Analyses

La COVID-19 sous l'angle des données

La COVID-19 : sous l'angle des données: Explorer les tendances économiques clés et les principaux défis sociaux au fur et à mesure que la situation COVID-19 évolue.

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Année de publication

1 facets displayed. 1 facets selected.

Auteur(s)

2 facets displayed. 1 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (1)

Tout (1) ((1 résultat))

  • Articles et rapports : 12-001-X199400114433
    Description :

    L’imputation est une méthode dont se servent couramment les organismes d’enquête afin de corriger le problème posé par la non-réponse à des questions particulières. Bien que dans la plupart des cas, les ensembles de données ainsi complétés offrent de bonnes estimations des moyennes et des totaux, les variances correspondantes, souvent, sont largement sous-estimées. Plusieurs méthodes permettent de remédier à ce problème, mais la plupart dépendent du plan d’échantillonnage et de la méthode d’imputation. Récemment, Rao (1992) et Rao et Shao (1992) ont proposé une méthode jackknife unifiée pour l’estimation de la variance d’ensembles de données ayant fait l’objet d’une imputation. Le présent article évalue cette technique de manière empirique, au moyen d’une population réelle d’entreprises, et selon un plan d’échantillonnage aléatoire simple et un mécanisme de non-réponse uniforme. La possibilité d’étendre cette méthode à des plans d’échantillonnage stratifié à plusieurs degrés est examinée, et l’on se penche brièvement sur la performance de l’estimateur de la variance proposé dans le cas de mécanismes de réponse qui ne sont pas uniformes.

    Date de diffusion : 1994-06-15
Stats en bref (0)

Stats en bref (0) (0 résultat)

Aucun contenu disponible actuellement

Articles et rapports (1)

Articles et rapports (1) ((1 résultat))

  • Articles et rapports : 12-001-X199400114433
    Description :

    L’imputation est une méthode dont se servent couramment les organismes d’enquête afin de corriger le problème posé par la non-réponse à des questions particulières. Bien que dans la plupart des cas, les ensembles de données ainsi complétés offrent de bonnes estimations des moyennes et des totaux, les variances correspondantes, souvent, sont largement sous-estimées. Plusieurs méthodes permettent de remédier à ce problème, mais la plupart dépendent du plan d’échantillonnage et de la méthode d’imputation. Récemment, Rao (1992) et Rao et Shao (1992) ont proposé une méthode jackknife unifiée pour l’estimation de la variance d’ensembles de données ayant fait l’objet d’une imputation. Le présent article évalue cette technique de manière empirique, au moyen d’une population réelle d’entreprises, et selon un plan d’échantillonnage aléatoire simple et un mécanisme de non-réponse uniforme. La possibilité d’étendre cette méthode à des plans d’échantillonnage stratifié à plusieurs degrés est examinée, et l’on se penche brièvement sur la performance de l’estimateur de la variance proposé dans le cas de mécanismes de réponse qui ne sont pas uniformes.

    Date de diffusion : 1994-06-15
Revues et périodiques (0)

Revues et périodiques (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :