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ABSTRACT

Application of classical statistical methods to data from complex sample surveys without making allowance for the survey
design features can lead to erroneous inferences. Methods have been developed that account for the survey design, but
these methods require additional information such as survey weights, design effects or cluster identification for micro data.
Inverse sampling (Hinkins, Oh and Scheuren, 1997) provides an alternative approach by undoing the complex survey data
structures so that standard methods can be applied. Repeated subsamples with simple random sampling structure are drawn
and each subsample analysed by standard methods and then combined to increase the efficiency. This method has the
potential to preserve confidentiality of micro data, although computer-intensive. We present some theory of inverse
sampling and explore its limitations. An estimating equations approach is proposed for handling complex parameters such
asratios and “census’ regression parameters.
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1. INTRODUCTION

How do practitioners deal with the complexities of survey data structures such as unequal selection probabilities,
clustering and stratification? Adapting a quote from Hinkins, Oh and Scheuren (1997) (abbreviated HOS hereafter):
“If your only tool is a hammer, every problem looks like a nail!”; the hammer available to most people is one of the
big statistical packages such as SAS. Most people still just push their data through a standard program and ignore
the survey data structures. Thisisin spite of the fact that a great deal of effort over the last two decades has been
spent on developing methods to analyze survey data that take account of design features (see e.g., Skinner, Holt and
Smith, 1989), and specialized programs such as SUDAAN or WesVar are now available to implement some of these
methods.

An dternative to developing complex new tools is to work backwards: instead of tailoring the methods to fit the
data, tailor the data to fit the methods. HOS developed an approach along these lines. Their basic ideaisto avoid the
pain caused by a complicated sample by choosing a subsample that has a simple random sample structure
unconditionally (or at least has a structure that is considerably simpler to handle than the origina sample).
Obviously this involves some loss in efficiency, especidly if the subsample is very much smaller than the original
sample, as often turns out to be necessary. However, we can increase the efficiency by repeating the process
independently many times and averaging the results.

Isit possible to produce subsamples with the desired properties? The answer is often “yes’, athough the resulting
subsample size, m, might have to be small. HOS give agorithms for producing simple random inverse samples for a
number of standard designs. We summarize some inverse sampling schemesin Section 2 for ready reference. These
schemes include both exact and approximate methods in terms of matching simple random sampling. In this paper
we look at some of the properties of the repeated inverse sampling procedures given in Section 2. In particular, we
develop some basic theory of inverse sampling in Section 3, and illustrate some of the strengths and weaknesses of
the procedure. In Section 4 we study the special case of a population total. We propose an estimating equations (EE)
approach in Section 5 for handling complex parameters such asratios and “census’ regression parameters.
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2. INVERSE SAMPLING ALGORITHMS

In this section we summarize some of the inverse sampling schemes, proposed by Hinkins, Oh and Scheuren (1997).
These schemes include both exact and approximate methods in terms of matching simple random sampling (SRS)

unconditionally. Suppose we have a sample S, of observations drawn from the finite population of size

N according to a specified complex design. We wish to draw a subsample S of size mfrom S, such that the

* * * N
unconditional probability of S, P(S ), matches simple random sampling with p(S ') = 1/( j either exactly
m
or approximately. We have

P(S) = D Po(S)P(S ISy). 2.1

SoOS

where [,(S,) isthe probability of selecting S, and P, (S  |S,) isthe conditional probability of choosing S . If

P, (S |S,) doesnot depend on S, , then it follows from (2.1) that
p(s)

2. P(s)

=

P(s |s) = po(s) = (22)
Denote the first-order and second-order inclusion probabilities corresponding to S and S, as (ﬂ'I ,71':,) and
(7, 7r,) respectively, where 7, =m/Nand 7, =m(m—1)/N(N -1),i #!|. Similarly, denote the
conditional inclusion probabilities as (77, (S,), 7, (S,)) - If the conditional inclusion probabilities do not depend on
S, then we writethem as (7, 77, ) . Itisreadily seen that

7 =2 Po(S)T(S) m = D, Pol(S0) 7 () (23)
Spdi Sp3i,!
If 7,(S) =7, and 7, (S,) = 7T, , then it follows from (2.3) that
T =T, T, =T7,. (2.4)
We use (2.4) in Section 4 to study the properties of inverse sampling for estimating a population total. Note that
(ﬂ'i* ,n'i*, ) may correspond to some other simpler sampling design if it is not feasible to match simple random
sampling (SRS).

2.1 Stratified Simple Random Sampling

Suppose that the original sample S, isastratified simple random sample, i.e.,

L (N, -1
Po(s) =11 : (2.5)

1 nh

where N, (n,,) denotes the number of population (sample) units in stratum h (=1,...,L). We wish to draw a

* * N
subsample S of size Msuch that p(s ) =1/ j where N = Zh N, . Clearly, mcannot be larger than
m

min(n,). Let m=(m,,...,m_)" denote the (random) number of units in each stratum that belong to S ,
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0<m,<m, Zh M, =M. Noting that the number of terms in ZSPS* equals Hh(

onfy) o,
ST

The subsampling scheme readily follows from (2.6): (i) Generate M from the hypergeometric distribution

from (2.2) that

(2.6)

N N
f(m) = Hh(m:J/(mj; (i) Draw a simple random sample of size m, , without replacement, from the N,
sample units in stratum h, independently across strata h (=1,...,L). HOS specify p(S |s,) first and then
N -1
verify that it gives p(S*) :( ] . Our approach provides the subsampling scheme from the specification of
n

Po(S,) and p(s’).
2.2 One-stage Cluster Sampling

HOS studied the case of one-stage cluster sampling in detail. Three sampling designs for S,were investigated: (1)
Equal cluster sizes, M , and clusters sampled with equal design probability; (2) Unequal cluster sizes, M, , and
clusters sampled with equal probability; (3) Unequal cluster sizes, M, , and clusters sampled with probability

proportional to size M, and with replacement.

Case 1. Exact matching with SRS is difficult to implement in the case of equal cluster sizes, M , and clusters
sampled with equal probability. Suppose S, contains K clusters drawn from K clusters in the population
N = KM . A simple approximate method of subsampling selects one element at random from each sample cluster

so that the size of S is K. Hoffman, Sen and Weinberg (2001) used a similar method for biostatistical applications.
HOS used systematic sampling to select one case from each sample cluster.

Case 2. Hoffman, Sen and Weinberg (2001) selected one unit at random from each cluster in the case of unequal
cluster sizes, under a model-based framework for clustered data. For sampling applications, this method does not
work in the sense that it is not possible to obtain SRS of fixed sizes by subsampling, even approximately. HOS
proposed an aternative method that artificially enlarges the population to equal cluster size case and then applies
subsampling used in Case 1. We first force al clusters to have the same size by adding an appropriate number of
pseudo-unit to bring them up to the size of the largest sample cluster. Then we take one unit at random from each
sample cluster, and discard any pseudo-units to obtain the final sample. This approximate method makes

P(S |S,) depend on S, because the conditional probability depends on M (S,) , the size of the largest sample
cluster.

Case 3. For the case of probability proportional to size (PPS) sampling with replacement of unequal size clusters,
HOS proposed a simple method of subsampling which gives p(s’) = (1/ N )k , where S now denotes an ordered

simple random sample with replacement selected from the N = Z'V'i , units in the population. Viewing the



sample clusters as ordered, we select one unit at random from each sample cluster. Note that the same cluster might
appear more than once in the ordered sample. Denote the size of the cluster drawn in the i-th PPS draw by M i' , then
o T M Ty 2 1)\
S )= —L — | = — 27)
) [H N }{H MJ (N)

k ' . . . .
where l—Ii (M, /'N) is the probability of drawing the ordered cluster sample. Note that S, is the ordered PPS
sample and we have only one term in the summationin (2.1).

If the clusters are drawn with inclusion probabilities 77; = KM, / N and without replacement, then it is not possible

to match SRS. However, we can treat the clusters as if they were drawn with replacement, as done in practice, and
then apply the scheme for Case 3. This will lead to overestimation of variance, but the overestimation is not serious

if the sampling fraction k / K issmall (see Section 4.3)

2.3 Two-stage Cluster Sampling

HOS aso studied two-stage sampling for the following cases: (1) Equal cluster sizes, M and K clusters sampled
with equal probability in the first stage; simple random subsample of equa size, M, drawn independently within

each sampled cluster (PSU). (2) Unequal cluster sizes, M, and K clusters sampled with PPS and with replacement;
simple random subsamples of unequal sizes, m;, drawn independently within each cluster in the with replacement
sample.

Case 1. Asin the case of one-stage cluster sampling, exact method of inverse sampling is difficult to implement. A
simple approximate method of inverse sampling selects one unit at random from each of the K subsamples.

Case 2. Asin Case 3 of uni-stage cluster sampling, we simply select one unit at random from each of the ordered
subsamples. HOS suggested a different method: Take a simple random sample with replacement of K clusters first
and then with each selected cluster take one unit at random from the corresponding subsample. It appears that the
first stage inverse sampling of clustersis not necessary. To see this, we note that

<M 1
m
where M is the subsample size associated with the cluster selected in the i-th draw (i =1,...,K). . We wish to

* * k
draw a subsample S of size k such that p(s ) = (1/ N)*, where N = zi M. . Also the number of terms in

k |V|i' -1
ZSODS” equals Hizl( m _1] and

3 po(s) =11 (&]M _fm
= 2| UN (MI;] N
k n -

It follows from (2.2) that P(S |S,) = H (1/ m') and hence the subsampling scheme readily follows.




3. BASIC PROPERTIES

The results in this section are quite general and apply equally to sample surveys and the type of clustered situation
considered by Hoffman, Sen and Weinberg (2001). Suppose that we are interested in estimating some population

parameter, €, and we have a sample, S;, of observations drawn from the population according to some complex

design. We assume that we have a subsampling algorithm that can produce samples from some simpler design. This
design will often be simple random sampling, but we can extend the range of applications considerably by allowing
for the possibility of more general (sub-) designs; for example, stratified SRS when the original sample is a stratified
two-stage sample. Our only requirement for the simpler desi gn isthat we can produce an estimate of the quantity of

interest, @ together with an estimate of its variance. Let 0 and V denote the estimate and variance estimate
produced from the j-th subsample when we generate a sequence of g independent subsamples Sj (j=1...,0).

Note that the éJ 's are not unconditionally independent when averaged over the distribution of the initial sample,

S, - An estimate of @ based onthe g subsamplesis

[EnN

g
—Z (3.1)
=1

We denote the estimator based on §, as € . Theorem 1 gives someresultson 6.

@

Theorem 1

1. Conditional on the original sample, S, ég converges almost surely to E(é1 |s) = éw , Sy, as g —oo.
2. E(4,)= E(,).

Var é _
If 1, :M,then r :1+r1—1.
Var(6.) g

Result 4 of Theorem 1 demonstrates that increasing the number of subsamples, g, does indeed increase the

efficiency of (9 More precisely, the variance ratio Iy has the form a+ b/ g . If the subsample estimator, 9 , 1S
unbiased for @, then so is the resampling estimator, 99. However, if 01 has bias of order M ™, where M denotes
the subsample size, then ég has exactly the same bias. Since M will usually be very much smaller than the original

sample size, this bias can be appreciable. Thisis a serious limitation of 67g in the nonlinear cases, such as ratios and
regression coefficients. In Section 5, we propose an alternative estimator of & based on the estimating equations
(EE) approach. This estimator is asymptotically unbiased for any M asthesize of S, increases, unlike 99.

The fact that 91* ..., 8 are not unconditionally independent means that estimating \Var (99) is not completely
straightforward. However, arelatively simple variance estimator may be obtained using Theorem 2 below.

Theorem 2

(3.2)



We can estimate the first term of (3.2) by \71-* for j =1,...,0, and hence by their average g’lz\a* . In addition,
the quantity

1 g s -~
— Y (6 -6,
1260
gives an unbiased estimator of E[Var (él |S,)] since él,,ég are conditionally independent given the initial
sample, S,. Thisleadsto an estimator of Var(é ) of the form
13
V, = : =V, ——Z(e -6,)*. (3.3)
j=1

The properties of the variance estimator Vg depend on the properties of the subsample estimator \7; . For example,

if \7; is unbiased, then \7g is also unbiased.

4. ESTIMATION OF A TOTAL
4.1 Exact Matching

As shown in Section 3, resamplmg increases the efficiency of an estimator, but this does not necessarily mean that
the resampling estimator, 9 , converges to the original full sample estimator, 0 as g—> oo, even when we start
with an unbiased estimator for the subsample. In this section, we study the special case of a tota € =Y and
consider the Horvitz-Thompson (H-T) unbiased estimator, YA = Zieso Y, / 7T, , based on the original full sample.

Theorem 3 below establishes conditions under which the corresponding resampling estimator
» 1 9 T
== ij (4.1)
0=
converges to the H-T estimator, Y , for the original designas g —co.
Theorem 3

Let ff, (So) be the conditional probability that the i-th unit is selected in the subsample for a given initial sample,

A

S,- Suppose that éJ :Yj* is the H-T estimator of a total & =Y for the j-th subsample. Then the limiting

resampling estimator, 0; = Y; , will be the H-T estimator, Y , for the original design if and only if the conditional
inclusion probabilities 77; (S,) areconstant for all S, containing thei-th unit, i.e,, 7 (S,) =7, foral s, Di.

The condition 7, (S,) = 7, isafairly natural one for most sampling designs for which the H-T estimator is used.

If the subsamples are al simple random samples of fixed size M, then the H-T estimator for a subsample is simply
the subsample mean, which is the natural estimator.

Theorem 4 below establishes conditions under which the resampling variance estimator, \79’HT , of YAg converges to

\7HT , the H-T variance estimator of Y for the original design, as g —> oo, where

=y Y ATEA (4.2)

NS 7z7z,7z



(see Cochran (1977), p.261) and

with

JHT Z Z % ﬂl Yivi- (4.3)

i, les, 7[7[|

Note that V;HT isthe H-T variance estimator of YJ and T, =7, , T, =TT, .

Theorem 4

If \7;HT is the Horvitz-Thompson (H-T) variance estimator of YAJ-* for the j-th subsample, then conditional on S,

ng , converges to the HorvitzThompson (H-T) variance estimator of Y for the original design, as g —> oo, if
the conditional joint inclusion probabilities are constant for all S, containing a given pair (i,1) of units, i.e,

() =7, foral s, o{i,1}.
4.2 Exact Matching: PPS Estimates
(i) Unistage Cluster Sampling

For the case of PPS sampling with replacement of clusters with unequal sizes M, , we have exact matching with
~ kK —
SRS with replacement. The estimates of Y is given by Y, . = (N/ k)Z:izlYi , where N is the total number of

population elements and Y. is the mean of the cluster selected on the i-th draw. The estimator YAppS is not equal to

the H-T estimator of Y . The resampling estimator corresponding to YAleS is given by YAg = g’lz 1YJ , Where

YAJ-* denotes the estimator of Y from the j-th inverse sample. It is easy to verify that Y:o =YA noting that

pps *
\?J-* =(N/ k)zik:1 yi' where yi' denotes the value of the element of an inverse sample selected from the cluster in
thei-th draw.

The variance estimator of YAppS isgiven by
2
~ N? 1 &Ko 1&E
V =——— Y ——>Y |.
PP k—1i_1(' kzll
It is easy to verify that \700 = \7pps . Thus, resampling preserves both the estimator and the variance estimator.
(if) Two-stage Cluster Sampling

Turning to the case of unequal cluster sizes, M, , we select the clusters with PPS and with replacement, and then
draw simple random subsampling of equal size, M, independently within each cluster in the with-replacement

- kK o : .
sample. The estimator of Y is Y, = (N /k)Z:i:1 Y. where Y, isthe sample mean of the cluster selected in theii-

th draw. The variance estimator of YAppS isgiven by



The resampling estimator is given by Y, = g_lz? 1YAJ-* , Wwhere \?j* = (N/k)zik:l y; ,and yi' is defined as above.

It is easy to verify that YAW = Ypps and \700 = Vpps. Thus, resampling preserves both the estimator and the variance
estimator.

4.3 Approximate Matching

In Section 2 we noted that exact matching with SRS is difficult to implement when the origina sampling design
involves clusters. We proposed several approximate matching methods to overcome this difficulty. In this
subsection we study the properties of the approximate matching methods.

4.3.1 Unistage Cluster Sampling
In Section 2.2, we considered the case of equal clusters, M , and proposed to select one element at random from

each sample cluster i (=1,...,K) selected with equal probabilities and without replacement. The estimator of total
Y is given by Y = (K/ k)Z:ikzlYi , where Y, is the i-th sample cluster total and K is the number of population

I
clusters. The corresponding resampling estimator is YAg = g’lz?zlYAj* with YAJ-* =N )7} denoting the estimator of
Y from the j-th inverse sample. It is easy to verify that Y; =Y so that approximate matching preserves the original
estimator YA in the limit. However, the variance estimator of YA , Nnamely
2
-~ K? k) 1 & 1
G- (1K LS (v
k K k - 1 i=1 k i=1
isnot preserved. It is easy to verify that
VIV, =1-k/K 4.5
It now follows from (4.5) that \700 leads to overestimation of the variance if the sampling fraction K /K is not
small.

