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ABSTRACT 
 

This paper discusses three examples of multiple imputation for incomplete data or information in large-scale surveys.   
Each example illustrates how a single-imputation procedure is improved by reflecting in the procedure the uncertainty 
about the missing values.  The purpose of the paper is not to introduce any new methods or to prove any theoretical results, 
but to ease the practitioner’s way to the routine application of multiple imputation in large-scale survey data analysis. 
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1.  INTRODUCTION 
 
Missing values are an unavoidable nuisance feature of most large-scale survey data.  Collecting all the data as 
envisaged by a plan is in most surveys an unachievable ideal because the subjects cannot be regimented to obey the 
data collection protocol and its expectations, such as the person’s availability, and possession and voluntary 
disclosure of the requested information.  This should not discourage any efforts at reducing non-response and other 
sources of data incompleteness. However, ignoring the problem of incompleteness at the analysis stage, justifying it 
by claiming that all the efforts to collect the planned data completely have been expended, is not appropriate either. 
 
 To avoid lengthy preliminaries, we assume that the (survey) data to be analysed are collected by a specific sampling 

design and there is a well specified analysis agenda — a list of analyses, each to yield a pair comprising estimate θ̂   

and its estimated sampling variance, )ˆr(âvˆ2 θ=s , or their multivariate version, vector θ̂  and matrix )ˆr(âv θ .  The 

snag is that these sample quantities would be straightforward to evaluate only if the data set collected by the survey 
were complete or had the same format as a complete data set — usually a rectangular array of n subjects and p 
completely recorded variables.   
 

We refer to each θ̂  as a complete-data estimator; we assume that θ̂  would be unbiased and efficient if the data were 

complete.  Further, we assume that 2ŝ  would be unbiased for )ˆvar(θ  if the data were complete.  A more rigorous 

notation, even if not standard, may avoid some lengthy and awkward expressions.  We denote by *X  the complete 
data — the data set that was planned to have been collected, and by X  the collected (recorded, or incomplete) data 

set.  With each estimator θ̂  we associate the data set on which it is applied.  Thus, given limited resources for data 

collection (conduct of the survey), obtaining the complete-data estimate )(ˆ *Xθ  is the ideal.  Its ‘substitute’, )(ˆ Xθ , 

cannot be evaluated, unless we define suitable rules for the operations involving missing values.  Having defined 

such rules, we should re-assess the efficiency of )(ˆ Xθ .  
 
Of the two natural ways of ‘fixing up’ the data so that it could be analysed by the methods (algorithms, computer 
programs, or the like) designed for complete data, data reduction and data completion, we entertain only the latter.  
In data reduction, the sample is reduced to the subjects who have complete records, resulting in a data set −X .  

Discarding data from the subjects whose records are almost complete (e. g., only a small fraction of the p data items 
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is missing) represents a waste of information (collected at a non-trivial cost).  Also, the sub-sample of the complete 

respondents may not be representative of the surveyed population, even if the entire sample is.  In brief, )(ˆ −Xθ  may 

be quite inefficient (and biased) even when )(ˆ *Xθ  would have been efficient.   
 
By completing the data set, by imputing a suitable value for each missing item, we generate a data set +X  that 

appears to contain more information than was in fact collected.  Then )(ˆ2
+Xs  will underestimate the sampling 

variance of )(ˆ +Xθ .  Further, depending on the method of imputation, )(ˆ +Xθ  may be biased.  The difficulties with 

analysing +X  arise because we have failed to inform θ̂  of the different status of the recorded and imputed values.  

Imputed values are guesses of the responses, and should be associated with uncertainty (variation) additional to the 
vagaries of the sampling process.  
 
The route from the population to the (incomplete) data set leads through the sampling and non-response processes.  
Both processes reduce information; the first from the population to the complete data set, and the second from the 
complete data set to the incomplete data set.  The sampling process is under our control  (we define it by the 
sampling design), a key feature that enables us to find efficient estimators of the quantities of interest.  The non-
response process may have a similar description as a sampling process, but its details are not available.  The 
incomplete data set contains no information about some of its features.  We observe only the composition of the two 
processes, sampling (deliberate, designed in response to the limited resources available) and non-response (a 
nuisance, due to imperfect cooperation of the subjects).  
 
