Pondération et estimation

Aide à l'ordre

Résultats

Tout (44)

Tout (44) (0 à 10 de 44 résultats)

  • Articles et rapports : 12-001-X201800154925
    Description :

    Le présent article traite de l’inférence statistique sous un modèle de superpopulation en population finie quand on utilise des échantillons obtenus par échantillonnage d’ensembles ordonnés (EEO). Les échantillons sont construits sans remise. Nous montrons que la moyenne d’échantillon sous EEO est sans biais par rapport au modèle et présente une plus petite erreur de prédiction quadratique moyenne (EPQM) que la moyenne sous échantillonnage aléatoire simple (EAS). Partant d’un estimateur sans biais de l’EPQM, nous construisons aussi un intervalle de confiance de prédiction pour la moyenne de population. Une étude en simulation à petite échelle montre que cet estimateur est aussi bon qu’un estimateur sur échantillon aléatoire simple (EAS) quand l’information pour le classement est de qualité médiocre. Par ailleurs, cet estimateur est plus efficace que l’estimateur EAS quand la qualité de l’information de classement est bonne et que le ratio des coûts de l’obtention d’une unité sous EEO et sous EAS n’est pas très élevé. L’étude en simulation indique aussi que les probabilités de couverture des intervalles de prédiction sont très proches des probabilités de couverture nominales. La procédure d’inférence proposée est appliquée à un ensemble de données réel.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154959
    Description :

    Les modèles pour petits domaines conçus pour traiter les données au niveau du domaine reposent habituellement sur l’hypothèse de normalité des effets aléatoires. Cette hypothèse ne tient pas toujours. L’article présente un nouveau modèle pour petits domaines dont les effets aléatoires suivent une loi t. En outre, la modélisation conjointe des moyennes et des variances de petit domaine est examinée. Il est montré que cette approche donne de meilleurs résultats que les autres méthodes.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154963
    Description :

    Le cadre fondé sur l’échantillonnage probabiliste a joué un rôle dominant en recherche par sondage, parce qu’il fournit des outils mathématiques précis pour évaluer la variabilité d’échantillonnage. Toutefois, en raison de la hausse des coûts et de la baisse des taux de réponse, l’usage d’échantillons non probabilistes s’accroît, particulièrement dans le cas de populations générales, pour lesquelles le tirage d’échantillons à partir d’enquêtes en ligne devient de plus en plus économique et facile. Cependant, les échantillons non probabilistes posent un risque de biais de sélection dû à des différences d’accès et de degrés d’intérêt, ainsi qu’à d’autres facteurs. Le calage sur des totaux statistiques connus dans la population offre un moyen de réduire éventuellement l’effet du biais de sélection dans les échantillons non probabilistes. Ici, nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif peut donner un estimateur convergent d’un total de population à condition qu’un sous-ensemble des variables explicatives réelles soit inclus dans le modèle de prédiction, permettant ainsi qu’un grand nombre de covariables possibles soit incluses sans risque de surajustement. Nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif produit une meilleure estimation, pour ce qui est de l’erreur quadratique moyenne, que les méthodes concurrentes classiques, tels les estimateurs par la régression généralisée (GREG), quand un grand nombre de covariables sont nécessaires pour déterminer le modèle réel, sans vraiment qu’il y ait perte d’efficacité par rapport à la méthode GREG quand de plus petits modèles suffisent. Nous obtenons aussi des formules analytiques pour les estimateurs de variance des totaux de population, et comparons le comportement de ces estimateurs aux estimateurs bootstrap. Nous concluons par un exemple réel en utilisant des données provenant de la National Health Interview Survey.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 11-626-X2017077
    Description :

    Le 13 avril 2017, le gouvernement du Canada a déposé le projet de loi de légalisation de la consommation récréative du cannabis pour les adultes. Cette décision aura une incidence directe sur le système statistique du Canada. Cet article d’Aperçus économiques vise à fournir des estimations expérimentales du volume de la consommation de cannabis, en se fondant sur des renseignements existants relatifs à la prévalence de la consommation de cannabis. Cet article présente les estimations expérimentales du nombre de tonnes de cannabis consommé par tranche d’âge au cours de la période allant de 1960 à 2015. Ces estimations expérimentales se fondent sur des données d’enquête de plusieurs sources, de techniques statistiques permettant de coupler les sources au cours du temps, et d’hypothèses relatives au comportement de consommation. Elles pourront faire l’objet de révisions à mesure que des sources de données améliorées ou supplémentaires deviennent disponibles.

