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ABSTRACT

In this paper, we discuss a specific component of a research agenda aimed at disclosure protections for “non-
traditional” statistical outputs. We argue that these outputs present different disclosure risks than normally
faced and hence may require new thinking on the issue. Specifically, we argue that kernel density estimators,
while powerful (high quality) descriptions of cross-sections, pose potential disclosure risks that depend
materially on the selection of bandwidth. We illustrate these risks using a unique, non-confidential dataset on
the statistical universe of coal mines and present potential solutions. Finally, we discuss current practices at the
U.S. Census Bureau's Center for Economic Studies for performing disclosure analysis on kernel density
estimators.

KEY WORDS: Kernel Density Estimator; Disclosure Protection; Non-Traditional Statistical Outputs

1. INTRODUCTION

By law, government statistical agencies must protect the confidentiality of the microdata provided by
respondents to surveys and censuses. Agencies' traditional data products are aggregates of the microdata—
usually tables of frequency counts or totals, or public use microdata files. For these products, agencies
employ a variety of confidentiality protection (statistical disclosure limitation) methods, including
restriction of output (e.g., cell suppression and re-aggregation) and perturbation (e.g., rounding of output, or
random perturbation of either the underlying microdata or the output).

Researchers at the U.S. Census Bureau’ s Center for Economic Studies (CES) and its Research Data Centers
(RDCs) commonly generate what is (for the Census Bureau, at least) “non-traditional” statistical output.*
This output typically includes parameter estimates and related statistics from linear and non-linear
regression models, and sometimes includes output from semi-parametric and non-parametric estimation

! This paper reports the results of research and analysis undertaken by U.S. Census Bureau staff. It has
undergone a Census Bureau review more limited in scope than that given to official U.S. Census Bureau
publications. This report is released to inform interested parties in ongoing research and to encourage
discussion of work in progress. We would like to thank conference participants at the 2001 Statistics
Canada Symposium in Ottawa, Canada as well as seminar participants at the Center for Economic Studies
in Washington, DC for very helpful comments and suggestions. We also would like to thank Timothy
Dunne for a number of insightful conversations and suggestions.
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models, or from simulation models.> We believe that current disclosure limitation methods may not aways
be appropriate for these outputs. However, the literature provides little guidance, despite itsinclusion as a
worthy research topic in a U.S. Federal Committee on Statistical Methodology report (FCSM, 1994, p. 87).
This situation makes it difficult to balance the need to release meaningful research results while
maintaining the confidentiality of respondent information. More guidance is needed since many agencies
in and outside the U.S. have established or are considering establishing RDCs or similar restricted access
Sites.

This paper presents part of a larger work in progress. In this program of research, we are attempting to
describe the risks of disclosure surrounding linear and non-linear regressions, and to evaluate the
applicability of existing confidentiality protection methods in a regression context. See Federal Committee
on Statistical Methodology (1994) for a discussion of existing confidentiality protection methods, and see
Merrell and Reznek (2001) for a discussion of the directions our research is taking.

We also are investigating non-parametric estimators of probability densities, i.e. Kernel density estimators,
focusing on how disclosure risk may be affected by the selection of a bandwidth, the selection of a density
support, and the presence of outlying observations. We aso are assessing the effectiveness of existing
disclosure rules are in maintaining confidentiality when applied to fully non-parametric estimates of density
functions. We will report on this strand of research in afuture paper.

In this paper, we concentrate on the case of kernel density estimators. Though we only present examples
pertaining to establishment data, observations could be on households, persons, or even firms. We believe
that our arguments pertain to either economic or demographic types of data. In either event, the problem
faced is a common one: we wish to allow the production and dissemination of high quality statistical
estimates (such as can be obtained from kernel density estimates) while at the same time preventing the
disclosure of individual respondent information. We examine potential disclosure risks that these forms of
estimators present and also discuss some potential ways to address those risks.®

This paper proceeds in the following way. Section 2 defines and describes kernel density estimators.
Section 3 discusses the data, illustrates two related disclosure risks and potential ways to address them, and
synthesizes the inter-relatedness of these two concerns. Section 4 discusses current policy at the U.S.
Census Bureau's Center for Economic Studies and its Research Data Centers when performing disclosure
analysis on kernedl density estimates. Section 5 concludes.

2. KERNEL DENSITY ESTIMATORS

2.1 Definition

Kernel density estimators allow researchers to describe cross-sectional distributions in very simple, clear
ways. These estimators smooth the distributions based on a specified bandwidth and a kernel function.
The kernel function places weights on each observation that makes that observation proportional to its

® The types of outputs discussed here are, of course, quite standard in statistics and social science research
generally. However, they are “non-traditional” in the context of statistical disclosure limitation; the
measurement of disclosure risks and statistical disclosure limitation methods are most developed for
tabulations and public use files.

® To be sure, most uses of kernel density estimators involve examining differences in cross-sections—
examining changes in the kernel density estimate. For example, one might be interested in changes in the
size distribution of establishments between two, say, entry cohorts of manufacturing plants or coal mines.
To examine this, one would need to plot more than one kernel density estimate. A single function such as
those presented below normally would be atypical in research output. We use single estimators to present
disclosure risks in any one kernel density estimate and implicitly make the case that the risks, potential
solutions, and current policies apply no matter how the outputs are presented. Nonetheless, we recognize
that most research output would compare two (or more) density estimates.



distance from the center of a given band. Formally, the kernel density estimator is given by the following
equation;

where n is the sample size, w is the bandwidth, K is the kernel function, x is an observation, and X; is the
midpoint of a given band. Note that the kernel function, K, can take a number of types: Epanechnikov,
rectangular, or Gaussian, inter alia. In short, the kernel density estimate is the sum of weighted deviations
of an observation from the midpoint of a band where the weights are assigned by the kernel function.

Mechanically, the kernel function is of little consequence to most researchers,” and most software packages
will choose a default function. There is, however, considerable interest in the choice of the bandwidth, w.
The bandwidth determines how many observations are included in each band and hence has a great amount
of influence on the shape of the calculated kernel density. While there are a number of methods to
calculate the bandwidth, an “optimal” bandwidth can be calculated as well; see Tapia and Thompson
(1978) or Fox (1990) for discussions.

2.2 Potential Disclosure Risks

Kernel density estimators are useful and simple ways of illustrating cross-sections of data in a non-
parametric way. Inthisway, they are of great benefit to users of confidential microdata. At the same time,
since they are “non-traditional” statistical estimators, they present different sorts of risks when thinking
about protecting the confidentiality of respondent information. This section briefly outlines those risks and
in the next section, we illustrate those risks using non-confidential data that have the same properties and
structure as some of the data housed at the U.S. Census Bureau's Center for Economic Studies and its
Research Data Centers.

Generally, we think that kernel density estimators present potential disclosure problems in two very related
ways. First, kernel density estimators present a potential risk when there are a small number of extreme
values in the dataset. As will be shown, the calculated support of the kernel density estimator sometimes
very closely approximates the true support of the empirical distribution—at one or both ends of the
distribution. Second, and somewhat related to the first concern, choosing a small bandwidth (whether
chosen optimally or not) tends to make more individual observations directly observable (particularly
observations in the tails of the empirical distribution) and also tends to force the calculated support of the
kernel density estimator to approximate closely the true support of the empirical distribution.

3. ILLUSTRATING DISCLOSURE RISKSIN KERNEL DENSITY
ESTIMATORS

3.1 TheData

Before illustrating the two potential disclosure risks we associate with kernel density estimators, we
describe the data used to illustrate them. We use a unique microdata set that contains the statistical
universe of coal mining establishments in the U.S. in 1996. These data are collected under the regulatory
and oversight authority of the U.S. Mine Safety and Health Administration and contain mine-level
responses on quarterly employment, hours worked, and short tons of coa produced—among other things.
To be sure, though these data are establishment level, they are not confidential. See Merrell (1999, 2000)
and Dunne and Merrell (2001) for detailed descriptions of the data.