To undo the damage (loss of information) caused by non-response, we should try to recover the inferences that 
would have been obtained with the complete data.  This is the motivation for both single and multiple imputation.  
Single imputation (SI) attempts to recover the complete data by doing the best that can be done for each missing 
value.  In multiple imputation (MI), recovery of the complete data set is secondary to the goals of  
 

1. efficient estimation of θ , by estimating )(ˆ *Xθ , and   

2. unbiased estimation of the sampling variance with respect to the composition of the sampling and non-
response processes.  

 
Reflecting the uncertainty about the missing values is a key feature of MI. 
 
Hybrid methods that impute only for some of the missing items and reduce the completed data set to have the 
standard format, inherit the deficiencies of both reduction and SI methods.  
  
1.2 The arithmetic of uncertainty 
 
The deficiencies of any SI procedure can be illustrated on the following elementary example.  Suppose a survey data 
set contains missing values in only one variable.  The application of a SI method to a specific missing item x yields 
the value of 0.  Suppose we are quite certain that the response would have been 0, although +1 and –1 are distinct 
possibilities.  This might be expressed by associating the value of 0 with probability 0.8, and the values Γ1with 0.1 
each.  As the problem is presented, it may be hard to argue against imputing any value other than zero.  However, 
once we consider the operations to which the value will be subjected, the deficiency of the choice becomes obvious.  

If only linear functions of this value are used for evaluating θ̂  and 2ŝ , the choice of 0 is appropriate.  But if the 

value is used in a quadratic function, such as ∑  

2

i ix , the choice appears to be irrational — we would substitute the 

smallest possible value for 2x !  The expectation of the distribution derived for 2x , equal to 0.2, is clearly the ‘right’ 

choice.  But how should we to reconcile the paradox 2.002 = ? 
 

The answer is at hand, in the identity )var()}(E{)(E 22 xxx +=  for any random variable x.  Or, more generally, that 

)}(E{)}(E{ xfxf ≠  for most non-linear functions f  (e. g., all strictly convex and concave functions f) when x is not 



degenerate.  Thus, if we impute a value for a given item, it may be suitable for the use with some functions, but will 
not be suitable with (most) others.  
 
If we ‘fix up’ the data by suitable imputations for one function, we will fail to fix it for another function.  Since the 
estimators of a population quantity and of its sampling variance usually involve different functions of the data (e. g., 
linear for the estimator and quadratic for the sampling variance), we cannot fix up the data even for a single analysis.  

One of the quantities evaluated, usually 2ŝ , will need some adjustment.  For survey data that are subjected to 
numerous analyses, of several types and varied complexity, adjusting each analysis is not a viable proposition, 
especially with analysts who have limited expertise in the issues involved and do not have software tools and other 
equipment to conduct non-standard analyses.  
 
These arguments can be rephrased in the language of the EM algorithm (Dempster, Laird and Rubin, 1977), although 
it is formulated for maximum likelihood (ML); some estimators used in surveys cannot be easily expressed as ML 
estimators.  In the E step of the EM algorithm, the contributions of the missing values to the complete-data log-
likelihood are estimated by their conditional expectations given the data and current parameter estimates.  The 
estimates of the missing values (as their conditional expectations), would yield a different estimate of the 
contribution, and lead to an incomplete-data estimator that is not efficient.  Although the EM algorithm is applicable 
for problems with missing values, it is poorly suited for analysis of survey data with an extensive analysis agenda 
because a large number of conditional expectations have to be evaluated.  
 
 

2. MULTIPLE IMPUTATION 
 

In MI, a number of plausible (alternative) completions of X  is generated by a random process that reflects the 
uncertainty about the missing values.   The process comprises four steps:  

 
1. fitting a model for the missing values;  
2. generating (simulating) several (M) sets of plausible values from the model;  
3. analysing the completed data sets;   
4. summarising the completed-data results. 

 
The assumptions of the method are that  
 

a. the model for the missing values is correctly specified;  
b. the plausible values are generated properly;  

c. the complete-data analysis involves an efficient and unbiased estimator )(ˆ *Xθ  with its sampling variance 

with respect to the sampling process, )}(ˆvar{)( **2 XX θ=s , estimated without bias, by )(ˆ *2 Xs ;  

d. the sampling variance of the estimator )(ˆ *2 Xs  is of smaller order of magnitude than 4s . 

 
Proper imputation in b. means that the sources of uncertainty about the parameters in the model for missing values 
as well as about the missing values given the model parameters are reflected in the process of generating the 
plausible values.  In most settings, this entails two sources of uncertainty: about parameters of the posited model for 
non-response and about the outcomes given the values of the model parameters and covariates. 
 

Denote by mX  the data set completed by the m-th set of plausible values, and by )(ˆˆ
mm Xθθ =  the estimate based on 

the m-th completed data set.  If the assumptions a.–d. are satisfied the MI-estimator  
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 (Rubin, 1987).  
 
Except for a., the assumptions are natural and usually satisfied, although condition b. prescribes how to generate the 
plausible values.   Assumption a. is widely quoted as a hindrance to an effective application of MI.  In particular, the 
assumption of missing at random (MAR), on which most MI procedures are based, is quoted as difficult to justify.  
After all, SI is associated with no such assumption explicitly.  This argument is fallacious.  A SI is equivalent to M 
identical imputations in MI, implying a model with no between-imputation variance, that is, no uncertainty about the 
missing values.  In most settings, this is a very poor choice of a model for imputation and it destroys the strategy of 
using SI until the model for missing values can be specified correctly.  Using SI does not absolve us from concerns 
about MAR and the appropriate conditioning (model).  Its specification is a task common to SI and MI. 
 
To combat the reluctance to use MI, we advocate a strategy of improvement on the default SI method by formulating 
the model it implies.  A simple generic example of this approach is to replace the ‘bring the last value forward’ 
(BLVF) method for a longitudinal dichotomous variable with (multiple) draws from a model that assumes a (small) 
probability of change from one time point to the next.  The probability is estimated from the complete records, and 
each set of plausible values is generated as draws from a plausible probability.  A plausible probability is drawn from 
the (estimated) distribution of the estimator of the probability.  In most settings, normality of the estimator involves 
an acceptable approximation.  In this MI procedure, the sets of plausible values (to be imputed) differ in two aspects: 
due to the vagaries of the Bernoulli process and because the probabilities differ between the sets (imputations).  
Concerns about MAR can be addressed by introducing more detail in the model: assuming that the probabilities 
differ for groups of subjects, across the time points, depend not only on the previous but also on earlier outcomes 
(when available), and so on.  With a multinomial variable, the conditional distribution of the new state (given change 
from the previous time point) can be modelled similarly.  
 
How detailed a model should we formulate?   (How far should we go with conditioning or stratification?)  Although 
Rubin (1996) recommends as detailed a conditioning as possible, this should not be regarded as an imperative.  It is 
much better to have less conditioning than no conditioning at all.  So, the fear of not satisfying an ultimatum should 
not turn anybody away.  In any case, there comes a point when the model for missing data is so rich in parameters 
that there is just too much uncertainty about the missing values.  The analyst’s comfort with all the details should not 
be neglected.  
 
The following three sections outline applications of MI with the perspective described above.  Each section is a 
condensed version of a paper describing a case study. 

 
 

3. THE UK LABOUR FORCE SURVEY 
 

The UK Labour Force Survey (LFS) is a continual survey of residential addresses in the UK.  Each address selected 
to the sample at a time point is retained for one year, and contacted soon after selection and 3, 6, 9 and 12 months 
later.  The key outcome variable recorded is the employment status, as defined by the International Labour 
Organisation (ILO).  It has four categories:  child (CH, aged 1–15 years, inclusive), employed (EM), unemployed 
(UN), and economically inactive (IA).  The media headline analysis based on the survey is the estimated rate of 
unemployment among the working-age residents in the country (aged 16–64 for men and 16–59 for women). 
 
Although the elementary sampling unit is an address, the information is collected from (and about) individuals. Thus, 
an address can have the same, slightly altered, or a completely different list of occupants from one contact to the 
next.  There is a narrow window of two weeks when an address can be contacted, so as to satisfy a tight publication 
schedule.  Thus, it may be impossible to establish whether an address is unoccupied or the interviewer failed to make 
a contact with the residents.  Of course, subjects can refuse any (further) cooperation with the survey on behalf of 
some or all the residents at the address.  A well-established protocol contributes to the reduction of item-level non-



response.  Response by proxy is accepted (from an adult), so data may be collected about a subject not at home at the 
time of the interview.  Sometimes no proxy respondent is available.  
 