    Date de diffusion : 2017-12-18

  • Articles et rapports : 12-001-X201700114819
    Description :

    La modélisation de séries chronologiques structurelle est une puissante technique de réduction des variances pour les estimations sur petits domaines (EPD) reposant sur des enquêtes répétées. Le bureau central de la statistique des Pays-Bas utilise un modèle de séries chronologiques structurel pour la production des chiffres mensuels de l’Enquête sur la population active (EPA) des Pays-Bas. Cependant, ce type de modèle renferme des hyperparamètres inconnus qui doivent être estimés avant que le filtre de Kalman ne puisse être appliqué pour estimer les variables d’état du modèle. Le présent article décrit une simulation visant à étudier les propriétés des estimateurs des hyperparamètres de tels modèles. La simulation des distributions de ces estimateurs selon différentes spécifications de modèle viennent compléter les diagnostics types pour les modèles espace-état. Une autre grande question est celle de l’incertitude entourant les hyperparamètres du modèle. Pour tenir compte de cette incertitude dans les estimations d’erreurs quadratiques moyennes (EQM) de l’EPA, différents modes d’estimation sont pris en compte dans une simulation. En plus de comparer les biais EQM, cet article examine les variances et les EQM des estimateurs EQM envisagés.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201700114823
    Description :

    L’obtention d’estimateurs dans un processus de calage à plusieurs phases requiert le calcul séquentiel des estimateurs et des poids calés des phases antérieures afin d’obtenir ceux de phases ultérieures. Déjà après deux phases de calage, les estimateurs et leurs variances comprennent des facteurs de calage provenant des deux phases, et les formules deviennent lourdes et non informatives. Par conséquent, les études publiées jusqu’à présent traitent principalement du calage à deux phases, tandis que le calage à trois phases ou plus est rarement envisagé. Dans certains cas, l’analyse s’applique à un plan de sondage particulier et aucune méthodologie complète n’est élaborée pour la construction d’estimateurs calés ni, tâche plus difficile, pour l’estimation de leur variance en trois phases ou plus. Nous fournissons une expression explicite pour calculer la variance d’estimateurs calés en plusieurs phases qui tient pour n’importe quel nombre de phases. En spécifiant une nouvelle représentation des poids calés en plusieurs phases, il est possible de construire des estimateurs calés qui ont la forme d’estimateurs par la régression multivariée, ce qui permet de calculer un estimateur convergent de leur variance. Ce nouvel estimateur de variance est non seulement général pour tout nombre de phases, mais possède aussi certaines caractéristiques favorables. Nous présentons une comparaison à d’autres estimateurs dans le cas particulier du calage à deux phases, ainsi qu’une étude indépendante pour le cas à trois phases.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214660
    Description :

    Dans le cadre d’une enquête économique auprès d’un échantillon d’entreprises, on sélectionne au hasard des professions dans une liste jusqu’à ce que l’on identifie un nombre r de professions présentes dans une unité locale. Il s’agit d’un problème d’échantillonnage inverse pour lequel nous proposons quelques solutions. Les plans simples avec et sans remise se traitent au moyen des distributions binomiale négative et hypergéométrique négative. On propose également des estimateurs pour le cas où les unités sont sélectionnées à probabilités inégales avec ou sans remise.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214663
    Description :

    Nous présentons des preuves théoriques que les efforts déployés durant la collecte des données en vue d’équilibrer la réponse à l’enquête en ce qui concerne certaines variables auxiliaires augmentera les chances que le biais de non-réponse soit faible dans les estimations qui sont, en fin de compte, produites par pondération calée. Nous montrons que la variance du biais – mesurée ici comme étant l’écart de l’estimateur calé par rapport à l’estimateur sans biais sur échantillon complet (non réalisé) – diminue linéairement en fonction du déséquilibre de la réponse que nous supposons être mesuré et contrôlé continuellement tout au long de la période de collecte des données. Cela offre donc la perspective intéressante d’un plus faible risque de biais si l’on peut gérer la collecte des données de manière à réduire le déséquilibre. Les résultats théoriques sont validés au moyen d’une étude en simulation s’appuyant sur des données réelles provenant d’une enquête-ménages estonienne.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214664
    Description :