” For that matter, the kernel function is of little consequence in the performance of disclosure analysis as
well. We do, however, mention a case below where the kernel function is a material component of the
disclosure protection process. However, from a general standpoint, it is of little consequence when
thinking about disclosure analysis.



A main benefit of these data for our purposes is that they have a similar file structure and similar statistical
properties as data collected by the U.S. Census Bureau that are confidential. For example, the U.S. Census
of Manufactures (a data set that is confidential under U.S. statutes) has establishment-level information on
essentially the same variables (and then some) but the distributions of, say, size (measured by employment)
are highly skewed. This prevents the creation of a public use dataset on manufacturing and would also
present us from illustrating the problems with non-traditional estimators using these sorts of data. On the
other hand, the coal mining data have the same sort of skew in the size distributions, but since these data
are not confidential under U.S. statutes, we can use them as a substitute for manufacturing data and
illustrate our concerns and solutions for non-traditional statistical outputs—like kernel density estimators.

Toillustrate potential disclosure problems with kernel density estimators, we calculate the employment size
distribution of minesin 1996. Employment at a mine in 1996 is measured as the mean number of workers
per year (averaged over quarters). There are 1,328 mines determined as “active” in 1996; again, see
Merrell (1999) for details. The largest mine had 840.75 workers, and the smallest mine had 0.5 workers.®

Figure 1 shows the kernel density estimate for these mines. To be sure, the kernel function is of the
Epanechnikov type, and the band width is calculated as follows:

m=[\/var(x>,%]

0.9m
W =

1/5
n

where x is an observation, IQR(X) is the inter-quartile range of x, and n is the sasmple size. This is the
default method of calculating bandwidth using the Stata econometric package. See “Stata 7, Reference H-
P.”

Figure 1 presentsthis kernel density estimate. There are afew thingsto note. First, and most generaly, the
kernel density estimate is a very clear (and hence, high quality) description of the employment size
distribution of coal mining establishmentsin 1996. Second, and more specifically, note that the mass of the
distribution resides at the lower end of the density. Third, there is a very long tail at the upper end of the
kernel density estimate resulting from the presence of a single very large minein 1996. Finally, within that
long tail there are afew larger but less extreme sizes of mines; these are shown by the small “humps’ in the
long tail of the density estimate. These mines in the upper end of the kernel density estimate present us
with a potential disclosure problem associated with this type of non-traditional statistical output.
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Figure 1. Kernel Density Estimate of Employment Size in 1996 (Default Bandwidth)

8 Below, these values are referred to as the “true” maximum and minimum val ues.



3.2 Problems with Extreme Values and Possible Solutions

While it is true that the kernel density estimator provides a very clear, concise, and simple estimate of the
distribution of employment size, it does so at the risk of disclosing respondent information—again,
representing a tension between providing high quality statistical estimates and the requirement of protecting
respondent information. Refer again to Figure 1 and specifically to the extreme values in the upper tail.
Thereisasingle minethat is very large relative to most mines, and the kernel density estimate for that mine
size is 847.36 workers. Note that the true maximum value (viz., the actual size of the largest mine) is
840.75 workers. These values are extremely close; in fact, the calculated value is within one percent of the
true value.

In most scenarios, this would be considered a disclosure violation for two reasons. First, reporting the true
maximum value is the same as identifying an individual establishment—rather than an estimate of the size
of that establishment. Second, because the kernel density estimate is virtually the same as the true
maximum value, typical disclosure protocols would prevent its release.’
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Figure 2a. Kernel Density Estimate, w=50 Figure 2b. Kernel Density Estimate, w=500
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Figure 2c. Kernel Density Estimate, w=5,000 Figure 2d. Kernel Density Estimate, w=50,000

° While it is true that there are observable small “spikes’ between the mass of the distribution and its
extreme values, it is unlikely that those mines would be as easily identified (if at all) as the most extremely
valued establishment; whether they are identifiable depends on the context. Hence, they are likely to be of
lesser concern relative to the maximum or largest observation—at least in the context of disclosure
analysis.