In the operation, the survey uses imputation for the ILO employment status by BLVF, if the status was established 
three months ago.  In particular, no imputation is applied for missing status at the first planned contact.  The database 
is organised by quarters, containing the records of all subjects who were contacted (directly or by proxy) in the 
particular quarter.  The basic socio-demographic variables are recorded for all the subjects in the database (otherwise 
they are not included).  A quarter’s database contains about 140,000 individuals, 80,000 of whom are of working 
age.  Among the 26,369 subjects in the database for March–May 2001 whose addresses were in the follow-up for the 
fifth time, the status was imputed for 1418 subjects (5.4%) and was left missing for 562 subjects (2.1%). 
 
3.1 From BLVF to hot deck 
 
We are concerned with imputation for missing ILO status of adult residents.  The model implied by BLVF is that of 
transition among the three states (EM, UN and IA), with high probabilities of no change.  A simple inspection of the 
data reveals that changes of the employment status among young adults 16–24 are much more frequent (10–20%, 
depending on how the subpopulation is defined) than among middle-aged or elderly.  The non-response rate of the 
young adults is much higher than the overall rate, and the non-response rate of elderly is very low.   
 
The first step in improving on BLVF is to estimate the transition probabilities among the three states EM, UN and 
IA.  The stratification by age provides an obvious improvement; the sets of probabilities differ among the age groups 
(16–24, 25–39 and 40+).  Insubstantial analytical complexity is introduced by additional stratification on sex and 
marital status (single or not).  However, these factors are not as useful as earlier employment status (two, three and 
four quarters earlier), when available.  Since the number of strata (categories) thus introduced may be excessive, the 
earlier states can be collapsed by counting the number of changes or classifying subjects to those who have had a 
change while in the survey and those who had not.  As a convention, a missing status at an earlier time point is 
regarded as a change.   
 
A practical implementation of such an imputation scheme is by hot deck.  Within each stratum (combination of the 
categories), we identify a pool of donors — subjects with the particular combination whose current status is 
established, and the recipients — subjects with the same combination whose current status has not been recorded.  
For each recipient we draw at random a donor and his/her status is imputed for the recipient.  
 
Hot deck is a random process of drawing a value of the status with the probabilities equal to the representation in the 
donor pool.  The deficiency of this process is that the estimated multinomial probabilities are used instead of the 
underlying probabilities.  This is remedied by drawing the probabilities from their estimated sampling distribution, 
using the normal approximation.  This ensures that the plausible values have appropriate between-imputation 
variation, in addition to the differences due to random drawing from a multinomial distribution.  See Longford 
(2002a) for further background and details of the imputation scheme and analysis (small-area statistics).  
 
Arguably, imputation for missing status in the LFS database should be regarded as having lower priority than dealing 
with address-level non-response.  When a sampled address is not contacted it does not appear in the database.  The 
rate of address-level non-response exceeds 30%.  It is easy to establish that young and single people are under-
represented in the LFS database.  Since their UN rate is higher than the rates for the middle-aged and elderly, the 
non-response brings about a bias in several important analyses.  A MI procedure for dealing with address-level non-
response would impute entire households for each non-contacted address, catering for the possibility that the address 
is not occupied, is occupied by the same residents as three months ago, by an altered set of residents, or by an 
entirely different set.  Setting up such a model represents a much greater challenge, but that is the price for 
approaching the ideal of efficient estimation (using all the available information) and honest assessment of the 
precision (unbiased estimation of the sampling variance).  This includes distinguishing between the planned and 
realised sampling designs.  An integral part of this effort is modelling the dominant nuisance features of the data 
collection, among which address-level non-response stands out.  
 