    Le présent article traite de l’inférence statistique de la moyenne d’une population finie fondée sur des échantillons poststratifiés par choix raisonné (PCR). L’échantillon PCR s’obtient en sélectionnant d’abord un échantillon aléatoire simple, puis en stratifiant les unités sélectionnées en H classes créées par choix raisonné en se basant sur les positions relatives (rangs) des unités dans un petit ensemble de taille H. Cela donne un échantillon présentant des tailles d’échantillon aléatoires dans les classes créées par choix raisonné. Le processus de classement peut être effectué en se servant de variables auxiliaires ou par inspection visuelle afin de déterminer les rangs des observations mesurées. L’article décrit l’élaboration d’un estimateur sans biais et la construction d’un intervalle de confiance pour la moyenne de population. Puisque les rangs déterminés par choix raisonné sont des variables aléatoires, en conditionnant sur les observations mesurées, nous construisons des estimateurs Rao-Blackwellisés de la moyenne de population. Nous montrons que les estimateurs Rao-Blackwellisés donnent de meilleurs résultats que les estimateurs PCR habituels. Les estimateurs proposés sont appliqués aux données du recensement de 2012 du United States Department of Agriculture.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214677
    Description :

    Comment savoir si les ajustements de la pondération réduisent ou non le biais de non-réponse ? Si une variable est mesurée pour toutes les unités de l’échantillon sélectionné, on peut calculer une estimation approximativement sans biais de la moyenne ou du total de population pour cette variable en se servant des poids de sondage. Une seconde estimation de la moyenne ou du total de population peut être obtenue en se basant uniquement sur les répondants à l’enquête et en utilisant des poids ajustés pour tenir compte de la non-réponse. Si les deux estimations ne concordent pas, il y a des raisons de penser que les ajustements des poids n’ont peut-être pas éliminé le biais de non-réponse pour la variable en question. Dans le présent article, nous développons les propriétés théoriques des estimateurs de variance par linéarisation et par jackknife en vue d’évaluer le biais d’une estimation de la moyenne ou du total de population par comparaison des estimations obtenues pour des sous-ensembles chevauchants des mêmes données avec différents ensembles de poids, quand la poststratification ou la pondération par l’inverse de la propension à répondre servent à ajuster les poids pour tenir compte de la non-réponse. Nous donnons les conditions suffisantes sur la population, l’échantillon et le mécanisme de réponse pour que les estimateurs de variance soient convergents, et démontrons les propriétés de ces derniers pour un petit échantillon au moyen d’une étude par simulation.

    Date de diffusion : 2016-12-20
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (41)

Analyses (41) (20 à 30 de 41 résultats)

  • Articles et rapports : 12-001-X201500114172
    Description :

    Quand un échantillon aléatoire tiré d’une base liste complète souffre de non-réponse totale, on peut faire appel à la pondération par calage sur des totaux de population pour éliminer le biais de non-réponse sous un modèle hypothétique de réponse (sélection) ou de prédiction (résultat). De cette façon, la pondération par calage peut non seulement procurer une double protection contre le biais de non-réponse, mais aussi réduire la variance. En employant une astuce simple, on peut estimer simultanément la variance sous le modèle hypothétique de prédiction et l’erreur quadratique moyenne sous la combinaison du modèle hypothétique de réponse et du mécanisme d’échantillonnage probabiliste. Malheureusement, il existe une limite pratique aux types de modèle de réponse que l’on peut supposer lorsque les poids de sondage sont calés sur les totaux de population en une seule étape. En particulier, la fonction de réponse choisie ne peut pas toujours être logistique. Cette limite ne gêne pas la pondération par calage lorsqu’elle est effectuée en deux étapes : de l’échantillon de répondants à l’échantillon complet pour éliminer le biais de réponse, et puis de l’échantillon complet à la population pour réduire la variance. Des gains d’efficacité pourraient découler de l’utilisation de l’approche en deux étapes, même si les variables de calage employées à chaque étape représentent un sous-ensemble des variables de calage de l’approche en une seule étape. L’estimation simultanée de l’erreur quadratique moyenne par linéarisation est possible, mais plus compliquée que lorsque le calage est effectué en une seule étape.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114174
    Description :

