Analyses

Un siècle marqué par la confiance, la sécurité, les faits

Centre de confiance de Statistique Canada : Découvrez comment Statistique Canada veille à la protection de vos données et de vos renseignements personnels.

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Année de publication

2 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (2)

Tout (2) ((2 résultats))

  • Articles et rapports : 12-001-X201900100008
    Description :

    Le présent document étudie l’estimation de quantiles sur petits domaines selon un modèle de régression non paramétrique à erreurs emboîtées au niveau de l’unité. Nous supposons que les distributions des erreurs spécifiques sur petits domaines satisfont un modèle du rapport de densité semi-paramétrique. Nous ajustons le modèle non paramétrique à l’aide de la méthode par régression spline pénalisé d’Opsomer, Claeskens, Ranalli, Kauermann et Breidt (2008). Nous appliquons ensuite la vraisemblance empirique pour estimer les paramètres dans le modèle du rapport de densité à partir des résidus. Cela donne des estimations propres au domaine naturelles des distributions des erreurs. Puis, nous employons une méthode des noyaux pour obtenir des estimations lissées des distributions des erreurs. Ces estimations sont alors utilisées pour faire une estimation de quantiles dans deux situations : dans l’une d’elles, nous ne connaissons que les moyennes de puissances des covariables au niveau de la population; dans l’autre, nous connaissons les valeurs des covariables de toutes les unités d’échantillonnage dans la population. Selon des expériences de simulation, les méthodes proposées pour l’estimation des quantiles sur petits domaines fonctionnent bien pour des quantiles situés près de la médiane dans le premier cas et pour un large éventail de quantiles dans le second. Un estimateur de l’erreur quadratique moyenne bootstrap des estimateurs proposés est également examiné. Un exemple empirique fondé sur les données sur les revenus des Canadiens en fait partie.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201300211871
    Description :

    Les modèles de régression sont utilisés couramment pour analyser les données d'enquête lorsque l'on souhaite déterminer quels sont les facteurs influents associés à certains indices comportementaux, sociaux ou économiques au sein d'une population cible. Lorsque des données sont recueillies au moyen d'enquêtes complexes, il convient de réexaminer les propriétés des approches classiques de sélection des variables élaborées dans des conditions i.i.d. ne faisant pas appel au sondage. Dans le présent article, nous dérivons un critère BIC fondé sur la pseudovraisemblance pour la sélection des variables dans l'analyse des données d'enquête et proposons une approche de vraisemblance pénalisée dans des conditions de sondage pour sa mise en oeuvre. Les poids de sondage sont attribués comme il convient pour corriger le biais de sélection causé par la distorsion entre l'échantillon et la population cible. Dans un cadre de randomisation conjointe, nous établissons la cohérence de la procédure de sélection proposée. Les propriétés en échantillon fini de l'approche sont évaluées par des analyses et des simulations informatiques en se servant de données provenant de la composante de l'hypertension de l'Enquête sur les personnes ayant une maladie chronique au Canada de 2009.

    Date de diffusion : 2014-01-15
Stats en bref (0)

Stats en bref (0) (0 résultat)

Aucun contenu disponible actuellement

Articles et rapports (2)

Articles et rapports (2) ((2 résultats))

  • Articles et rapports : 12-001-X201900100008
    Description :

    Le présent document étudie l’estimation de quantiles sur petits domaines selon un modèle de régression non paramétrique à erreurs emboîtées au niveau de l’unité. Nous supposons que les distributions des erreurs spécifiques sur petits domaines satisfont un modèle du rapport de densité semi-paramétrique. Nous ajustons le modèle non paramétrique à l’aide de la méthode par régression spline pénalisé d’Opsomer, Claeskens, Ranalli, Kauermann et Breidt (2008). Nous appliquons ensuite la vraisemblance empirique pour estimer les paramètres dans le modèle du rapport de densité à partir des résidus. Cela donne des estimations propres au domaine naturelles des distributions des erreurs. Puis, nous employons une méthode des noyaux pour obtenir des estimations lissées des distributions des erreurs. Ces estimations sont alors utilisées pour faire une estimation de quantiles dans deux situations : dans l’une d’elles, nous ne connaissons que les moyennes de puissances des covariables au niveau de la population; dans l’autre, nous connaissons les valeurs des covariables de toutes les unités d’échantillonnage dans la population. Selon des expériences de simulation, les méthodes proposées pour l’estimation des quantiles sur petits domaines fonctionnent bien pour des quantiles situés près de la médiane dans le premier cas et pour un large éventail de quantiles dans le second. Un estimateur de l’erreur quadratique moyenne bootstrap des estimateurs proposés est également examiné. Un exemple empirique fondé sur les données sur les revenus des Canadiens en fait partie.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201300211871
    Description :

    Les modèles de régression sont utilisés couramment pour analyser les données d'enquête lorsque l'on souhaite déterminer quels sont les facteurs influents associés à certains indices comportementaux, sociaux ou économiques au sein d'une population cible. Lorsque des données sont recueillies au moyen d'enquêtes complexes, il convient de réexaminer les propriétés des approches classiques de sélection des variables élaborées dans des conditions i.i.d. ne faisant pas appel au sondage. Dans le présent article, nous dérivons un critère BIC fondé sur la pseudovraisemblance pour la sélection des variables dans l'analyse des données d'enquête et proposons une approche de vraisemblance pénalisée dans des conditions de sondage pour sa mise en oeuvre. Les poids de sondage sont attribués comme il convient pour corriger le biais de sélection causé par la distorsion entre l'échantillon et la population cible. Dans un cadre de randomisation conjointe, nous établissons la cohérence de la procédure de sélection proposée. Les propriétés en échantillon fini de l'approche sont évaluées par des analyses et des simulations informatiques en se servant de données provenant de la composante de l'hypertension de l'Enquête sur les personnes ayant une maladie chronique au Canada de 2009.

    Date de diffusion : 2014-01-15
Revues et périodiques (0)

Revues et périodiques (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :