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ABSTRACT

If the dataset available to machine learning results from cluster sampling, the usual cross-validation error rate estimate can
lead to biased and misleading results. An adapted cross-validation is described for this case. Using a simulation, the
sampling distribution of the generalization error rate estimate, under cluster or ssmple random sampling hypothesis, are
compared to the true value. The results highlight the impact of the sampling design on inference: clearly, clustering has a
significant impact; the repartition between learning set and test set should result from a random partition of the clusters,
and not from a random partition of the examples. The results are confirmed on a true application of automatic spoken
language identification.
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1. INTRODUCTION

In data mining, learning is based on a dataset that is not a sample of the universe to which the results are to be
generalized.

Measuring the quality of this generalization is called “validation” [STO 74]. This measurement of quality [LAV 99]
(generalization error rate, sensitivity, specificity, ROC curve, TQC coefficient [CHA 01], ...) is achieved through re-
sampling methods [EFR 95], which are most often applied with the assumption that the dataset used constitutes a
realisation of a simple random selection (iid, for unrestricted and identically distributed selections) for the reference
universe [DIE 98].

In practice, this hypothesis is seldom validated, the dataset often being the product of cluster samples or (and more
generally) two-stage sampling:

- the set of patientsin a sample of hospital services,
- the set of studentsin a sample of classes or schools, or
- the set of “carrots’ when drilling for an oil-well sample.

In this article, we show that the results of standard cross-validation (considering that the individuals come from a
simple random sample in the initial population) is too optimistic when the dataset comes from a cluster sample. We
propose an adaptation of the cross-validation process that takes the sampling method into account. The results
highlight the impact of cross-validation on simulated data; we then apply our approach to a true application of
automatic spoken language identification.

In section 2, we adapt the cross-validation technique to cluster sampling; in section 3, we use a simulation to
compare the distributions of generalization error rate estimates (with and without clusters) and the exact values of
this error rate; in section 4, we present the results obtained through a true dataset: it is a question of automatic
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recognition of spoken language by a sample of speakers through a physical analysis of their voice audio signal. In
section 5, we attempt to situate the method proposed in this article in relation to the different cross-validation
variants. Finally, in section 6, we conclude.

2. ADAPTATION OF CROSS-VALIDATION TO CLUSTER SAMPLES

The generalization error rate measures the error propensity of a model based on a learning sample and applied to the
whole population. It is seldom measurable since we rarely have access to the whole population, which has to be
estimated. In this context, the method of composition of the learning sample is part of the process of constructing the
classifier, and it must be evaluated on that basis.

In redlity, it often happens that this information is not available, particularly on the basis of test datasets
disseminated through Internet servers (UCI for instance [BAY 99]). In fact, the methods and statistics proposed to
measure the error rate are based on a simple sampling hypothesis that should be treated with caution.

In this section, we propose an adaptation of standard cross-validation (iid, for unrestricted and identically distributed
selections) when the sample is composed of clusters.

2.1. Cross-validation with an iid sample

The usual cross-vaidation method (in J parts) takes place as follows [STO 74], based on an implicit assumption of
aniid sample:

1) nindividuals extracted from the population;

2) the nindividualsin the dataset are randomly distributed into J parts, respectively sized n; = % individuals;

3) alearning algorithm is applied to the entire base, with the exception of one J part;

4) individuals in part J are subjected to the rules learned in (3), and the T ; error rate is observed for those
individuals who were not used in the learning;

5) “generalization error rate’ T isestimated by T = %ZTj :

The T estimator is biased: E(‘I:)<T since the learning samplesused in (2) are size n%<n; this bias become

negligible when J becomes large (with an iid sample, of course); but the random variation of T increasesand the
calculation time increases with J.

2.2. Cross-validation with a cluster sample

If the dataset comes from a cluster sample, then the above standard procedure must be adjusted as follows:

1) nindividuals distributed into G clusters (g =1, . . ., G), respectively sized n yobservations,
2) the G clusters are subdivided into J parts, thus the part designated asj has n; = dej ny observations;

3) to 5) the standard procedure is applied.
In general, there is a cluster effect, i.e. the internal variability of the clustersis low compared to the total variability

of the universe; thus, for a total size of n from the base, the true generalization error rate increases. This must be
highlighted in the cross-validation estimation process.



3. APPLICATION ON SIMULATED DATA

The main purpose of using a simulation model is to be able to determine the true error rate. We can either calculate
the conceptual error by relying on the distributions used or, based on the data generator, generate as many
individuals as wanted in order to make up the test set and thereby estimate the true error rate with controlled
precision. This was the approach chosen for this article.

At this point we present an illustrative example of the approach with only two explanatory variables; this makes it
easier to interpret the charts.

3.1. Model for the simulation

The objective of learning is to distinguish between two classes: the positives (+) and the negatives (0). Individuals
in the universe are grouped into classes comprising m individuals each, of which g arein class “+” and g in

class “0". Regardless of their cluster, positive individuals in the universe are distributed according to an origin-
centred normal bi-dimensional distribution and a variance-covariance matrix s x |, where sis a constant and | is
the identity matrix. Negative individuals in a cluster are distributed in the same way but centred on a point on the
circle with a 1 radius. These cluster centres (for negative individuals) are random, uniformly distributed on the
circle (e.g. figure 1.a). The base consists of g clusters, or n = mx gindividuals.

Hence, there are three parameters in this model: s, the dispersion of each half cluster around its centre, m, the
number of individualsin each cluster, and g, the number of clustersin the learning base.

For each value of these parameters (s= 0.1, 0.2, 05, 1; m= 5, 10, 20, 50; g = 10), we randomly generated 100
learning bases through this model, as well as a test base of 1000 clusters designed to estimate with reasonable
accuracy the true generalization error rate for any learning.

Learning was done through decision trees [QUI 93], which may come close to all borders, whether or not linear,
through broken lines comprised of right segments running parallel to one of the axes [ZIG 00].

For each learning sample (Figure 1.a), we have:
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Figure 1. Learning throughout the available sample (a, b, ), application of the grading rule to alarge test sample
representing the universe (d)

1) construction of the decision tree on the overall sample (Figures1.b and 1.c) ;

2) calculation of the true error rate for this tree on the large test set (Figure 1.d) ;

3) estimate of the generalization error through cross-validation, taking into account the clusters;

4) estimate of the generalization error through cross-validation without taking it into account (i.e. asif then

individuals were aresult of an iid sample).

We return to the operation of the algorithm, based on the example of learning using the base of figure 1.a, which
comprises 10 clusters, wheren = G x m= 10 x 20 = 200 individuals. A tree (figure 1.b) is constructed on this basis
and the error rate is nil (figure 1.c); the evaluation of the actual error rate on the larger test base is illustrated by
figure 1.d.

When cross-validating with J = 10, 1 cluster is eliminated at each stage. One of these stagesisillustrated by figure 2:
by learning on the 9 clusters at the far left, we get atree (figure 2.a), which is a poor classification of 6 of the 10
negatives that were set aside (figure 2.b).

Cl
=
=

Figure 2. A stage of cross-validation

3.2. Smulation results

The results show a number of elements (Figure 3):

—the actual error rate, Err, increases with s, the relative dispersion of the clusters and decreases with m, the size
of the clusters;

— standard cross-validation, ignoring the effect of the clusters, greatly underestimates this rate; the relative bias
increases with cluster size m;

—the error rate estimation bias increases with the cluster effect: it is greatest when s = 0 0, which isto say when
al individualsin acluster are identical;

— cross-validation that takes into account the cluster effect dightly underestimates the actua error rate; this was
expected since, as indicated above, cross-validation is dightly biased by the fact that it uses, at each stage, a
fraction of the sample available for constructing the forecast model.



4. APPLICATION TO ACTUAL SPOKEN LANGUAGE IDENTIFICATION DATA

4.1. | ssues addr essed

Identification of spoken languages based on recordings is a new area of spoken language identification. At atime of
communications media globalization, there are a number of issues, both in Human-Machine Interfaces and human
speech assistance.
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Figure 3. Actual and estimated error rate for G=10 clusters: s= 0.1, s= 0.2 and m= 10, 20 and 40. Average of
100 simulations for each case.

Most of the approaches developed to date are based on statistical modeling of the phonetic (nature of sounds) and
didactic (sound linkage) features of the different languages addressed [Z1S 01]. Such approaches call for the use of
large volumes of recordings accompanied by their phonetic transcripts (fully supervised learning).

Data mining, when associated with the recognition of innovating parameters, can lead to convincing results while
requiring only partly supervised learning and a smaller number of learning data.

4.2. Task description and data used

The experiences are based on the multilingual corpus, MULTEXT [CAM 98]. This dataset contains recordings from
5 European languages (German, English, Spanish, French and Italian) spoken by 150 speakers (5 men and 5 women
per language). Each recording corresponds to the reading of atext comprising approximately 5 sentences, and each
speaker reads between 10 and 20 of these texts. Table 1 summarizes the data cluster structure, with one cluster
corresponding to the set of recordings produced by a speaker.

The task involves the identification of the language spoken in arecording separate from those used for learning.

4.3. Descriptor space

Unlike the classical approaches, which are based on the spectral information contained in the signal, for which the
cluster effect is well known, (the spectrum provides just as much information about the speaker’s identity as about
the language spoken), we find ourselves in a rhythmic parametric space where the cluster effect is theoretically less
evident.



Language | Speakers | Recordings/ Speaker Avg. Durat. / Recording
German 10 20 21,9
English 10 15 17,6
Spanish 10 15 20,9
French 10 10 21,9
Italian 10 15 21,7
TOTAL 50 750

Table 1. Cluster structure of the MULTEXT corpus.
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Figure 4. Example of parametrization into pseudo-syllables. The extract is segmented into consonant segments (C)
and vowel segments (V), which form two pseudo-syllables called 1 and 2. Each pseudo-syllable is parametrized by 5
parameters (Fo and E are not represented).

