce the bias in riri' as an estimator of Vi.  For an unweighted linear 
model, their method corresponds to approximating E(riri') by (Ii – Hii)Vi(Ii – Hii) and replacing ri by (Ii – Hii)

-1ri in 
equation (2).  Thus as shown in Bell and McCaffrey (2002) the Mancl and DeRouen estimator equals [n/(n – 1)]vJK  
for unweighted linear models.   
 
2.2  Bias Reduced Linearization Standard Errors 
 
In Bell and McCaffrey we propose a compromise between the linearization and the jackknife estimators that we call 
bias reduced linearzation.  Like the jackknife, BRL uses the outer product of adjusted residuals.  However, the 
adjustment derives from the E(riri') = (I - H)iV(I - H)i′.  If we knew V then we could determine the matrices Ai such 



that Ai[(I - H)iV(I - H)i′]Ai
′ = Vi. Because V is unknown we use a working covariance matrix in its place to derive 

our estimator.  In particular, we suggest using a working covariance matrix of the form U = σ2I, which simplifies the 
condition on Ai to Ai(Ii - Hii)Ai′ = I or Ai = (Ii - Hii)

-1/2.   Theorem 3 of Bell and McCaffrey shows that if V = σ2I, 
then vBRL is unbiased.  Section 3 considers alternative working covariance matrices.  
 
For mi > 1, Ai is not unique.  If V = σ2I, the choice of Ai is unimportant because any solution to (2.4) will produce 
an unbiased variance estimator.  However, the resulting estimators are biased when V ≠ σ2I, and the bias can vary 
greatly with the choice of Ai.  We found (Bell and McCaffrey, 2002) that the symmetric square root of (Ii - Hii)

-1 
worked best among the alternatives tried, and we refer to the estimator using this root as the biased reduced 
linearization estimator, vBRL = l′ (X'X)-1

iii iiii XArrAX∑ ′′ (X'X)-1l. 

 
2.3   Variation of Variance Estimators 
 
Bell and McCaffrey (2002) show that vBRL equals the weighted sum of n independent 2

1χ  random variables where the 

weights are the eigenvalues of the n × n matrix G = {gi'Vgj}, for gi = (I – H)i′AiXi(X′X)-1l.  In that paper we also 
show that, vL and vJK have similar distributions with G defined by gLi = [n/(n-1)]1/2(I – H)i′Xi(X′X)-1l and gJKi =    
[(n-1)/n]1/2(I – H)i′(I – Hii)

-1Xi(X′X)-1l, respectively.  If V = σ 2I and Xi'Xi(X′X)-1l for i = 1, ..., n are constant, then 

avL, avJK, and avBRL are all  distributed 2
1−nχ  for a = (n – 1)/Var( β̂l′ ) (Bell and McCaffrey, 2002).  However, in 

general, the Xi'Xi(X′X)-1l will not be constant and the squared coefficient of variation will exceed 2/(n – 1), the 

corresponding statistic for a 2
1−nχ  random variable. The coefficient of variation for any of the nonparametric 

variance estimators can be very large for certain designs.  High variability occurs under the same conditions that vL 
and vJK are most biased—when residuals from only a few PSUs effectively determine the final variance estimate.   
 

This excess variability is of particular concern when approximating the distribution of t = β̂l ′ / *v  under the null 

hypothesis that l'β = 0.  For vL, Shah, Holt and Folsom (1977) suggested comparing t to a reference t-distribution 
with n – 1 degrees of freedom.  However, because the variance of (n – 1)vL/E(vL) tends to be greater than 2(n – 1), 
tests using a t-distribution with n – 1 degrees of freedom would tend to have Type I error rates that exceed the 
nominal value, even if vL were unbiased.  Satterthwaite (1946) provides an alternative approximation for the 

distribution of the variance estimators.  By matching the first two moments with that of a 2χ random variable, we 

approximate, up to a scaling constant, the distribution of vL, vBRL or vJK by a 2
fχ  where f = 2/cv2

 = 
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1 λλ and the λi are the eigenvalues of the corresponding matrix G.  Tests based on reference t-

distributions with f degrees of freedom would be expected to provide better Type I error rates than tests based on n -
1 degrees of freedom.  Pan and Wall (2001) and Kott (1994, 1996) suggest using the Satterthwaite approximation to 
estimate the degrees of freedom for tests based on standard linearization or Kott's alternatives to linearization.  The 
Satterthwaite degrees of freedom f require specifying the unknown matrix V.  We set V identically equal to the 
identity matrix—i.e., assume independent, homoskedastic errors for purposes of determining degrees of freedom.   
 