So, how do we resolve the tension between the need for high quality statistical estimates obtained using
kernel density estimators with the requirement of maintaining the confidentiality of respondent
information? One solution comes from the properties of the kernel density estimate itself. That is, we know
that the choice of the value of the bandwidth determines fundamentally how smooth the density estimate
will appear. The idea is that choosing a broader bandwidth should place less emphasis on any one
individual observation—viz., that the kernel function will place a smaller weight on that extreme
observation since it now lies even further from the center of a now larger band.  This has the effect of
masking the true value of the maximum observation by increasing the range of the calculated support of the
density estimate.

Consider Figures 2a, 2b, 2¢, and 2d. These figures adjust (manually) the width of the bands used to
estimate the kernel density. Figure 2a sets the bandwidth at 50, and for the remaining three figures, the
bandwidth is increased one order of magnitude over the previous one. The effects are clear. First, the
distribution becomes more and more smooth. Second, and more importantly for present purposes, the
calculated support on the distribution increases from 847.36 workers in Figure 1 to 890.75 workers in
Figure 2a to 50,840.8 workers in Figure 2d."° The result of this exercise is that the true maximum value
(recall that this is 840.75 workers) is substantially different than the calculated value as the bandwidth
grows larger and larger. When the bandwidth is set to 50, the true value is within six percent of the
calculated value (versus one percent with the default bandwidth in Figure 1). As the bandwidth gets larger,
the cal culated value at the upper extreme diverges from the true value.™*

So, it would appear from a purely technical standpoint that the solution to dealing with extreme values
would be to set a larger bandwidth; this would force a divergence between the true values of the extreme
observations and the calculated values obtained from the kernel density estimator. While this is true, it
comes at the cost of losing detail (and hence quality) in the estimate. Comparing across Figures 1 and 2a-
2d, it is clear that the distribution goes from showing a reasonable amount of detail in the size distribution
of coal mines to showing no detail at all—especialy when the bandwidth exceeds the total sample size.
The power of the kernel density estimator to describe cross-sectional size distributions is eliminated as the
bandwidth is set larger and larger.™

3.3 Problemswith Small Bandwidths and Possible Solutions

The second general concern with kernel density estimators is setting the bandwidth “too small”—which can
happen even when choosing the “optimal” bandwidth. While a larger bandwidth tends to smooth the
distribution and can “over-smooth” it, the opposite is true as well: smaller bandwidths tend to show more
detail or, from a disclosure protection perspective, to “under-smooth” it. The effect is to make more
observations individually observable at both the lower and upper extremes of the distribution.
Additionally, the calculated support of the kernel density estimate tends to approximate closely the true
values of the empirical distribution at the extremes.

19 Clearly, Figures 2c and 2d have little meaning since the bandwidth is larger than the total number of
observations available. That is, all observations are used in calculating the kernel density estimate at each
point. Hence, all observations will fall within the calculated support in both of these cases.

" Though it is less consequential at this point, a similar effect occurs at the lower extreme of the
distribution. That is, the calculated value of the lower extreme quickly becomes substantially different
from the true value.

12 Another potential disclosure risk (that we save for discussion until Section 4) pertains to the scales on the
horizontal axis. Note that if one subtracts the bandwidth (assuming arguendo that it is known) from the
maximum value labeled in the plot, one gets very close to the actual value, and in some cases, one might be
able to obtain the exact value of the true maximum. (We thank Randy Becker and Kristen McCue for
pointing this out to us.) As will be discussed later in this paper, our policy for dealing with this potential
disclosure risk is to suppress the labeling on the horizontal axis on any graphical depiction of the kernel
density estimate.



To illustrate, consider Figures 3a, 3b, 3c, and 3d. These figures reduce (manually) the bandwidth from the
default in Figure 1 downward toward zero. The effects are clear. First, comparing across all figures, one
will note that there is more and more detail revealed in the upper tail of the kernel density estimate. That is,
there are more “spikes’ in the upper tail—meaning that more larger coal mining establishments are being

revealed as the bandwidth declines—not surprisingly.