Starting with the acoustic signal, we do an automatic segmentation into pseudo-syllables [FAR 01]. These units
comprise one or more consonantic segments followed by a vocalic segment (Figure 4). They are correlated with the
rhythmic structure of the language and can therefore help recognize languages. Each pseudo-syllable is
characterized by 5 parameters:
Dc (total duration of the pseudo-syllable consonants, in ms);
Dv (duration of the vocalic segment, in ms);
Nc (number of consonantic segments of the pseudo-syllable, without identity) ;
Fo (fundamenta frequency of the vowel in the syllable, in Hertz) ;

E (relative energy of the vowel, in dB).

Algorithm Standard (iid) | Inclusters
Decision tree 25% 35%
Discriminant analysis 15% 20%
Multilayer perceptron 16% 21%
GMM - 20%

Table 2. Error rate (in cross-validation) for the different approaches studied

For each recording, we calculated the averages, variances and co-variances for these parameters on the set of
pseudo-syllables in the passage. Thus, we had a set of 20 parameters for each statistical individual (recording).



4.4. Comparison between the different approaches

Severa |learning methods were tested:
- decision tree (DT) [QUI 93];

- linear discriminant analysis (LDA) [FIS 36] ;
- multilayer perceptron (MLP) [MIT 97].

In every case, there was a cross-validation, on the one hand without taking into account the cluster effect (different
recordings, while from a single speaker, can be used for learning and testing), on the other hand by taking into
account this effect (al learning and test speakers are distinct).

Finally, there was a comparison with a modelization of the data through a blend of Gaussian laws (GMM) estimated
with the EM (ExpectationMaximization) algorithm, a classically used approach in spoken language identification
[REY 95].

Table 2 summarizes the results.

4.5. Discussion

Despite the small number of characteristics taken into account (average of vocalic and consonantic durations, etc.),
the rhythmic modelization approach produced some very interesting results, in the order of 20% of false
identifications, whether through a form recognition approach (GMM) or knowledge extraction algorithms. In this
latter case, the complexity of the parameter space seems to penalize the decision tree algorithm in relation to the
LDA and MLP approaches.

Moreover, taking into account the appurtenance of individuals to clusters significantly changes the error rate
obtained: these tests confirm that, when working on actual data, it is essential to take this effect into account, given
the danger of significantly underestimating the actual error rates (when the rules are applied to the entire universe).

5. DISCUSSIONS AND SIMILAR WORKS

The main principle that should be extracted from our approach is that it is necessary to take into account the means
of congtituting the learning sample when defining the evaluation procedure through re-sampling (cross-validation,
bootstrap [EFR 95], etc.). Thus, in the subdivision diagrams (learning set — test set), we have to do a random
selection, not on the statistical individuals, but on the clusters; the same applies for the jacknife (leave-one-out)
[WEI 91], the subdivisions have to be applied to the clusters.

There are not many works similar to ours. Discussion has mainly focused on the number of parts in the cross-
validation [KOH 95], the introduction of evolved re-sampling diagrams [DIE 98], or the correction of the bias,
taking into account the characteristics of the classifier [TIB 96]. Nonetheless, since the works of Breiman et al.
[BRE 84], a number of works have introduced the cross-validation stratified re-sampling plan. The objective is to
respect the distribution of classes in each subdivision. There is no true justification for this, the underlying idea
being to reduce the variability of the models produced with each passage. Nonetheless, some authors [KOH 95]
believe, and in this regard agree with our point of view, that this strategy is only truly effective if the initia sample
was extracted from the population in a stratified manner, which is to say that the probabilities of occurrence of each
class during the construction of the sample was explicitly respected.

Finally, while we now know that a standard cross-validation (iid) underestimates the error rate when the sample is
made of clusters, we still do not know whether the deviation from the actual error rate is the same regardless of the
method used. This point is important if we want to select the best model in terms of the cross-validation-calculated
error rate from among all the models constructed [STO 74]. The answer appears to be quite complex, as it depends
on the characteristics of the algorithm used and the nature of the deviation, which may be due to the bias (a



systematic deviation in terms of the actual error value) or the variance (the variability due to the sample) [KOH 95].
Without specific answers to these questions, caution dictates that we respect the sampling plan when constructing
the cross-validation even when the objective is model selection.

6. CONCLUSION

This article demonstrates that the method of composition of the learning set has to be taken into account if the
prediction model is to be accurately evaluated through re-sampling methods. With clusters, normal cross-validation,
where individuals are assumed to come from a simple random selection from the initial population, significantly
underestimates the actua error rate.

Our approach may be extended to the different sampling methods (stratification, with unequal probabilities). All that
remains for the different cases is to determine which direction and to what extent lack of knowledge about the
method of constitution may influence the estimation of the quality of the model resulting from the standard cross-
validation.
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