The distribution of vBRL (and the other variance estimators) tends to be less skewed and have less mass in the lower 

tail than the distribution of a 2
fχ  where f equals the Satterthwaite degrees of freedom.  Hence, reference t-

distributions based on the Satterthwaite approximation tend to overestimate tail probabilities.  For example, when 
data from a couple of PSUs nearly determine the value of a coefficient, the Satterthwaite degrees of freedom can be 
less than two, incorrectly implying a chi-square density that is infinite at zero.  Consequently, the probability of very 
large t-statistics may not be as large as the Satterthwaite approximation would imply, especially when the 
Satterthwaite degrees of freedom are less than 4 or 5.  In such settings, saddlepoint approximations (Huzurbazar, 
1999) provide a promising alternative. 
 
 



3.  EXTENSIONS 
 
Derivation of the BRL estimator for OLS involved four steps: 
 

1. derive the Var( β̂l ′ )  as the sum of terms bi'Vibi; 

2. derive the E(riri') = Qi using a working variance-covariance matrix, U, for the unknown Vi; 
3. find the symmetric solutions to AiQiAi= Ui; 
4. vBRL equals the sum of the of terms bi'Airiri'Aibi. 

 
We consider alternative models and extend BRL to these models by using the OLS template and deriving formulas 
for the bi, Qi and Ai.  For all the extensions, Qi and Ai will be of a similar form.  Qi equals the working covariance-
matrix pre and post multiplied by rows of the projection matrix defining the residuals and their transpose.   The Ai's 
equal the roots of matrices involving products of the roots of the working variance-covariance matrix and Qi. 
 
Properties of the extensions to linear models follow directly from results for OLS.  In particular, the estimators are 
unbiased when the working covariance matrix is proportional to the true covariance matrix.  The OLS results do not 
apply to estimators for generalized linear models and GEE and the small sample properties of these estimators must 
be studied via simulation.  
 
3.1  Ordinary Least Squares BRL for a Working Covariance That Is Not the Identity 
 
In equation (2.4) we define the adjustment matrices for the BRL estimator assuming a variance covariance matrix, V 
= kI, for an unspecified constant k.  In some instances, we might want to use an alternative block-diagonal matrix as 
the working, covariance matrix, U, when estimating our standard errors.  In this case, we would continue to estimate 

the variance of OLSl β̂′  as given by (2.1) but now Qi = (I – H)iU(I – H)i and the adjustment matrices solve 

 
 Ai(I – H)iU(I – H)i'Ai' = Ui.       (3.1) 
 
We let Q1/2 denote any matrix Q1/2′Q1/2 = Q and Q* denote the symmetric root of Q-1 provided it exits, i.e., Q*Q* = 
Q-1 and Q*QQ* = I.  The symmetric solution to (3.1) is 
 
   Ai = Ui

1/2(Ui
1/2QiUi

1/2')*Ui
1/2.       (3.2) 

 
3.2  Weighted Least Squares 
 
We consider the case where each observation has a case weight wij and let W = diag{wij}.  The weighted least 

squares estimator of the regression coefficients are Wβ̂  = (X'WX)-1X'Wy and var( Wl β̂′ ) = 

( ) [ ]( ) ll i iiiii
11 −− ′∑ ′′′ WXXXWVWXWXX .  Because ri = X(X'WX)-1X'Wy =GWy, we have Qi = (I – GW)iU(I – GW)i' 

and Ai = Ui
1/2(Ui

1/2QiUi
1/2)*Ui

1/2.        
 
3.3  Linear Generalized Least Squares 
 
We consider generalized least squares estimation of the coefficients using the working covariance matrix U.  
However, rather than use the model-based standard error, we use the linearization standard error estimator to protect 
inference against mis-specification in the working covariance matrix.  This is a common practice used in the 
analysis of longitudinal data (see for example Liang and Zeger, 1986).   
 

The weighted least squares estimator of the regression coefficients are GLSβ̂  = (X'U-1X)-1X'U-1y and var( GLSl β̂′ ) =  

( ) [ ]( ) ll i iiiii

111111 −−−−−− ′∑ ′′′ XUXXUVUXXUX .  The projection matrix is GGLS = X(X'U-1X)-1X'U-1 and Qi =                 

(I – GGLS)iU(I – GGLS)i'.  Ai equals Ui
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1/2. However, Qi = Ui
1/2(I – HGLS)iU
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1/2(I – HGLS,ii)Ui1/2, so that  
 



 Ai = Ui
1/2[Ui(Ii – HGLS,ii)Ui]*Ui

1/2       (3.7) 
 
where HGLS = U-1/2X(X'U-1X)-1X'U-1/2. 
 
3.4 Generalized Linear Models 
 
We consider the generalized linear model where the density function for individual response Yij is assumed to be  
 
 fY(yij) = exp{(yijθij  - b(θij ))/a(φ) + c(yij, φ)}      (3.8) 
 

where θij = h(ηij) and ηij = xij'β.   The mean and variance are given by µ ij = E(yij) = b& (θij) and v = E(y) = b&& (θij)a(φ).  
For estimating the coefficients, the observations are assumed to be independent so that the maximum likelihood 
estimates of the coefficients are found as the solution to the estimating equation: 
 
 ( )∑ =−∆′i iiii 0µyX         (3.9) 

 
where ∆i = diag{dθij/dηij}.  Solutions to (3.9) are found via iteratively reweighted least squares where at the final 
iteration 
 

 MLEβ̂  = (X'U-1X)-1X'U-1z        (3.10) 

where zij = xij' MLEβ̂ + (yij - ijµ̂ ) / { b&& ( ijθ̂ ) h& ( ijη̂ )}, U-1 = diag{ b&& ( ijθ̂ ) h& ( ijη̂ )}, ijη̂ = xij' MLEβ̂ , ijθ̂  = h( ijη̂ ) and ijµ̂ = 

b& ( ijθ̂ ).  Under the working assumption of independent observations, the variance of zi is approximately Ui, up to a 

scaling term.  Thus, generalized linear models are analogous to generalized least squares for linear models and we 
can derive a BRL estimator for GLM using the formulas for GLS.   
 

First we need an estimate of var( l' MLEβ̂ ) under the less restrictive assumption that var(z) is block diagonal, Vi.   

l' MLEβ̂  is approximately normally distributed with ( ) [ ]( ) ll i iiiii

111111 −−−−−− ′∑ ′′′ XUXXUVUXXUX .   

 
Next we need to derive Qi.  We let GGLM = X(X'U-1X)-1X'U-1 and ri = (zi  - iẑ ) , and first order approximations yield  

 
E(riri') = (I - GGLM)iVi(I - GGLM)i' 

 
Thus, just as in GLS, Qi = (I - GGLM)iUi(I - GGLM)i'.  Finally we derive adjustment matrices as solutions to  
 

Ai(I – GGLM )iU(I – GGLM)iAi' = Ui,        
 
which according to the GLS derivations are given by  
 
 Ai = Ui

1/2(Ui
1/2QiUi

1/2)*Ui
1/2 = Ui

1/2[Ui(Ii – HGLM,ii)Ui]*Ui
1/2    

 
where HGLM = U-1/2X(X'U-1X)-1X'U-1/2.  The BRL estimator for GLM is  
 

vBRL,GLM  = ( ) [ ]( ) ll i iiiiiiii
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3.5  Generalized Estimating Equations 
 
Generalized estimating equations extend generalized linear models to allow for correlation among observations from 
the same unit.  The working covariance matrix is given by a block diagonal matrix U such that the a(φ)var(yij) = Ui 
= Ωi

1/2RiΩi
1/2.  The regression coefficients are estimated as the solution to the estimating equations 
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where Di = dµι/dβ = Ωi∆iXi.  As discussed in Liang and Zeger (1986), the coefficient estimates are found by 
iterating between a modified Fisher scoring to estimate β conditional on the current values of parameters of R and φ 
and method of moment estimation of these correlation and scaling parameters.  The modified Fisher scoring 

algorithm is equivalent to iteratively reweighted least squares.  We let zij be defined as above and Ω~ and R
~

denote 
the matrices Ω and R evaluated at the current estimated values of their parameters, so that a the working covariance 

