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ABSTRACT 
 

Application of classical statistical methods to data from complex sample surveys without making allowance for the survey 
design features can lead to erroneous inferences.  Methods have been developed that account for the survey design, but 
these methods require additional information such as survey weights, design effects or cluster identification for micro data.  
Inverse sampling (Hinkins, Oh and Scheuren, 1997) provides an alternative approach by undoing the complex survey data 
structures so that standard methods can be applied.  Repeated subsamples with simple random sampling structure are drawn 
and each subsample analysed by standard methods and then combined to increase the efficiency.  This method has the 
potential to preserve confidentiality of micro data, although computer-intensive.  We present some theory of inverse 
sampling and explore its limitations. An estimating equations approach is proposed for handling complex parameters such 
as ratios and “census” regression parameters. 
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1. INTRODUCTION 
 

How do practitioners deal with the complexities of survey data structures such as unequal selection probabilities, 
clustering and stratification?  Adapting a quote from Hinkins, Oh and Scheuren (1997) (abbreviated HOS hereafter): 
“If your only tool is a hammer, every problem looks like a nail!”; the hammer available to most people is one of the 
big statistical packages such as SAS.  Most people still just push their data through a standard program and ignore 
the survey data structures.  This is in spite of the fact that a great deal of effort over the last two decades has been 
spent on developing methods to analyze survey data that take account of design features (see e.g., Skinner, Holt and 
Smith, 1989), and specialized programs such as SUDAAN or WesVar are now available to implement some of these 
methods. 
 
An alternative to developing complex new tools is to work backwards: instead of tailoring the methods to fit the 
data, tailor the data to fit the methods. HOS developed an approach along these lines. Their basic idea is to avoid the 
pain caused by a complicated sample by choosing a subsample that has a simple random sample structure 
unconditionally (or at least has a structure that is considerably simpler to handle than the original sample).  
Obviously this involves some loss in efficiency, especially if the subsample is very much smaller than the original 
sample, as often turns out to be necessary.  However, we can increase the efficiency by repeating the process 
independently many times and averaging the results. 
 
Is it possible to produce subsamples with the desired properties?  The answer is often “yes”, although the resulting 
subsample size, m, might have to be small. HOS give algorithms for producing simple random inverse samples for a 
number of standard designs. We summarize some inverse sampling schemes in Section 2 for ready reference. These  
schemes include both exact and approximate methods in terms of matching simple random sampling. In this paper 
we look at some of the properties of the repeated inverse sampling procedures given in Section 2. In particular, we 
develop some basic theory of inverse sampling in Section 3, and illustrate some of the strengths and weaknesses of 
the procedure. In Section 4 we study the special case of a population total. We propose an estimating equations (EE) 
approach in Section 5 for handling complex parameters such as ratios and “census” regression parameters. 
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2. INVERSE SAMPLING ALGORITHMS 
 
In this section we summarize some of the inverse sampling schemes, proposed by Hinkins, Oh and Scheuren (1997). 
These schemes include both exact and approximate methods in terms of matching simple random sampling (SRS) 

unconditionally. Suppose we have a sample 0s  of observations drawn from the finite population of size 

N according to a specified complex design. We wish to draw a subsample *s of size m from 0s  such that the 

unconditional probability of *s , )( *sp , matches simple random sampling with 






=
m

N
sp /1)( * , either exactly 

or approximately. We have  

                                                       ∑
⊃

=
*

0

)|()()( 0
*

00
*

ss

sspspsp ,                                                        (2.1) 

where )( 00 sp  is the probability of selecting 0s  and )|( 0
*

0 ssp  is the conditional probability of choosing *s . If 

)|( 0
*

0 ssp  does not depend on 0s , then it follows from (2.1) that 

                                                       
∑

⊃

==
*

0

)(

)(
)()|(

0

*
*

20
*

ss

sp

sp
spssp .                                                               (2.2)                         

Denote the first-order and second-order inclusion probabilities corresponding to *s and 0s  as ),( **
ili ππ  and 

),( ili ππ  respectively, where Nmi /* =π and liNNmmil ≠−−= ),1(/)1(*π . Similarly, denote the 

conditional inclusion probabilities as ))(~),(~( 00 ss ili ππ .  If the conditional inclusion probabilities do not depend on 

0s , then we write them as )~,~( ili ππ .  It is readily seen that 
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If ii s ππ ~)(~
0 =  and ilil s ππ ~)(~

0 = , then it follows from (2.3) that 
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We use (2.4) in Section 4 to study the properties of inverse sampling for estimating a population total. Note that 

),( **
ili ππ  may correspond to some other simpler sampling design if it is not feasible to match simple random 

sampling (SRS).  
 
2.1 Stratified Simple Random Sampling 
 
Suppose that the original sample 0s  is a stratified simple random sample, i.e., 
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where )( hh nN denotes the number of population (sample) units in stratum ).,,1( Lh K=  We wish to draw a 

subsample *s of size m such that 
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The subsampling scheme readily follows from (2.6): (i) Generate m from the hypergeometric distribution 
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2.2 One-stage Cluster Sampling 
 
HOS studied the case of one-stage cluster sampling in detail. Three sampling designs for 0s were investigated: (1) 

Equal cluster sizes, M , and clusters sampled with equal design probability; (2) Unequal cluster sizes, iM , and 

clusters sampled with equal probability; (3) Unequal cluster sizes, iM , and clusters sampled with probability 

proportional to size iM and with replacement. 

 
Case 1. Exact matching with SRS is difficult to implement in the case of equal cluster sizes, M , and clusters 

sampled with equal probability. Suppose 0s  contains k clusters drawn from K clusters in the population 

KMN = . A simple approximate method of subsampling selects one element at random from each sample cluster 

so that the size of *s is k . Hoffman, Sen and Weinberg (2001) used a similar method for biostatistical applications. 
HOS used systematic sampling to select one case from each sample cluster. 
 
Case 2. Hoffman, Sen and Weinberg (2001) selected one unit at random from each cluster in the case of unequal 
cluster sizes, under a model-based framework for clustered data. For sampling applications, this method does not 
work in the sense that it is not possible to obtain SRS of fixed sizes by subsampling, even approximately. HOS 
proposed an alternative method that artificially enlarges the population to equal cluster size case and then applies 
subsampling used in Case 1. We first force all clusters to have the same size by adding an appropriate number of 
pseudo-unit to bring them up to the size of the largest sample cluster. Then we take one unit at random from each 
sample cluster, and discard any pseudo-units to obtain the final sample. This approximate method makes 

)|( 0
* ssp  depend on 0s  because the conditional probability depends on )( 0sM , the size of the largest sample 

cluster. 
 
Case 3. For the case of probability proportional to size (PPS) sampling with replacement of unequal size clusters, 

HOS proposed a simple method of subsampling which gives ( )kNsp /1)( * = , where *s now denotes an ordered 

simple random sample with replacement selected from the ∑=
i iMN , units in the population. Viewing the 



sample clusters as ordered, we select one unit at random from each sample cluster. Note that the same cluster might 

appear more than once in the ordered sample. Denote the size of the cluster drawn in the i-th PPS draw by '
iM , then 
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where ∏k

i i NM )/( '  is the probability of drawing the ordered cluster sample. Note that 0s  is the ordered PPS 

sample and we have only one term in the summation in (2.1). 
 

If the clusters are drawn with inclusion probabilities NkM ii /=π  and without replacement, then it is not possible 

to match SRS. However, we can treat the clusters as if they were drawn with replacement, as done in practice, and 
then apply the scheme for Case 3. This will lead to overestimation of variance, but the overestimation is not serious 
if the sampling fraction Kk / is small (see Section 4.3) 
 
2.3 Two-stage Cluster Sampling 
 
HOS also studied two-stage sampling for the following cases: (1) Equal cluster sizes, M and k clusters sampled 
with equal probability in the first stage; simple random subsample of equal size, m , drawn independently within 

each sampled cluster (PSU). (2) Unequal cluster sizes, iM , and k clusters sampled with PPS and with replacement; 

simple random subsamples of  unequal sizes, im , drawn independently within each cluster in the with replacement 

sample. 
  
Case 1. As in the case of one-stage cluster sampling, exact method of inverse sampling is difficult to implement. A 
simple approximate method of inverse sampling selects one unit at random from each of the k subsamples. 
 
Case 2. As in Case 3 of uni-stage cluster sampling, we simply select one unit at random from each of the ordered 
subsamples. HOS suggested a different method: Take a simple random sample with replacement of k clusters first 
and then with each selected cluster take one unit at random from the corresponding subsample. It appears that the 
first stage inverse sampling of clusters is not necessary. To see this, we note that  
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im  is the subsample size associated with the cluster selected in the i-th draw ).,,1( ki K=  . We wish to 

draw a subsample *s of size k  such that kNsp )/1()( * = , where ∑= k
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It follows from (2.2) that ( )∏= k
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3. BASIC PROPERTIES 
 
The results in this section are quite general and apply equally to sample surveys and the type of clustered situation 
considered by Hoffman, Sen and Weinberg (2001).  Suppose that we are interested in estimating some population 

parameter, θ , and we have a sample, 0s , of observations drawn from the population according to some complex 

design. We assume that we have a subsampling algorithm that can produce samples from some simpler design.  This 
design will often be simple random sampling, but we can extend the range of applications considerably by allowing 
for the possibility of more general (sub-) designs; for example, stratified SRS when the original sample is a stratified 
two-stage sample.  Our only requirement for the simpler design is that we can produce an estimate of the quantity of 

interest, θ  together with an estimate of its variance. Let *ˆ
jθ  and *ˆ

jV  denote the estimate and variance estimate 

produced from the j-th subsample when we generate a sequence of g independent subsamples ),,1(* gjs j K= . 

Note that the *ˆ
jθ ’s are not unconditionally independent when averaged over the distribution of the initial sample, 

0s . An estimate of θ based on the g subsamples is 
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We denote the estimator based on 0s  as θ̂ . Theorem 1 gives some results on gθ̂ . 
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Result 4 of Theorem 1 demonstrates that increasing the number of subsamples, g , does indeed increase the 

efficiency of gθ̂ .  More precisely, the variance ratio gr  has the form gba /+ . If the subsample estimator, *
1̂θ , is 

unbiased for θ , then so is the resampling estimator, gθ̂ . However, if *
1̂θ has bias of order 1−m , where m denotes 

the subsample size, then gθ̂ has exactly the same bias. Since m  will usually be very much smaller than the original 

sample size, this bias can be appreciable. This is a serious limitation of gθ̂ in the nonlinear cases, such as ratios and 

regression coefficients. In Section 5, we propose an alternative estimator of θ  based on the estimating equations 

(EE) approach. This estimator is asymptotically unbiased for any m  as the size of 0s  increases, unlike gθ̂ . 

 

The fact that **
1
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gθθ K are not unconditionally independent means that estimating )ˆ( gVar θ  is not completely 

straightforward. However, a relatively simple variance estimator may be obtained using Theorem 2 below. 
 
Theorem 2 
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We can estimate the first term of (3.2) by *ˆ
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The properties of the variance estimator gV̂  depend on the properties of the subsample estimator *ˆ
jV . For example, 

if *ˆ
jV  is unbiased, then gV̂  is also unbiased. 

 
4. ESTIMATION OF A TOTAL 

 
4.1 Exact Matching 
 
As shown in Section 3, resampling increases the efficiency of an estimator, but this does not necessarily mean that 

the resampling estimator, gθ̂ , converges to the original full sample estimator, θ̂ , as ∞→g , even when we start 

with an unbiased estimator for the subsample. In this section, we study the special case of a total Y=θ and 

consider the Horvitz-Thompson (H-T) unbiased estimator, ∑ ∈
=

0
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si iiyY π , based on the original full sample. 

