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ABSTRACT

This paper describes two changes made to the sample weighting methodology for the 2001 Canadian Census.  First, a decision
was made to use a pseudo-optimal regression estimator rather than a projection GREG estimator.  Second, the processing was
done on PCs rather than on the mainframe.  This allowed multiple production runs, using different parameters, to be carried
out.  The “best” production run (in terms of objective (a) of Section 2.2), for each small area, was then selected and retained.
These two changes allowed more auxiliary variables to be retained in the regression estimators while at the same time allowing
all Census weights to be at least one.
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1.  OUTLINE OF PAPER

Section 2 describes the Census sample design plus the objectives for Census weighting.  Section 3 discusses the
Generalized Regression (GREG) Estimator, the optimal regression estimator and the situation where the two are the
same estimator.  Regression estimators are used in the Census because they allow estimate/population consistency to
be achieved for a number of auxiliary variables simultaneously while reducing the variance.  In addition, Section 3
shows why it could be advantageous to use an optimal regression estimator rather than the projection GREG.  Section
4 provides details on the two step pseudo-optimal regression estimator used in the 2001 Census including the method
used to discard auxiliary variables to ensure the weights are at least one.  Section 5 examines the 2001 Census weights
processing including the analysis done to determine which combinations of parameters should be used for the ten
production runs.  In addition, the method used, for each small geographical area, to select the best of the ten production
runs is described.  Finally, in Sections 6 some conclusions are provided.

2.  BACKGROUND

2.1 Census Sample Design

In the Canadian Census, basic person and dwelling information is gathered on a 100% basis.  This will be called 2A
information after the 2A Census short form.  For a 1 in 5 sample of private households (2.2 million sampled households
in 2001) stratified by 35,885 Enumeration Areas (EAs), additional questions are asked.  These  will be called 2B
information after the 2B Census long form.  A uniform 1 in 5 sampling fraction is used for each province (except for
100% sampling in a few special EAs) so that sub-provincial estimates of equal size are of equal reliability in all parts
of the country. 

2.2 Objectives For 2001 Census Weighting

A weight for each sampled household is calculated.  This single weight is used to produce all published household and
person characteristic estimates.  A single weight is used in the interests of simplicity and consistency.  Published 100%
counts of 2A information should agree closely with published estimates of 2A information based on the 20% sample
since large differences between the 100% counts and the 20% estimates cause concern to users of Census data.  The
Census estimation methodology, therefore, aims to reduce or eliminate such estimate/population differences for small
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geographical areas.  At the same time, the standard errors of the Census estimators are also reduced.  The estimation
methodology was designed to perform well for the thousands of published estimates generated with a minimum of
manual intervention during the processing of Census data.  Characteristics for which consistency is required between
the sample estimate and the population count will be called auxiliary variables or, alternatively, constraints on the
weights.  The objectives for 2001 Census weighting are outlined in more detail below.

For five year age ranges, marital status, common-law status, sex and household size (32 auxiliary variables), the
objectives are: 
(a) To have exact estimate/population agreement at the Weighting Area (WA) level for as many of the 32 auxiliary
variables as possible.   There are 6142 WAs subject to sampling which are frequently small municipalities or Census
Tracts.  A WA is made up of, on average, 8 whole Dissemination Areas (DAs).  Canada is partitioned into 47,933
sampled DAs with, on average, 239 private occupied households in each.
(b) To have approximate estimate/population agreement for the larger DAs for the 32 auxiliary variables. 

In addition, it is required that: 
(c) There should be exact estimate/population agreement for total number of households and total number of persons
for as many DAs as possible.
(d) Final census  weights should be in the range 1 to 25 inclusive.  In 1996, the final census weights were allowed to
be in the range 0.01 to 25 inclusive.
(e) The method to generate weights should be highly automated since the 6142 WAs must be processed in a short period
of time.  This method must also adjust automatically for the different patterns of responses in WAs across the country.
(g) For 2001, it was desired to improve on how  well objective (a) was satisfied.  The software used in the 1991 and
1996 Censuses, however, had to be used with few changes because of budget and staff shortages.

3.  REGRESSION ESTIMATORS UNDER STRATIFIED SAMPLING

An excellent review on the subject of regression estimation for survey samples is given by Fuller (2002).  This section
compares the projection Generalized Regression (GREG) estimator  to the optimal regression estimator.