matrix for zi is Ui =
2121 /

ii
/

i

~~~ −− ΩRΩ .  The GEE estimator of the coefficients is then given by 

  

 GEEβ̂  = (X' 21121 // ~~~ ΩRΩ − X)-1X' 21121 // ~~~ ΩRΩ − z = (X'U-1X)-1X'U-1z 
 
Again following the analogy of GLS, (X'U-1X)-1 }{∑ ′ −−

i iiiii XUVUX 11 (X'U-1X)-1 approximates the variance of the 

asymptotic normal distribution of GEE
ˆ'l β  and E(riri') ≈ (I - GGEE)iVi(I - GGEE)i', GGEE = GGEE = X(X'U-1X)-1X' U-1=  
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where  HGEE = 2121 // ~~ ΩR− X(X' 21121 // ~~~ ΩRΩ − X)-1X' 2121 // ~~ −RΩ .  Equation (3.12) holds because (I - GGEE) = 
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The BRL estimator of the variance of l' GEEβ̂  is 

 

 VBRL,GEE = (X' 21121 // ~~~ ΩRΩ − X)-1
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4.  EMPIRICAL RESULTS 
 
4.1 Monte Carlo Study for Ordinary Least Squares 
 
In Bell and McCaffrey (2002), we report the results of a Monte Carlo simulation to study the properties of 
alternative variance estimators and tests for OLS and a balanced two-stage cluster sample with n = 20 PSUs and a 
constant m = 10 observations in each PSU.  We provide a review of those results here.   
 
4.1.1  Simulation Study Design 
 
In that study, all simulation replications use a common design matrix X with four explanatory variables chosen to 
represent a range of difficulty for nonparametric variance estimators.  The first two explanatory variables, x1 and x2, 
are dichotomous (0 or 1) and constant within PSU.  The variable x1 is 1 in half the clusters: 1, 3,...,19, while x2 is 1 
in just three clusters:  9, 10, and 11.  Both x3 and x4 were generated from standard normal distributions.  They differ 
in that x3 was generated from a multivariate normal with intra-cluster correlation of 0.5 within PSU, while x4 was 
generated from independent normal distributions.   

 
The dependent variable yij = β′ xij  + εij, where β = 0 and the εi’s are standard multivariate normal random variables 
with intra-cluster correlation ρ.  We use two alternative values of ρ = 0, and 1/3, corresponding to design effects for 



the sample mean of DEFF = 1 and 4, respectively (DEFF=1+(m-1)ρ).  Monte Carlo results are based on 100,000 
replications of y for our fixed X.  Results for ρ = 1/9 are presented in Bell and McCaffrey (2002).   
 
We evaluated the ordinary least squares (OLS) variance estimator, s2l′(X′ X)-1l, and four nonparametric variance 
estimators:  the standard linearization estimator given in equation (2.2) with c = n/(n – 1); the jackknife estimator 
given in (2.3); bias reduced linearization; and Kott’s 1996 method.  BRL and the Kott adjustments are based on 
working intra-cluster correlations of ρ = 0.   
 
We estimated Type I error rates for eight alternative test procedures based on 100,000 replications from the null 
hypothesis where each 

kβ  = 0, for k = 0 to 4.  Each procedure compares a “t-statistic” against a reference t-

distribution.  For the t’s based on linearization, the jackknife, and BRL, we use critical values from t-distributions 
with both (n – 1) = 19 degrees of freedom and the corresponding Satterthwaite approximation.  For Kott’s method, 
we use his proposed degrees of freedom.  All computations were implemented in SAS.   
 
 4.1.2 Simulation Study Results 
 
Table 1 shows the bias of several variance estimators for the five regression coefficients (including the intercept) for 
ρ = 0 and 1/3.  The OLS variances are unbiased for ρ = 0, but they are badly biased for ρ = 1/3.  For PSU-level 
variables (including the intercept), the OLS variances are too small by roughly a factor of 1/DEFF.  Similarly, the 
bias is smaller, but still substantial for x3, the individual-level variable with large intra-cluster correlation.  The 

positive bias for the OLS variance of 
4β̂  results from a slight negative intra-cluster correlation for x4.   

 
Table 1.  Bias of Variance Estimators (as a Percentage of the True Variance). 

Estimator 
0β̂  

1β̂  
2β̂  

3β̂  
4β̂  

 ρ = 0 

OLS 0.0 0.0 0.0 0.0 0.0 
Linearization -9.6 -13.2 -32.5 -13.3 -1.8 
Jackknife 11.7 17.2 51.2 17.6 2.1 
Kott `96 0.0 0.0 0.0 0.0 0.0 
BRL 0.0 0.0 0.0 0.0 0.0 

 ρ =1/3 

OLS -75.8 -75.5 -76.2 -65.3 13.8 
Linearization -10.7 -14.8 -33.5 -19.9 -4.1 
Jackknife 10.7 15.9 49.5 21.4 5.9 
Kott `96 -1.2 -1.9 -1.5 -7.7 -2.3 
BRL -1.0 -1.5 -1.3 -2.1 0.4 

 Source: Bell and McCaffrey (2002)   
 
Linearization and the jackknife each suffer from large biases, relatively independent of ρ, but the biases point in 