Theorem 3 below establishes conditions under which the corresponding resampling estimator 

                                                                             ∑
=

=
g

j
jg Y

g
Y

1

*ˆ1ˆ                                                                             (4.1) 

converges to the H-T estimator, Ŷ , for the original design as ∞→g . 

  
Theorem 3 
 

Let )(~
0siπ  be the conditional probability that the i-th unit is selected in the subsample for a given initial sample, 

0s . Suppose that ** ˆˆ
jj Y=θ  is the H-T estimator of a total Y=θ for the j-th subsample. Then the limiting 

resampling estimator, ∞∞ = Ŷˆ*θ , will be the H-T estimator, Ŷ , for the original design if and only if the conditional 

inclusion probabilities )(~
0siπ  are constant for all 0s  containing the i-th unit, i.e., ii s ππ ~)(~

0 =  for all is ⊃0 . 
 

The condition ii s ππ ~)(~
0 =  is a fairly natural one for most sampling designs for which the H-T estimator is used.  

If the subsamples are all simple random samples of fixed size m , then the H-T estimator for a subsample is simply 
the subsample mean, which is the natural estimator.   
 

Theorem 4 below establishes conditions under which the resampling variance estimator, HTgV ,
ˆ , of gŶ  converges to 

HTV̂ , the H-T variance estimator of Ŷ for the original design, as ∞→g , where 
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Note that *
,

ˆ
HTjV  is the H-T variance estimator of *ˆ

jY , and **
iii ππ = , iii ππ = . 

 
Theorem 4 
 

If *
,

ˆ
HTjV  is the Horvitz-Thompson (H-T) variance estimator of *ˆ

jY  for the j-th subsample, then conditional on 0s , 

HTgV ,
ˆ , converges to the Horvitz-Thompson (H-T) variance estimator of Ŷ for the original design, as ∞→g , if 

the conditional joint inclusion probabilities are constant for all 0s  containing a given pair ),( li  of units, i.e., 
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4.2 Exact Matching: PPS Estimates 
  
(i) Unistage Cluster Sampling 
 
For the case of PPS sampling with replacement of clusters with unequal sizes iM , we have exact matching with 

SRS with replacement. The estimates of Y is given by ∑ =
= k

i ipps YkNY
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')/(ˆ , where N is the total number of 

population elements and '
iY is the mean of the cluster selected on the i-th draw. The estimator ppsŶ is not equal to 

the H-T estimator of Y . The resampling estimator corresponding to ppsŶ is given by ∑ =
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It is easy to verify that ppsVV ˆˆ =∞ . Thus, resampling preserves both the estimator and the variance estimator. 

 
(ii) Two-stage Cluster Sampling 
 

Turning to the case of unequal cluster sizes, iM , we select the clusters with PPS and with replacement, and then 

draw simple random subsampling of equal size, m , independently within each cluster in the with-replacement 

sample. The estimator of Y is ∑ =
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The resampling estimator is given by ∑ =
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It is easy to verify that ppsYY ˆˆ =∞  and ppsVV ˆˆ =∞ . Thus, resampling preserves both the estimator and the variance 

estimator. 
 
4.3 Approximate Matching 
 
In Section 2 we noted that exact matching with SRS is difficult to implement when the original sampling design 
involves clusters. We proposed several approximate matching methods to overcome this difficulty. In this 
subsection we study the properties of the approximate matching methods. 
 
4.3.1 Unistage Cluster Sampling 
 
In Section 2.2, we considered the case of equal clusters, M , and proposed to select one element at random from 
each sample cluster ),,1( ki K=  selected with equal probabilities and without replacement. The estimator of total 
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is not preserved. It is easy to verify that 
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It now follows from (4.5) that ∞V̂  leads to overestimation of the variance if the sampling fraction Kk / is not 

small. 
 
4.3.2 Two-stage Cluster Sampling 
 
Consider the case of two-stage cluster sampling with equal cluster sizes, M , and SRS without replacement in both 
stages. As noted in Section 2.3, exact matching is difficult to implement. The approximate inverse sampling method 
consists of selecting one element at random from the m sample elements in each sample cluster ),,1( ki K= . 
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278). The resampling variance estimator gV̂  tends to  
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as ∞→g . It follows from (4.6) and (4.7) that 
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because the neglected term in (4.8) is of order 1)( −Km . It follows that ∞V̂  again leads to overestimation of the 

variance if the sampling fraction Kk /  is not small. 
 
 

5. ESTIMATING EQUATIONS APPROACH 
 
In this section, we study an estimating equations approach to inverse sampling. This approach permits valid 
inferences on nonlinear parameters such as ratios and “census” linear regression and logistic regression parameters. 

As noted in Section 3, the resampling estimator gθ̂ , given by (3.1), has exactly the same bias as *
1̂θ , and the bias of 

*
1̂θ  is of order 1−m , where m is the subsample size. As a result, the bias of gθ̂ can be appreciable because m  is 

usually very much smaller than the original sample size n . In fact, m could be as small as 2 for stratified two-stage 
cluster sampling designs with two sample clusters in each stratum. Moreover, for logistic regression and other cases, 

the calculation of *ˆ
jθ and θ̂  involves iterative solutions. As a result, the implementation of gθ̂ , and the resampling 

variance estimator gV̂ , given by (3.3), could become computationally very cumbersome when the number of 

resamples, g , is large. We avoid these difficulties using an estimating equation approach. 

 

A finite population parameter vector Nθ  may be regarded as the solution to “census” estimating equations (EE's): 
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∈Uk
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where ∑ ∈Uk
denotes the summation over the finite population U of size N , and the estimating functions 

)(θku are suitably chosen (Binder (1983), Godambe and Thompson (1986)). For example, consider the scalar case 

of (5.1) and let θθ −= kk yu )(  in (5.1). This gives the population mean YN =θ . Similarly, letting 

kkk xyu θθ −=)(  we get the ratio of means: XYRN /==θ . The choice ))(()( θµθ kkkk yxu −=  with 

θθµ T
kk x=)(  gives the least squares regression vector 
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The choice ))(()( θµθ kkkk yxu −= with θθµθµ T
kkk x=− ))](1/()(log[  gives the logistic regression 

vector Nθ .  



 
The sample estimating equation are given by 
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where kw is the survey weight attached to 0sk ∈ ; in particular, kkw π/1=  if the H-T estimator of )(θS  is 

used. The solution to (5.2) gives the estimator θ̂ which, in general, is nonlinear and hence biased. We assume that 

the size of the original sample, 0s , is large enough to neglect the bias of θ̂ . For logistic regression and other 

complex cases, it is necessary to solve (5.2) iteratively to obtain the solution θ̂ . The Newton-Raphson algorithm is 
commonly used to solve (5.2).  
 

Under regularity conditions, Binder (1983) obtained a Taylor linearization variance estimator of θ̂  as 
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where )]ˆ(ˆ[ˆ θSV  is the variance estimator of the estimated vector of totals, )(ˆ θS , of the )(θku ’s evaluated at 

θθ ˆ=  and )ˆ(ˆ θJ  is the observed information matrix obtained by evaluating  
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noting that ∑ ∈
−=

0
)(ˆ

sk kk xwJ θ . 