The second feature to note is the calculated values of the kernel density estimate at both the larger and the
smaller extremes. At the upper end, the calculated value of the maximum with the default in Figure 1 is
847.36 workers and is 845.75 workers when w=>5, 841.75 workers when w=1, and 841.25 workers when
w=0.5. Clearly, asthe bandwidth declines, the calcul ated value approximates the true value more closely.™
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w=0.5

At the lower end of the kernel density estimate, a similar result appears. the calculated minimum value
tends toward the actual minimum value. Notice that in Figure 1, the calculated minimum value is —6.11
workers—a value substantially different than the true value of 0.5 workers. However, as the bandwidth is
set at smaller and smaller values (cf., Figures 3b-3d), the calculated minimum moves closer to the actual
minimum. So, in the case where the bandwidth is set “too small,” not only is more detail revealed about
more establishments in the upper end of the distribution but also both the minimum and maximum
calculated extreme values are more closely approximating the true maximum and minimum values. Again,

3 Note that when the bandwidth is set to ten (Figure 3a), the upper and lower ends of the kernel density
estimate grow larger than in Figure 1. This suggests that the “optimal” bandwidth as calculated above is

less than ten—in this example.



the revelation of more detail about establishments in the upper tail and the more close approximation of the
calculated support to the true empirical support are likely to be viewed as disclosure violations.

So, while it is the case that larger bandwidths tend to “over-smooth” the kernel densities, smaller
bandwidths tend to present potential disclosure issues not only with presenting more information about
larger values (in the sense of identifying more detail in the upper tail and the calculated maximum closely
approximating the true maximum) but also with presenting more information about smaller values (in the
sense of the calculated minimum closely approximating the true minimum). So, it would seem that from a
simple perspective, the solution to smaller bandwidths would be to choose larger ones—the same solution
as presented in Section 3.2. Again, the cost of doing so is to reduce the descriptive power and hence the
quality of the kernel density estimator.

3.4 Synthesis

In both Sections 3.2 and 3.3, we argue that the selection of the bandwidth is a material factor in preventing
the disclosure of respondent information when using kernel density estimators. In the case of extreme
values, those can be masked by choosing a larger bandwidth, and in the case of small bandwidths, again,
extreme values can be masked with choosing a larger bandwidth. The cost in both cases would be to
reduce the quality of the estimate since the calculated support of the kernel density increases substantially
in the choice of the bandwidth. Additionally, there is no objective way to set a bandwidth that both
preserves the quality of the estimate and at the same time mitigates the risk of identifying the information
of a given respondent—whether extremely large or extremely small.

One final solution, perhaps, would be to alow estimates of size distributions based on categorical
information. That is, one could divide the number observations into categories of employment size and
plot the frequency of their occurrence—to generate a simple histogram (a special type of kernel density
estimator). Clearly, this solution is the most restrictive of all possibilities since it would proscribe the use
of avery simple, yet powerful (viz., high quality) method of describing cross-sections—especially since
there are methods (albeit subjective methods) for controlling potential disclosure risks.

4. CURRENT PRACTICESAT THE U.S. CENSUSBUREAU’'SCENTER
FOR ECONOMIC STUDIES

While we admit that kernel density estimators pose potential disclosure problems, we feel that their ability
to present high quality estimates should compel disclosure analysts to devise methods of controlling those
potential risks. In this section we discuss current practices at the U.S. Census Bureau's Center for
Economic Studies and its Research Data Centers as they pertain to the disclosure analysis associated with
kernel density estimators. We feel that these practices, though certainly subjective, balance the need to
produce high quality statistical estimates against the concomitant need to maintain the confidentiality of
respondent information.

The first step in disclosure analysis on kernel density estimators is that we test whatever sample of
establishments or people using established statistical non-disclosure protocols. That is, for establishments,
we (generally) examine the number of firms and the predominance of larger firms (based on real sales,
employment, or whatever other measure might be available and appropriate). For data on people, we
examine the number of respondents in each data cell. In either case (viz., for establishments or people), we
compare calculated cell characteristics against a specified minimum; see Merrell and Reznek (2001) for a
discussion of these rules. In order for a given kernel density estimate to clear disclosure analysis, these
rules must be satisfied entirely.