opposite directions.  For each estimator, the magnitude of the bias varies greatly among the coefficients. The largest 

biases (in absolute value) occur for 
2β̂ , which depends mainly on the data from only three PSUs.  The next greatest 

biases occur for 
3β̂ , followed closely by 

1β̂  and 
0β̂ .  

 
By design, Kott `96 and BRL eliminate the bias for ρ = 0.  Both methods reduce the magnitude of bias dramatically 
relative to linearization for ρ = 1/9 and 1/3.  Although the two methods are practically indistinguishable for PSU-

level variables, Kott `96 performs substantially worse for 3β̂  and 4β̂ with relative biases of -7.7 and –2.3 percent 

compared to –2.1 and 0.4 for BRL.   
 



Table 2 shows that Type I error rates for the standard linearization method with (n-1) degrees of freedom 

consistently exceed 5 percent for both values of ρ.  Type I errors are most common for 2β̂ , where they reach as high 

as 16 percent, but they also occur much too frequently for 0β̂ , 1β̂ , and 3β̂ , ranging from 7.0 to 8.8 percent.  The 

magnitude of this problem correlates closely with the size of the bias of the linearization estimator (see Table 1).  
Type I error rates are much lower, 5.7 to 6.4 percent, for tests based on the Satterthwaite degrees of freedom.  Thus 
using the alternative degrees of freedom improved the Type I error rates by about 30 to 88 percent.   

 
Table 2.  Type I Error Rates for Tests of the Null Hypothesis that β = 0 

Estimator  Df 
0β̂  

1β̂  
2β̂  

3β̂  
4β̂  

  ρ = 0 

Linearization n-1  7.54  7.00 15.99  7.35  5.38 
Linearization Satt  5.75  6.45   6.33  6.28  5.18 
Jackknife n-1  5.01  3.92   7.58  4.52  5.02 
Jackknife Satt  3.80  3.43   1.41  3.26  4.77 
Kott `96 Kott  5.11  5.08   4.85  4.76  5.07 
BRL n-1  6.28  5.37 11.25  5.90  5.21 
BRL Satt  4.73  4.86   3.12  4.72  5.00 

   ρ = 1/3 

Linearization n-1  8.10  7.28 16.39  8.79  5.66 
Linearization Satt  6.30  6.78   6.62  7.53  5.44 
Jackknife n-1  5.45  4.11   7.76  4.56  4.67 
Jackknife Satt  4.13  3.61   1.51  3.35  4.46 
Kott `96 Kott  5.59  5.44   5.14  5.88  5.31 
BRL n-1  6.76  5.63 11.55  6.45  5.19 
BRL Satt  5.18  5.14   3.30  5.26  4.98 

NOTE:  Entries with a true value of 5.00 percent have standard errors of 0.07 percent.  
Source: Bell and McCaffrey (2002)  
 

There is a less consistent pattern for the Type I error probabilities for the jackknife.  The jackknife with (n-1) 

degrees of freedom tends to be conservative for 1β̂ and 3β̂ , in accord with the positive bias in the jackknife 

variance.  In contrast, the probability of Type I error is much too large for 2β̂ , and a bit too large for the intercept 

0β̂  when ρ = 1/3.  The apparent explanation is that the choice of (n-1) as the degrees of freedom for the reference t-

distribution sometimes counteracts the bias in the jackknife variance.  This conclusion is supported by the very low 
Type I error rates for the jackknife with Satterthwaite degrees of freedom; smaller degrees of freedom combined 
with large positive biases result in very conservative tests. 

 
BRL with (n-1) degrees of freedom improves substantially on linearization with the same degrees of freedom.  
Because BRL is unbiased when ρ = 0, comparing the fifth row of the table against the first demonstrates the 

reduction in Type I errors that results from removing the bias of linearization.  Excluding 4β̂ , BRL reduces Type I 

error rates by about 45 to 88 percent.  However, BRL with (n-1) degrees of freedom remains consistently liberal, 

especially for 2β̂ .  Comparison of rows 2 and 6 of each section shows the relative impact of bias reduction and the 

Satterthwaite adjustment.  For 0β̂  and 2β̂ , degrees of freedom are more important, while bias matters more for 1β̂  

and 3β̂ .  Performance for BRL with the Satterthwaite approximation is very good, except for 2β̂ , where the Type I 

error falls to about 3 percent.   
 
Tests based on Kott's 1996 estimator also perform well.  For almost all the coefficients and both values of ρ the 

Type I error rate is close to 5 percent.  The exception is the test for 3β̂  when ρ = 1/3, which has an error rate of 5.88 

percent as a result of the moderate bias in the variance estimator. 



We have also conducted simulation studies for the extensions of BRL and the desirable properties obtained in OLS 
appear to transfer to these other models.  In McCaffrey, Bell and Botts (2001) we use the same design matrix as Bell 
and McCaffrey (2002) to study the properties of BRL estimators for weighted and generalized least squares.  BRL 