 

As noted in Section 3, the estimator gθ̂ , based on the average of the subsample estimator *ˆ
jθ , can be seriously 

biased if the subsample size m is not large. To avoid this difficulty, we now propose a combined resampling 

estimator gcθ̂  that leads to valid inference regardless of the subsample size m . A combined resampling equation is 

given by 
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where ∑
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S θθ . In general, we solve (5.4) using the Newton-Raphson algorithm. At convergence, 

we get the estimator gcθ̂  as well as the observed information matrix )ˆ(ˆ
gcgcJ θ  given 

by ∑ ∑
= ∈

∂∂−=∂−∂=
g

j sk

T
k

T
gcgc

j

u
m

N

g
SJ

1 *

/)(
1

/)(ˆ)(ˆ θθθθθ evaluated at gcθθ ˆ= . Note that we solve the EE 

equations only once to get gcθ̂ .  

 

To illustrate the proposed method, consider the special case of ratio RN =θ , in which case kkk xyu θθ −=)( . 

The solution gcgc R̂ˆ =θ  is then given by 
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a combined ratio estimator of R . 
 

Assuming first moment matching, it follows from (5.4) that gcθ̂  is a solution of 
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As a result, θθ ˆˆ =∞c  regardless of the subsample size m . Thus, the bias of gcθ̂  is of the same order as the bias of 

θ̂ for large number of resamples, g , regardless of the subsample size, m . 

 

We now apply Binder's (1983) method to )(ˆ θgcS  to get a linearization resampling variance estimator. It follows 

from (5.3) that 

                                                   11 )]ˆ(ˆ)][ˆ(ˆ[ˆ)]ˆ(ˆ[)ˆ(ˆ −−= gcgcgcgcgcgcgcL JSVJV θθθθ  ,                                        (5.6) 

where )]ˆ(ˆ[ˆ
gcgcSV θ  is the variance estimator of the estimated vector of totals, )(ˆ θgcS , of the )(θku ’s evaluated 

at gcθθ ˆˆ = . Note that )ˆ(ˆ
gcgcJ θ  is obtained at the convergence of the N-R algorithm applied to (5.4). Since 

)(ˆ θgcS  is the resampling estimator of the total )(θS , it follows that the resampling covariance matrix of )(ˆ θgcS  

is given by 
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where *~
jSV  is the SRS variance estimator from the j-th resample, assuming second moment matching. If the 

matching is with respect to SRS without replacement, then 
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In the case of matching to SRS with replacement, we replace )/1( Nm−  by 1 in (5.8).  

 

Now substituting gcθ̂ for θ  in (5.7)  we get the resampling covariance matrix  gSV̂  given by 
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where *ˆ
jSV  is obtained from (5.8) by substituting gcθ̂  for θ . Note that 0)ˆ(ˆ =gcgcS θ . The linearization resampling 

variance estimator, for a given g , is now given by 

                                                   11 )]ˆ(ˆ[ˆ)]ˆ(ˆ[)ˆ(ˆ −−= gcgcgSgcgcgcL JVJV θθθ .                                                      (5.10) 

Under second moment matching with SRS, it is easy to verify that the variance estimator (5.10) as ∞→g equals 

the Binder's variance estimator )ˆ(ˆ θLV  given by (5.3). This follows by noting that θθ ˆˆ =∞c , )(ˆ)ˆ(ˆ θθ JJ c =∞  and 

)](ˆ[ˆ~ θSVV S =∞  under second moment matching with SRS. Thus, the variance estimator )ˆ(ˆ
gcLV θ  provides valid 

inferences on θ for large number of resamples, g , regardless of the subsample size, m .  



 

To illustrate the calculation of the resampling variance estimator )ˆ(ˆ
gcLV θ , given by (5.6), consider the special case 

of a ratio RN =θ  with kkk xyu θθ −=)( . We have 
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where kkk xye θ−= ,  ***
jjj xye θ−=  and ),( **

jj xy are the j-th subsample means. Further, 
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It is important to note again that the estimator gcθ̂  and the associated variance estimator )ˆ(ˆ
gcLV θ  can be 

implemented from a micro data file providing g subsamples, each of size m . Neither the survey weights kw nor 

the cluster identifiers are needed so that confidentiality of micro data may be preserved.  
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