Once it is determined that the overall sample underlying a given kernel density estimate satisfies
established statistical non-disclosure protocols, we typically apply another condition that we think mitigates
the concerns outlined in Section 3. That is, as a matter of general practice, we require that researchers
suppress the scale on any graphical depiction of the kernel density estimate. By doing that, we effectively



can ignore the problems of bandwidths that are small enough to heighten the risk of identifying either
extremely large or small observations as demonstrated above and as discussed in Footnote 12.

Additionally, as a matter of policy, we only allow the release of graphical depictions of kernel density
estimators, we never allow the point estimates themselves to be released. Consider the case where the
point estimates (viz., the calculated values) were released. In this case, al one would need to know to
recover the true values of individual respondent information are the kernel function and the bandwidth.
With those two pieces of information, one would be able to reconstruct the true dataset—a clear, first order
violation of non-disclosure policy. Further, the ease with which this could be accomplished is dight; all
one would need to do is use standard spreadsheet software to recover the true respondent information.”> A
simple examination of the kernel density estimator formula shows this; refer to the equation above.

Finally, we take a rather conservative approach when dealing with non-traditional statistical outputs. In
such, we spend agood deal of effort seeking the counsel of alarge number of disclosure analysts. We hope
that by doing so, we can not only come to some consensus when dealing with these more innovative, high
quality statistical techniques but also to make whatever efforts are possible to eliminate the risks of primary
and secondary disclosure. When there is some doubt or lack of understanding, we consult the U.S. Census
Bureau’ s Disclosure Review Board for their collective input.

5. CONCLUSION

A recurring dilemma faced by statistical agencies that allow access to confidential microdata is the need to
produce and promote the production of high quality statistical estimates while at the same time maintaining
strict standards of confidentiality and statistical non-disclosure. As the state of the art in producing such
estimates advances, so must our thinking about disclosure analysis and policy. This paper presents one of
potentially many other types of estimators that produce both high quality statistical estimates and also new
risks of disclosing respondent information.

We present a simple example using a unique dataset that has very similar distributional properties of non-
public establishment data like the Census of Manufactures. We show that the risk of disclosing respondent
information is materialy dependent on the choice of the bandwidth when producing kernel density
estimates. |If the bandwidth is selected to be “too small” (whether chosen according to some “optimal”
condition or selected manually), there isthe risk of identifying more individual observations in the high end
of kernel density, and there is also a very strong risk of identifying the true maximum and minimum values
as the calculated support of the kernel density function tends to approximate closely the true support of the
empirical distribution. On other hand, choosing larger and larger bandwidths to mask the identities of
small and/or large extreme observations sacrifices the clarity of the statistical technique to produce simple
yet meaningful descriptions of cross-sections.

Unfortunately, we have only been able to find subjective solutions to this problem. We apply traditional
non-disclosure protocols to samples used to calculate the kernel density estimates, and once those criteria
have been satisfied, we then require that scales on graphical depictions of the kernel density estimate be
suppressed.  In this way, we are able to eliminate the ability of the estimator to identify respondent
information, but we do so at the cost of reducing the explanatory power of the estimate. Further, as a
matter of policy, we only allow the release of graphical depictions of the kernel density estimator since the
point estimates themselves, combined with knowledge about the type of the kernel function and the
bandwidth, can be used to recover the true values of individual respondents.

In short, as the ability to produce innovative and high quality estimates takes statistical agencies into the
future, we must allow our thinking about disclosure analysisto evolve as well. We must be able to balance
the need for high quality, meaningful estimates against the also fundamental need to protect respondent

1 This particular requirement often meets with considerable resistance from the users of confidential
mircodata
> We thank Timothy Dunne for suggesting that we consider this point.



information. The case of kernel density estimates presents an interesting case in the sense that they are
simple yet powerful descriptions of cross-sections, but they present new disclosure risks that traditional
disclosure limitation techniques may not by themselves be adequate to address. We use this example to
illustrate both the dilemma that is faced more and more frequently by statistical agencies that grant
restricted access to confidential microdata and also possible solutionsto that dilemma.
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