standard errors for WLS and GLS have very small bias when the working covariance matrix deviates from the true 
covariance matrix of the error terms.  For generalized linear models (logistic regression), preliminary simulation 
study results suggest that inference based on the BRL estimates and reference distributions using Satterthwaite-like 
approximate degrees of freedom, tend to have near nominal Type 1 errors over a range of true values for the 
regression coefficients and the intra-cluster correlation.  However additional simulation study is required to test the 
generality of these preliminary findings.  
 
4.3  Application: Logistic Regression for Partners-In-Care Intervention 
 
We illustrate the methods in this paper using data from Partners in Care, a longitudinal experiment assessing the 
effect of “quality improvement” programs on care for depression in managed care organizations (MCOs) (Wells et 
al. 2000).  The experiment followed 1356 patients who screened positive for depression in 1996-1997 in 43 clinics 
of seven MCOs.  In each of nine blocks, clinic sets of one to four clinics were assigned at random to one of three 
experimental cells:  usual care, or a quality improvement program supplemented by either nurses for medication 
follow-up or access to psychotherapists.  Six MCOs constituted single blocks, and one MCO was divided into three 
blocks based on ethnic mix of the clinics.  Within blocks with more than three clinics, clinics were combined into 
sets matched as closely as possible on anticipated sample size and patient characteristics.  See Wells et al. (2000) for 
additional details.   
 
One outcome of particular interest was receipt of appropriate care during the six months preceding the first follow-
up.  Receipt of appropriate care was coded as a dichotomous variable equaling one if the patient received 
appropriate medication or therapy and zero otherwise (Wells et al. 2000).  We present results from a logistic 
regression model for appropriate care for 1143 patients at 6-month follow-up. As in Wells et al. (2000), the 
independent variable of primary interest is an intervention indicator that estimates the combined effect of medication 
or therapy versus care as usual. Our regression differs from theirs because we do not use sampling weights or impute 
for missing values of the outcome variable, but the results for the intervention effect agree reasonably closely.   
 
Because patients from the same clinics could have similar outcomes, logistic regression standard errors could easily 
be too low—especially for PSU-level variables like Intervention.  We compare the linearization estimator to the 
BRL estimator given in Section 3, vBRL,GLM  using the adjustment matrices given in equation 3.7.  
 

0.7

1

1.3

0.70 1.00 1.30

SELIN/SEML

S
E

B
R

L
/S

E
M

L

 
Figure 1.  Ratio of SEBRL to SEML vs. SELIN to SEML  for coefficients of model for appropriate care, intervention (red), 
other cluster-level variables (pink), demographics (blue), and baseline health (brown).  
 
Receipt of appropriate care was essentially uncorrelated for patients from the same clinic.  Using the GEE method of 
Liang and Zeger (1986), we estimate the intra-clinic correlation of the errors as –0.0014, easily consistent with a true 
value of 0.  Therefore the maximum likelihood (ML) based standard errors, which are precise for a sample of this 
size, should also be accurate and there is no reason to expect any of the correct standard errors to fall much below 
those obtained from logistic regression.  However, the linearization standard errors are less than the ML standard 
errors for 18 of the 29 coefficients and 7 of the 10 coefficients for clusters-level variables.  This can be seen in 
Figure 1.  The horizontal axis plots the ratio of linearization to ML standard errors and many of the points are to the 



left of the vertical line at 1.00, where the ML and linearization estimates are equal.  Also, there is considerable 
variability in the linearization estimators, which is apparent in the figure in the range of the ratios from about 0.8 to 
1.2. 
 
The BRL estimator performs much better than the traditional linearization estimator.  The ratio of BRL to ML 
estimators is plotted along the vertical axis of Figure 1 and 8 of 10 of the pink dots are above the horizontal line at 
1.00.  All points are above the 45 o indicating that the BRL estimates exceed their linearization counterparts for 
every coefficient.   
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