For simplicity, estimators for a single WA made up of H EAs will be discussed.  It will be assumed that a simple random
sample without replacement (s.r.s.w.o.r.) of size  has been selected from the population of  households in the hth

EA, h = 1 to H and that   and .  It will also be assumed in this section (though this is not the
case in the Census) that the sampling fraction  can vary considerably by EA.  The reason for this assumption
being made in the Census context will become clear in Section 4.

The simplest estimator possible is the Horvitz-Thompson estimator  where  if the i th

sampled household is in the h  EA.  Generally, however, there is no guarantee that objective (a) above will be achievedth

for any of the 32 auxiliary variables with the Horvitz-Thompson estimator.  It is for this reason that various types of
regression estimators are considered below.

3.1 GREG

Calibration estimators take the form  where the n x 1 vector of weighting
adjustment factors (otherwise known as g-weights) is chosen such that some loss function  is minimized subject to
constraints   where is a 1 x n matrix, is a x matrix, represents
the value for the p  auxiliary variable for the i  household in the WA, , isth th

a x matrix which contains the columns from which correspond to the sampled households,
is a x 1 vector of the initial weights and is a n x n matrix with running down

the diagonal with zeros elsewhere.
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With the GREG in its most general form, the loss function takes the form and the vector 
which minimizes  is 

where  is assumed to be a symmetric n x n matrix which has to be positive definite (which in turn implies that it is
nonsingular) to ensure that the loss function L is non-negative.

It is possible to write  in the standard form of a regression estimator as

where is a P x 1 vector,  is a 1 x n vector
of residuals and  .  It can be shown that  minimizes the loss function .

Särndal , Swensson and Wretman (1992) use models to help justify the choice of . They  assume that the population
quantities  were generated by a model as follows.  Assume, under a model , that 

where  and   while  and  are  respectively 1 x N and P x N  population level
matrices. ,  and  denote the expected value, covariance and variance with respect to the model  while 
(a P x 1 vector) and   (a N x N symmetric matrix) are model parameters.  It is desired to find an estimator  such that
for an arbitrary  P x 1 vector ,  is the best linear unbiased estimator (b.l.u.e) of  where       

- by "best" we mean that  is minimized, 
    - by linear we mean that  for some   (i.e. it is a linear function in terms of , i = 1 to N) and
     - by unbiased we mean that 
These objectives are achieved, if the assumed model  is correct, by choosing

Särndal et al (1992) indicate that the role of the model  is to describe the finite population point scatter.  The model
serves as a vehicle for finding an appropriate   to put into the regression estimator formula.  Given that  is the
b.l.u.e of , it seems reasonable, if the model  is correct, to estimate  and hence  with the approximately
unbiased estimator  defined earlier in this section.
  
Typically,  Särndal et al (1992) assume that  is a diagonal matrix with elements  running down the diagonal
and zeros elsewhere.  They provide some simple examples with a single auxiliary variable where, for example, it is



Ŷ opt ' Ŷ(0)% B~
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assumed that .   In practice, however, , i = 1 to N, are not known and are difficult to estimate.  Errors in
their estimation degrade the quality of the estimator  of . The  are also usually different for each y characteristic
being considered.  This causes different calibrated weights to be needed for different y characteristics which is not
convenient with a multi-characteristic survey.  Finally Särndal et al (1992) generally assume in practice, if there are two
or more auxiliary variables, that  so that  disappears from the variance formula for  .  With the optimal
regression estimator described below, no appeal is made to a superpopulation model.  Thus, rather than use , the more
general notation  will be used here when it is assumed that  is a diagonal matrix.

3.2 Optimal Regression Estimator

Cochran (1942) and Rao (1994) recommend the use of the optimal regression estimator.  It is called this since the
variance of  

is minimized if where  and  represent respectively the P x P covariance matrix of  and
the P x 1 vector of covariances with  . The standard estimator of  (which is
approximately unbiased) is where  and are unbiased estimators of  and .  