4.3.2 Two-stage Cluster Sampling

Consider the case of two-stage cluster sampling with equal cluster sizes, M , and SRS without replacement in both
stages. As noted in Section 2.3, exact matching is difficult to implement. The approximate inverse sampling method

consists of selecting one element at random from the M sample elements in each sample cluster i (=1,...,K).
' ' ~ k ~

Denote the values of the elements by Y,,..., Y, . The H-T estimator of Y isgivenby Y = (K / k)Z:izlYi , Where

YAi =MY, and Y, isthe sample mean of the i-th sample cluster. The resampling estimator, based on approximate

matching, is given by YAg = g’lzilYA; , Where \?J-* =(N/k)zik:1 y; . It is easy to verify that Y. =Y o that

approximate matching preserves the original estimator YA in the limit.

The variance estimator of YA isgiven by

jonz oKl (KoM 1o
V_N{k(l Kjsly+K(1 M)kmszy}’ (4.6)



where Sfy = Z(yi -y’ I(k-1), Sgy = ZiSZZi /Kwith S5 denoting the sample variance in the i-th cluster,
Y, is the i-th cluster sample mean and Y = zi y. /K is the overall sample mean (see Cochran (1977), p.276 -

278). The resampling variance estimator \79 tendsto

- 1
V. =N? Esfy (4.7)
as g—>oo. It followsfrom (4.6) and (4.7) that
5 2
Vo K 1—(1—ﬁji32—2y (48)
V., K M ) km s,
1k
K

because the neglected term in (4.8) is of order (mK)’l. It follows that \700 again leads to overestimation of the
variance if the sampling fraction k/ K isnot small.

5. ESTIMATING EQUATIONS APPROACH

In this section, we study an estimating equations approach to inverse sampling. This approach permits valid
inferences on nonlinear parameters such as ratios and “census’ linear regression and logistic regression parameters.

As noted in Section 3, the resampling estimator 6?9 , given by (3.1), has exactly the same bias as 191* , and the bias of

él is of order m™, where mis the subsample size. As aresult, the bias of Hg can be appreciable because M is

usually very much smaller than the original sample size N. In fact, M could be as small as 2 for stratified two-stage
cluster sampling designs with two sample clustersin each stratum. Moreover, for logistic regression and other cases,

the calculation of 0; and @ involves iterative solutions. As aresult, the implementation of 99 , and the resampling

variance estimator \79, given by (3.3), could become computationally very cumbersome when the number of
resamples, g, islarge. We avoid these difficulties using an estimating equation approach.

A finite population parameter vector 6y, may be regarded as the solution to “census’ estimating equations (EE's):
S(6) =D u (6)=0 (5.1)

keU
where Zkeu denotes the summation over the finite population U of size N, and the estimating functions
U, () are suitably chosen (Binder (1983), Godambe and Thompson (1986)). For example, consider the scalar case
of (51) and let U, (8)=Y, — 6 in (5.1). This gives the population mean &, =Y . Similarly, letting
U (0) =y, — X, we get the ratio of means: 8, = R=Y / X . The choice U, (8) = X, (Y, — 4, (6)) with

1, (8) = X, 0 givesthe least squares regression vector

-1
O\ Z(ZXkXE] ZXkYk .
keU keU

The choice U, (8) = X, (Y, — £, (0)) with log[, (8) /(1— 1, (8))] = X, € gives the logistic regression
vector 6 .



The sample estimating equation are given by
S(6)= > w,u,(6)=0, (5.2)

ke sg
where W, is the survey weight attached to K € S;; in particular, W, =1/, if the H-T estimator of S(6) is
used. The solution to (5.2) gives the estimator é which, in general, is nonlinear and hence biased. We assume that

the size of the original sample, S,, is large enough to neglect the bias of é For logistic regression and other

complex cases, it is necessary to solve (5.2) iteratively to obtain the solution é . The Newton-Raphson algorithmis
commonly used to solve (5.2).

Under regularity conditions, Binder (1983) obtained a Taylor linearization variance estimator of é as

o AOENQIRIEQING) . 53
where V[S(6)] is the variance estimator of the estimated vector of totals, S(8) , of the U, () 'S evauated at
6=0 ad J (é) is the observed information  matrix  obtained by  evaluating
J(6)=-0S/96" = —Zke%wkauk (6)/96" a O0=6. For example, if U () =Y, —6X then

0= ZSO Wy, / ZSO W, X, = R isthe estimated ratio, and (5.3) reduces to the usual formula
-2
Vo (0)= (Zwk XKJ V|:Zwkuk(0):|v
ke s ke s
noting that J (8) = —Zkeso W, X, -

As noted in Section 3, the estimator ég , based on the average of the subsample estimator é] , can be seriousy
biased if the subsample size mMis not large. To avoid this difficulty, we now propose a combined resampling

estimator égc that leads to valid inference regardless of the subsample size M. A combined resampling equation is
given by

A 1 9 al’s
S, (6) = az S;(6)=0, (5.4)
j=1

ol N
where S, () = — Z U, (8) . In general, we solve (5.4) using the Newton-Raphson algorithm. At convergence,
kes;

we get the estimaor 6, a well as the observed information matrix J.(6,) given

A ~ ] ~
by J.(8) = —E)Sgc(é?)/aé?T = —32% Zauk (6)/00" evaluated at 6 = 6,. - Note that we solve the EE
=

j=1 ke S*J

equations only once to get ch .

To illustrate the proposed method, consider the special case of ratio 8, = R, in which case U, (6) =y, — X, .
The solution égc = Ifigc isthen given by



acombined ratio estimator of R .

Assuming first moment matching, it follows from (5.4) that égc isasolution of
S.(6) = = §(6) =0. (5.5)

As aresult, éxc =6 regardless of the subsample size M. Thus, the bias of égc is of the same order as the bias of

é for large number of resamples, g, regardiess of the subsample size, .

We now apply Binder's (1983) method to égc (6) to get alinearization resampling variance estimator. It follows
from (5.3) that

VL (egc) = [‘ch (egc )]71V[Sgc (egc )] [‘]gc (egc)]il ’ (56)
where \7[égC (égc)] is the variance estimator of the estimated vector of totals, égc (8), of the u, (@) ’s evaluated
at é = égc. Note that j o (égc) is obtained at the convergence of the N-R algorithm applied to (5.4). Since

Sy (0) isthe resampling estimator of the total S(&)) , it follows that the resampling covariance matrix of égc 6)
isgiven by
- 1 g ~* 1 g A* g A* -
Vie =2 Vi- > [§0)- 5015 0)- 8.0 57
g9 0=
where VJ-*S is the SRS variance estimator from the j-th resample, assuming second moment matching. If the

matching is with respect to SRS without replacement, then
T

\Z;=N—(1—mjiz WO - =300 [uO-=Tu®)| . ©9

m N 1kes kes kes

In the case of matching to SRS with replacement, we replace (L—m/ N) by 1in (5.8).

Now substituting égcfor 6 in (5.7) we get the resampling covariance matrix \793 given by
1 g A* 1 g A* ~ A* ~ T
=5 2Vis g 2510005 (6) (5.9)
j=1 j=1
where \71-*5 is obtained from (5.8) by substituting égc for @ . Note that égc (égc) = 0. Thelinearization resampling

variance estimator, for agiven g, isnow given by

VL (ggc) = [‘]gc (egc)] _1VgS [‘]gc (egc)] _1' (510)
Under second moment matching with SRS, it is easy to verify that the variance estimator (5.10) as — oo equals
the Binder's variance estimator \7|_ (é) given by (5.3). This follows by noting that éwc ) , jwc (é) =] (8) and
\Zos =\7[§(6?)] under second moment matching with SRS. Thus, the variance estimator \7L (égc) provides valid

inferences on @ for large number of resamples, g , regardless of the subsample size, M .



To illustrate the calculation of the resampling variance estimator \7L (égc) , given by (5.6), consider the special case
of aratio 6, = R with U, (8) =y, — X, . Wehave

% N2 m 1 *\2

Ve=—I|1-—|— -e )7,

5 m ( ij—lkezs%(ek )
where € =Y, —6X,, é; = Y/} -0 YI and (V},)_(;)are the j-th subsample means. Further,
N J —* al’y % %
szj and S;(0) = N(Y; —6X;).
j=1

It is important to note again that the estimator 6, and the associated variance estimator V, (6,.) can be

‘]gc(e) ==

implemented from a micro data file providing g subsamples, each of size M. Neither the survey weights W, nor
the cluster identifiers are needed so that confidentiality of micro data may be preserved.
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