 



4. NATIONAL SURVEY OF HEALTH AND DEVELOPMENT   
ALCOHOL CONSUMPTION 

 
The National Survey of Health and Development, funded by the Medical Research Council (UK), is a longitudinal 
survey of subjects born in Great Britain in the week March 3rd–9th, 1946.  The original sample included all single 
legitimate births to wives of non-manual or agricultural workers and a 1:4 simple random sample of the single 
legitimate births to wives of manual workers.  The subjects were followed up regularly from birth through 
adolescence and adulthood, until in 1989 they were contacted for the 19th time.  The 20th follow-up has taken place 
recently.  The original sample of 5362 has over the years been reduced by loss of contact, refusal, emigration and 
death to 3262 (61%).  
 
Among other questionnaire items, the subjects were requested in 1989 to complete a one-week diary of all food and 
drink they consumed.  The diary was completed for the first two days during the visit by a health professional, 
although some subjects either refused to cooperate, or the interview was stopped for another reason while completing 
the diary, or even earlier.  The focus of the study described in Longford et al. (2000) is alcohol consumption, and 
consumption in excess in particular.  The study narrowed down the concern about incomplete data to the universe 
represented by the 3262 partially or fully cooperating subjects.  Ignoring the subjects lost in the earlier follow-ups is 
not appropriate, although those who have died or have emigrated can be regarded as no longer belonging to the 
population of interest.  But reducing the analysis to the 2002 subjects with complete diaries would be even less 
appropriate.  
 
Alcohol is consumed according to a variety of patterns — never, occasionally in small quantities, in bouts of 
drinking of varying frequency, regularly in a range of quantities, and the like.  Thus, we can ‘learn’ from a short 
segment of the diary about what the consumption is likely to be on other days.  Further, there is a fair amount of 
good auxiliary information — variables highly correlated with alcohol consumption.  Sex and body mass are obvious 
choices, although it may be profitable to look for auxiliary information beyond the variables we would consider as 
covariates in a traditional regression setting.  In NSHD in 1989, the subjects were also asked to recall how much of 
four types of alcoholic beverages (beer, wine, sherry, and liqueurs) they had consumed during the previous week.  
Such a set of questions is responded within a very short time, after a cursory mental recall.  So the responses are less 
reliable, and there is ample evidence of under-reporting, but non-response is rare.  On the other hand, diary data are 
much more reliable when they are recorded completely.  So, while the recall data are not a very good substitute for 
the missing diary records (especially for non-empty incomplete ones), they are useful as auxiliary variables — 
effective informants.  The practical way of exploiting this association is by formulating a multivariate model for the 
quantities at recall and on the seven diary days, and drawing plausible values for the ‘missing’ days from the 
plausible conditional distribution of the missing diary quantities given the recorded part of the diary and recall 
quantities.  Regression can be introduced in this multivariate model by a stratification on other relevant variables: 
body mass, smoking status, and CAGE, a four-item questionnaire about problems with alcohol.  
 
In the study, the generation of plausible values was organised in stages.  First, plausible values were generated for 
height and body mass.  Next, plausible values were generated for the recall, conditioning on body mass, CAGE and 
smoking status.  Since the recall quantities have a distribution well approximated by a log-normal distribution with 
boosted zeros, the sign (zero or positive) of the consumption and the log-quantity (ignored if the sign is zero) were 
generated separately, using distinct four-variate models (for the four types of beverages).  
 
Finally, plausible signs and log-quantities were generated for the alcohol consumed on each missed day.  See 
Longford et al. (2000) for details.  Rubin (1996) and Schafer (1997) argue that it is not essential for the data used as 
outcomes in a model for missing values to be normally distributed.  By taking their advice, the process of generating 
the plausible values could be simplified somewhat.  
 
The goal of the study was to estimate the percentage of middle-aged Britons who consume alcohol in excess.  In the 
analysis, we have to ignore the week-to-week variation in alcohol consumption, as well as the systematic differences 
among the 43-year-olds and those in the neighbouring age cohorts.  Depending on how we specify excessive 
consumption (possibly by different quantities for men and women, or quantities specific to body mass), an 



incomplete record may inform about the outcome of interest with certainty — if a subject consumed more than the 
weekly ‘quota’ of alcohol on the first two days, the consumption on the remaining days is immaterial.  
 
Trivial SI methods, such as BLVF, mean imputation, imputing zero for each missing value, used in similar settings, 
are not appropriate, and their deficiencies show up particularly clearly in estimating a tail probability, as in our case.  
Details are documented in Ely (2003).  
 