3.3 Situation When GREG and Optimal are the Same Estimator

Assume that the set of constraints  includes the constraints  , h = 1 to H, where  is the
number of households in the h  EA and  is the corresponding estimate after calibration.  It is then possible to writeth

(subject to the appropriate choice of  for ) :

where the first H rows of and   relate to the EA level constraints  and can be represented by the matrices
 and  respectively while the last P - H rows of and  relate to the other constraints and can be represented

by the matrices  and  respectively.   is a (P - H) x 1 vector where the covariances used to
calculate are restricted to the auxiliary variables represented by the rows of .

is a P x 1 vector  where, to achieve , it is necessary that    be a n
x n diagonal matrix with  running down the diagonal and zeros elsewhere and with

 where .  corresponds to the i  sampled household from the h  EA.th th

In the 1991 and 1996 Censuses, however, ,where  is a P x 1 vector of 1's.  As a result,
households with more persons usually had larger values of  which meant that their weighting adjustment factors 
tended to be smaller, all other  things being equal. This choice of  is consistent with the suggestion of Särndal et al
(1992) that  where  is a n x 1 vector and  is an P x 1 vector which does
not result in any of the elements of  becoming zero.  They suggest   matrices of this form because then  takes
the simple projection form .  It should be noted that, except in special cases, the projection GREG is not the
optimal regression estimator.
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Särndal et al (1992) often assume that  which is equivalent to assuming that  = 1 and .
This value of can be achieved for the projection GREG by assuming that the first H rows of represents the EA
level constraints  while   has  = 1 for p = 1 to H and  = 0 otherwise.

Särndal (1996) shows that the variance of the Taylor Series approximation of the GREG is minimized under stratified
s.r.s.w.o.r. (assuming that  , h = 1 to H are among the constraints used) if .
This is approximately equal to the  derived above where the GREG was made identical
to the optimal regression estimator.  Särndal (1996) in Remark 3.2 states that “there may some (although usually modest)
advantage in taking”   rather than .  In the remainder of this section, it is
shown that if the sampling fraction varies significantly by stratum, there may be significant benefits to have  vary
by stratum.

Assume that the sampling fraction varies considerably by EA within a WA.  Table 1 below gives, for the optimal
estimator, the values of and for the projection GREG , the values of 
for  = 400  private households and for various values of .   The loss function being minimized for both the optimal
estimator and the projection GREG (but with different values of ) is  where  is the
weighting adjustment factor for the i  sampled unit from the h  EA.  th th

For the optimal estimator, as the sample fraction increases from 5% to 94%,  rises from 1 to 16 in Table 1.   This
indicates that EAs with larger sampling fractions will tend to have  close to 1, all other things being equal, because
of the loss function being minimized.  This makes sense because estimates from EAs with larger sampling fractions
should be more reliable and hence their estimates should be adjusted less than estimates from EAs with smaller sampling
fractions.

With the projection GREG , as the sample fraction increases from 5% to 94%, decreases from 20 to 1.1 in Table
1.  This indicates that EAs with larger sampling fractions will tend to have  far from 1, all other things being equal,
because of the loss function being minimized.  This is counterintuitive.  It is also undesirable because if is close
to 1 and if  < 1, there is a distinct possibility that the adjusted weight will be less than 1 or even negative.
Under the current census estimation methodology (to be described in Section 4), constraints are dropped if this occurs.
Thus using , as required for the optimal regression estimator, seems preferrable since
besides minimizing the variance, it may also allow more constraints to be retained under the requirement that the
adjusted weights not be less than 1.
Table 1:  for Various Sampling Fractions Assuming 

Optimal GREG

20 5 1.0 20.0 

40 10 1.1 10.0 

80 20 1.2 5.0 

120 30 1.4 3.3 

200 50 2.0 2.0 

300 75 4.0 1.3 

375 94 16.0 1.1 
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4.  REGRESSION ESTIMATOR USED IN 2001 CENSUS

More details on the methodology described below  can be found in Bankier, Rathwell and Majkowski (1992).

4.1 Two Step Regression Estimator

 In this section, for simplicity, we will ignore the fact that constraints are dropped for a variety of reasons (see Section
4.2).  Weights are calculated separately in each WA.  The 2001 Census initial EA level weights  have
either two or three weighting adjustment factors applied.  First households are sometimes poststratified at the WA level
on household size because small and very large households tend to be under-represented in the sample.  A second
adjustment to the weights is then done to try to achieve approximate estimate/population agreement at the DA level as
described in objective (b) of Section 2.2.  Finally, a third adjustment to the weights is done to achieve exact
estimate/population agreement at the WA  and DA levels as described in objectives (a) and (c) of Section 2.2.  These
three adjustments are described in more detail in the following paragraphs.  

First, the households are sometimes poststratified on household size (1,2,3,4,5,6+ persons) at the WA level and then
the poststratified weights are calculated.  Very occasionally, is truncated to ensure that it lies
within the range 1 to 20 inclusive.  An upper limit of 20 rather than 25 is used to give some “room” for further
adjustment.  

Next, a first step regression weighting adjustment factor is calculated at the DA level.  The 32 auxiliary variables (age,
sex, marital status, household size) that are to be applied at the WA level in the second step are sorted in descending
order based on the number of households they apply to in the population at the DA level.  The first, third, etc. constraints
on this ordered list go into one group while the other 16 constraints go into a second group.   The weighting adjustment
factors resulting for each group of constraints (labeled and ) are averaged together to create

 which then generates the first step weights .  Estimate/population
differences at the DA level for the 32 constraints are usually reduced but not eliminated using the first step weights. 

Finally, a second step regression weighting adjustment factor  is calculated at the WA level.  The 32 constraints are
applied at the WA level along with 2 constraints (number of households and number of persons) for each DA in the WA

to determine the final weighting adjustment factor
.  These then generate the second step weights

.  

In the first step  while in the
second step .  These choices
of  in the first and second steps make the loss
function being minimized resemble that used with
the optimal regression estimator.  They also
encourage the generation of first and second step
weighting adjustment factors close to 1 for the
smaller poststratified and first step weights (see
chart on left for distribution of these weights in the
2001 Census) and hence discourage the creation of
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adjusted weights less than 1.  Because of this choice of , the  estimator used in the Census will be called a two step
pseudo-optimal estimator.  The variance of this two step regression estimator can be estimated by using Taylor Series
to numerically linearize the data two or three times in a fashion similar to that proposed for raking ratio estimation in
Bankier (1986). 

4.2 Discarding Constraints

See Silva and Skinner (1997) and Fuller (2002) for a discussion of the rationale behind discarding constraints.  The Silva
and Skinner paper was partially motivated by the methodology described in this section. Constraints are discarded for
being small, linearly dependent (LD), nearly linearly dependent (NLD) or causing outlier weights (those outside the
range 1 to 25) during the calculation of the weights.  Initially, a check is done for small, LD and NLD constraints at the
WA level as follows.  The size of a constraint is defined as the number of households in the population to which it
applies.  Initially, any constraint whose size is SMALL or less (SMALL, a parameter, equalled 20, 30 or 40 in 2001)
is discarded because estimates, for the small constraints, tend to be very unstable.  Then, since the matrix 
has to be inverted to calculate  (see Section 3.1), linearly dependent sets of constraints, which cause this matrix to be
singular, are identified and the smallest constraint in each set is discarded.  Next, the condition number of 
(which is generally relatively large in the Census) is lowered by discarding what are called NLD constraints.  The
condition number is the ratio of the largest eigenvalue to the smallest eigenvalue of .  High condition
numbers indicate near colinearity among the constraints.  To lower the condition number, a forward selection approach
is used.  The matrix is recalculated based only on the two largest constraints.  If the condition number
exceeds the parameter COND (which, for example, could equal 1,000), the second largest constraint is discarded.  Then
the next largest constraint is added, the matrix  is recalculated and its condition number is determined.
If the condition number increases by more than COND, the constraint just added is discarded.  This process continues
until all constraints have been checked in this fashion.  If, after dropping these NLD constraints, the condition number
exceeds the parameter MAXC (which, for example, could equal 10,000), additional constraints are dropped.  Constraints
are dropped in descending order of the amount by which they increased the condition number when they were initially
included in the matrix.  The condition number of the matrix  is recalculated every time a constraint is
dropped.  When the condition number drops below MAXC, no more constraints are dropped.  Any constraints dropped
up to this point are not used in the weighting calculations.

Before calculating the first step weighting adjustment factors for the c  DA (c = 1 to C), the remaining constraintsth

are dropped as necessary because they are small for the c  DA.  The constraints which remain are partitioned into twoth

groups as described in Section 4.1.  Then for each group of constraints, linearly dependent constraints are identified and
dropped (constraints which are linearly dependent at the DA level may not be linearly dependent at the WA level).
Based on the remaining constraints, the first step weighting adjustment factors and are calculated.  If any
of the first step adjusted weights fall outside the range 1 to 25 inclusive, additional constraints are dropped.  A method
similar to that used to discard NLD constraints is applied here except that a constraint is discarded if it causes outlier
weights.  In the interests of computational efficiency, however, the bisection method is used to identify which
constraints should be dropped.

Next, the second step weighting adjustment factors  are calculated based on those constraints that were not discarded
for being small, linearly dependent or nearly linearly dependent based on the initial analysis of the matrix .
If any of the second step adjusted weights fall outside the range 1 to 25 inclusive, then additional constraints are dropped
using the method outlined for the first step adjustment.  
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5.  2001 CENSUS WEIGHTS PROCESSING

The Census weights are calculated using the SAS interactive matrix language.   For 1996, processing the whole country
once took approximately two weeks on the mainframe computer.   In 2001, six Pentium IV 1.7 Ghz PCs  processed the
whole country in under 24 hours. 

PCs allowed extensive testing to be done with two samples of WAs (121 and 616 WAs respectively) to determine the
ten “best” combinations of weighting system parameters.  “Best” was defined as those parameters which minimized 
-ABSDIFF3 which equalled the sum of the absolute value of the estimate/population differences for the 32 auxiliary
variables where the differences were based on the estimate and  population counts totaled across the sampled WAs.
This served as a large area measure of estimate/population consistency for these variables.

Then the whole country was processed ten times using the best combinations of the weighting parameters.  The values
of ABSDIFF3 at the Canada level from the initial production runs helped guide the choice of parameters to be used with
the samples of WAs and in the later production runs.  

After all ten production runs were completed, the “best” production run for each WA was retained.  The “best”
production run was defined as that  which minimized the sum of
- ABSDIFF2 which equalled the sum of the absolute value of the estimate/population differences at the WA level for
the 32 auxiliary variables which were then summed over all WAs (a small area measure of estimate/population
consistency) and
- ABSDIFF1 which equalled the sum of the absolute value of the estimate/population differences for the 2 auxiliary
variables at the DA level (number of households and persons) which were then summed over all DAs (another small
area measure of estimate/population consistency).
This “cherry-picking” of the production runs allowed smaller estimate/population differences to be achieved at the
Canada level than was possible in earlier censuses where the same combination of parameters was used for all WAs.

The priorities implicit in this approach were to have the best estimate/population consistency possible for the 32
auxiliary variables at the Canada level as well as very good estimate/population consistency for these variables at the
WA level.

The parameters used with the ten production runs and the number of WAs which used these parameters after “cherry-
picking” are listed in Table 2. To insure that certain important constraints were always retained, two WAs were run with
“customized” parameters.  These are listed at the end of Table 2.  MAXC and SMALL were defined in Section 4.2.
POST = 1 indicates that poststratification by household size (as described in Section 4.1)  was done while POST = 0
indicates that it was not.  The parameter COND is not listed in Table 2 because COND always equalled  MAXC/10.
This was the ratio between these two parameters in 1996 and there was insufficient time to experiment with other values.

For all ten production runs, the pseudo-optimal estimator was used.  This was because, with a sample of 121 WAs and
for different combinations of parameters,  ABSDIFF3 for the pseudo-optimal estimator was on average 46% smaller
than the projection GREG when both had their weights restricted to the range 1 to 25.  This can be explained by the fact
that, on average, 2.2 constraints were dropped per WA for causing outlier weights with the projection GREG compared
with 0.9 constraints with the pseudo-optimal.  With the projection GREG, at the first step and

at the second step so as to replicate the loss functions from previous Censuses. 

In addition, to serve as a baseline, a production run was done using the projection GREG with weights > 0, MAXC =
10000, SMALL = 20 and POST = 1 to replicate the 1996 Census parameters.  In Figure 2, the Cherry-Picked production
run plus the best  pseudo-optimal production run (with MAXC = 80,000, SMALL = 20 and POST = 1 which resulted
in the smallest ABSDIFF3 statistic) are compared to the projection GREG.  Figure 2 shows that the best pseudo-optimal
production run (with weights of 1 or more) compared to the projection GREG (with  weights > 0) does 4% worse at the
Canada level (ABSDIFF3), 26% worse at the WA level (ABSDIFF2) but 49% better at the DA level (ABSDIFF1). 
Figure 2 also shows that the Cherry-Picked production run does 19%, 28% and 66% better than the projection GREG
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Table 2: Parameters Used in Census Production Runs              Figure 2: Comparison of ABSDIFF1,2 and 3

Number of Percent MAXC SMALL POST
WAs
1300 21.2 160,000 20 0
1135 18.5 80,000 20 1

903 14.7 80,000 30 1
725 11.8 80,000 30 0
539 8.8 40,000 40 1
436 7.1 20,000 40 1
363 5.9 40,000 20 1
255 4.2 40,000 30 1
251 4.1 10,000 40 1
233 3.8 20,000 30 1

1 0.0 10,000 95 0
1 0.0 160,000 50 0

6142 100.0

at the Canada, WA and DA levels respectively.  This demonstrates the significant benefits of cherry-picking the
parameters at the WA level.

To explain the results in Figure 2, it is useful to study the average number of constraints dropped at the WA and DA
level.  Figure 3 shows that the best pseudo-optimal production run (with weights of one or more) and the GREG (with
weights greater than zero) drop the same average number of constraints for being small and LD.  This is not surprising
given that SMALL = 20 for both these runs.  The Cherry-Picked run drops somewhat more constraints for being small
(some of which are LD) but this is counterbalanced by it dropping somewhat few constraints for being LD.  The larger
number of constraints dropped for being small is explained by some of the WAs having SMALL > 20 for the Cherry-
Picked run as is shown in Table 2.  The Cherry-Picked run and the best pseudo-optimal production run drop a similar
number of constraints for being NLD.  The best pseudo-optimal production run had MAXC = 80,000 while the WAs
in the Cherry-Picked run used a range of MAXC values with the majority being MAXC  80,000.  The Projection
GREG in comparison dropped more constraints for being NLD.  This is not surprising given that MAXC = 10,000 for
this run.  Larger values of MAXC were used in 2001 based on the advice of Press (1992, Section 2.6) that matrices can



be inverted with reasonable precision as long as the inverse of the condition number does not approach the computer’s
floating point precision.  Since the calculations are carried out in double precision, this suggests that matrices whose
condition numbers do not approach 10  can be inverted with some confidence.  Finally, it can be seen in Figure 3 that12

the best pseudo-optimal production run drops more constraints for generating outlier weights than the Projection GREG.
This is not surprising given that weights less than 1 are not tolerated for the pseudo-optimal estimator while they are
with the Projection GREG.  It appears, based on the above analysis, that the Cherry-Picked run outperforms the
Projection GREG at the Canada and WA levels by discarding fewer constraints for NLD (because of higher MAXC
values) and matches the Projection GREG in terms of the number of constraints dropped for generating outlier weights.
Overall, the Projection GREG drops the highest number of constraints while the Cherry-Picked run drops the fewest.

Figure 4 shows the average number of DA level constraints (number of persons plus number of households) dropped
in a WA.  It shows that the superior performance (as seen in Figure 2) of the Cherry-Picked Run compared to the
Projection GREG run at the DA level is the result of many fewer constraints being dropped for NLD.  This is because
of the higher values of MAXC used in general in the Cherry-Picked run.   In addition, somewhat fewer constraints are
dropped for causing outlier weights in the Cherry-Picked run.  

6.  CONCLUSION

The analysis performed in Section 3 suggested that switching in the Census from the projection GREG to the pseudo-
optimal regression estimator would result in fewer constraints being discarded for causing the adjusted weights to be
less than 1. This was confirmed numerically in Section 5 based on a sample of 121 WAs.  When the best pseudo-optimal
estimator with weights of 1 or more was compared to the projection GREG with weights greater than 0, the estimate/
population differences were slightly worse at the Canada level and were significantly worse at the WA level for the
pseudo-optimal estimator.  Doing ten production runs of the pseudo-optimal estimator with different parameters and
then cherry-picking the best production run for each WA, however, resulted in estimate/population differences being
much smaller than the projection GREG differences at the Canada, WA and DA levels.   The ability to do ten production
runs and then cherry-pick the best run was made possible from a timing and cost viewpoint by the switch from
mainframe processing to processing on PCs for the 2001 Census.
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