Imputation for the subjects lost in the earlier follow-ups presents a considerable logistical challenge of sifting 
through extensive (incomplete) information, some of it not in electronic form or in a computer format that is difficult 
to process.  We have to exclude subjects who have died or have emigrated because they are no longer members of 
the population of interest.  Note that if a subject returns to the UK from emigration, he/she does not rejoin the 
Survey.  The status (living in the UK, died or emigrated) of those subjects with whom contact has been lost is not 
usually known.  The problem of missing not at random in addressing such non-response is acute, and both extensive 
conditioning on information from previous follow-ups and sensitivity analysis are essential. 
 
 

5.  THE SCOTTISH HOUSE CONDITION SURVEY 
 
The Scottish House Condition Survey (SHCS) is a survey of the housing stock in Scotland.  It was conducted in 
1991, 1996 and 2002.  The 1996 survey employed a stratified clustered design, with adjustments (boosts) that ensure 
sufficient subsample sizes in certain geographical areas.  SHCS engages professional surveyors to assess the sampled 
dwelling units.  The assessment comprises a large number of elements (items), such as dwelling type, presence of 
central heating and the extent of disrepair of various parts and features of the dwelling.  The latter variables are 
scored on an 11-point scale (0–10), interpreted as 0, 10, …, 100% of the replacement cost required to bring the 
part/feature to the established standard.  These scores are converted to total cost for the dwelling (visible repair cost) 
and the cost required to maintain the standard for the next 10 years (comprehensive repair cost).  This conversion is 
based on extensive tables and formulae that take into account the size, type and location of the dwelling and 
economies of scale (savings when a lot of repairs are required), and the like.  
 
The assessment by the surveyors, although of high quality, is not perfect.  As a form of quality control, a non-
informative sub-sample of the dwellings was surveyed second time, and the pairs of surveys compared.  The 
differences between the assessments of a dwelling raise a concern about the estimated precision of the key reported 
estimators, because they are evaluated assuming that the survey assessments are perfect.  The relative importance of 
the differences is difficult to quantify because for some elements disagreements are more frequent and/or tend to be 
greater, whereas for others the impact on the cost is more substantial.   
 
The sample size of SHCS in 1996 was about 16,000, with 575 dwellings surveyed twice each.  
 
5.1 Misclassification and MI 
 
For each element and dwelling, we define the ideal assessment — what the assessment would have been with a 
perfect surveyor, and regard it as the missing information.  The realised assessments are high-quality auxiliary 
information about the ideal assessments, and the pairs of assessments are useful for defining an appropriate model 
from which plausible values (assessments) are generated.  
 
For an ordinal scale we define the neighbourhood of a score in the natural way.  For instance, for scores 0– 10, the 
neighbours of 0 < k < 10 comprise k–1 and k+1.  We consider two kinds of imperfections in the surveyors’ 
assessments: 
 

• discrepancy, resulting in assigning the inspected element to a category neighbouring the ideal one; 
• gross error, resulting in assigning the inspected element to an arbitrary category. 

 



The element-specific probabilities associated with these two kinds of imperfections are denoted by dp  and gp , 

respectively.  Prior information suggests that gp  is much smaller than dp , and the latter is no greater than a few per 

cent.  The assessment of an element may be subject to both discrepancy and gross error.  If a category k has kL  

neighbours the probability of assigning a dwelling to the ideal category is  
 

gdgkk ppKpKpLkXXX )1()1(1)|(P ** −+−−−=== , 

 

where X denotes the realised assessment and *X  the ideal assessment.  The probabilities dp  and gp are estimated, 

separately for each element that contributes to the assessed cost, by moment matching (as the root of a quadratic 
equation) and their sampling variances from the Taylor expansion; for details, see Longford (2002b).  For generating 
a set of plausible ideal scores, we require a plausible conditional distribution of the ideal score given the assigned 

score, )|(P * XX .  This is obtained by the Bayes theorem, using a plausible pair of probabilities )~,~( gd pp .  A set of 

plausible (ideal) scores are obtained by simulating discrepancies and gross errors according to dp~  and gp~ , 

respectively.  The simulations are independent for each of the 50+ variables involved in the cost calculations.  The 
plausible costs are evaluated from each set of plausible scores (and a few other variables).  The population quantities 
of key interest are certain large sub-domain totals, such as the total comprehensive repair cost for the dwelling in 
each type of dwelling (detached, semi-detached, block of flats, etc.) and in small areas (local administrative 
authorities).  In some analyses the outcome variable (cost) is on the original scale, in others on the logarithmic scale.  
Without MI, different methods would have to be developed for the two kinds of analyses.  With MI, the plausible 
values generated by the data constructor are for universal application — for any analysis. 
 
The between-imputation variance informs us about the inflation of the sampling variance due to imperfect 
assessment.  While M=5 sets of plausible values might be sufficient for evaluating the MI estimator, it is advisable to 
use more sets when the focus is on planning a future survey.   
 
The relative contributions of the elements to the between-imputation variance can be explored by the following 
approach.  The plausible values of the focal element are replaced by the realised assessments, and the MI estimation 
conducted pretending that the assessments on this element are perfect.  The estimated sampling variance, or its 
between-imputation component, is then compared with the estimated sampling variance of the original MI estimator.  
Similarly, the plausible values may be applied for only one element. 
 
The M sets of plausible scores are sizeable data sets, but they are much smaller than the original database which 
contains many variables, most of them not involved in the cost formula.  
 
 

6.  PERIPHERAL ISSUES 
 
Not so many years ago, the concerns about the data storage and the amount of computing required to implement the 
first two steps of an MI procedure might have been well founded.  Since then, computing power and storage capacity 
have become so cheap and abundant that these concerns can be dismissed for all but extremely large databases.  The 
extra data storage required in MI is for M sets of plausible values, possibly labelled by the subject and variable 
involved.  For instance, for M=5 and 14% of the data items missing, the M additional data sets contain as many items 
as the original (incomplete) database.  An organisation of the database much more friendly to a secondary user with 
limited software equipment is to provide the M completed data sets.  When imputations are desired only for a few 
variables, their plausible values can be attached to the database as additional variables.  Another convenient way of 
providing the plausible values to secondary users is in the form of a program that would generate a set of plausible 
values and impute them to complete the database.  
 
Having to apply a (complete-data) procedure M times requires much less resources than the M-multiple of the 
resources required for a single analysis, because the main expense is on the design, construction and debugging of 
the program.  In fact, the main virtue of MI is that the secondary users require no software tools or expertise other 



than to apply the complete-data analysis.  The computing or the real time expended by the M–1 additional analyses is 
not a factor of any importance.  
 
Apart from an impact on the quantity of computing, the number of sets of plausible values has an impact on the 
sampling variance of the MI estimator.  This variance is W + B(1+1/M), where W is the within-imputation variance, 
the estimate of the complete-data sampling variance, and B is the between-imputation variance, interpretable as the 
amount of information lost due to data incompleteness.  Further loss, B/M, is due to using only M imputations.  In 
most surveys M=5 is sufficient, but the reasons for not having more imputations are well founded only for huge 
databases with large fractions of missing information.   
 
 

7.  CONCLUSION 
 
MI is a practical method for dealing with incomplete information in large-scale surveys.  In ideal circumstances, it is 
efficient and honest; it uses all the information in the incomplete records and assesses the precision of the estimators 
with little or no bias.  When not in the ideal circumstances of having the correct model for non-response, we do not 
fare as well, but with the standard tools for modelling we have much greater opportunities to get close to the ideal.  
With any SI method we are much further behind because every SI method can be improved by making it MI — by 
introducing the sources of uncertainty about the imputed values in their generation, and replicating the process a few 
times.  In some special cases, the between-imputation variance can be estimated directly and expressed (or 
approximated) analytically.  This is a feasible proposition when only a few analyses are to be carried out.  When a 
wide variety of complete-data methods are applied, MI is superior by delegating the work to the computer. 
 
The scope of problems for which MI is applicable covers the entire missing-information agenda, as outlined in 
Dempster, Laird and Rubin (1977).  MI involves a residual inefficiency because of a finite number of imputations, 
but relieves the secondary analyst from requiring expertise in handling missing data.  In contrast, the EM algorithm is 
efficient, without any qualification other than some mild regularity conditions, but is specific to an analysis, is much 
more difficult to implement, and convergence problems may be encountered in its application. 
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