    L’échantillonnage matriciel, aussi appelé échantillonnage avec questionnaire fractionné ou scindé, est un plan d’échantillonnage qui consiste à diviser un questionnaire en sous-ensembles de questions, éventuellement chevauchants, puis à administrer chaque sous-ensemble à un ou à plusieurs sous-échantillons aléatoires d’un échantillon initial. Ce type de plan, de plus en plus attrayant, répond aux préoccupations concernant les coûts de la collecte, le fardeau de réponse et la qualité des données, mais réduit le nombre d’unités échantillonnées auxquelles les questions sont posées. Un concept élargi du plan d’échantillonnage matriciel comprend l’intégration d’échantillons provenant d’enquêtes distinctes afin de rationaliser les opérations d’enquête et d’accroître la cohérence des données de sortie. Dans le cas de l’échantillonnage matriciel avec sous-ensembles chevauchants de questions, nous proposons une méthode d’estimation efficace qui exploite les corrélations entre les items étudiés dans les divers sous-échantillons afin d’améliorer la précision des estimations de l’enquête. La méthode proposée, fondée sur le principe de la meilleure estimation linéaire sans biais, produit des estimateurs par régression optimale composites des totaux de population en utilisant un scénario approprié de calage des poids d’échantillonnage de l’échantillon complet. Une variante de ce scénario de calage, d’usage plus général, produit des estimateurs par régression généralisée composites qui sont également très efficaces sur le plan des calculs.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114192
    Description :

    Nous nous intéressons à l’estimation linéaire optimale des moyennes pour des éditions subséquentes d’une enquête sous renouvellement de l’échantillon, où l’évolution temporelle des échantillons est conçue selon un schéma en cascade. Depuis la publication de l’article fondamental de Patterson (1950), on sait que, si les unités n’ont pas le droit de revenir dans l’échantillon après en être sorties pendant une certaine période (pas d’intervalles dans les schémas de renouvellement), la récursion en une étape tient pour l’estimateur optimal. Cependant, dans certaines enquêtes réelles importantes, par exemple, la Current Population Survey aux États-Unis ou l’Enquête sur la population active dans de nombreux pays européens, les unités reviennent dans l’échantillon après en avoir été absentes pendant plusieurs éditions de l’enquête (existence d’intervalles dans les schémas de renouvellement). Le cas échéant, la question de la forme de la récurrence pour l’estimateur optimal devient considérablement plus difficile. Ce problème n’a pas encore été résolu. On a plutôt élaboré des approches sous-optimales de rechange, comme l’estimation composite K (voir, par exemple, Hansen, Hurwitz, Nisselson et Steinberg (1955)), l’estimation composite AK (voir, par exemple, Gurney et Daly (1965)) ou l’approche des séries chronologiques (voir, par exemple, Binder et Hidiroglou (1988)).

    Dans le présent article, nous surmontons cette difficulté de longue date, autrement dit, nous présentons des formules de récurrence analytiques pour l’estimateur linéaire optimal de la moyenne pour des schémas de renouvellement contenant des intervalles. Ces formules sont obtenues sous certaines conditions techniques, à savoir l’HYPOTHÈSE I et l’HYPOTHÈSE II (des expériences numériques donnent à penser que ces hypothèses pourraient être universellement satisfaites). Pour atteindre l’objectif, nous élaborons une approche par opérateurs algébriques qui permet de réduire le problème de récursion pour l’estimateur linéaire optimal à deux questions : 1) la localisation des racines (éventuellement complexes) d’un polynôme Qp défini en fonction du schéma de renouvellement (le polynôme Qp s’exprime de façon pratique au moyen de polynômes de Tchebychev de la première espèce) et 2) le rang d’une matrice définie en fonction du schéma de renouvellement et des racines du polynôme Qp. En particulier, nous montrons que l’ordre de la récurrence est égal à un plus la taille de l’intervalle le plus grand dans le schéma de renouvellement. Nous donnons les formules exactes de calcul des coefficients de récurrence – naturellement, pour les utiliser il faut confirmer (dans de nombreux cas, numériquement) que les HYPOTHÈSES I et II sont satisfaites. Nous illustrons la solution à l’aide de plusieurs exemples de schémas de renouvellement tirés d’enquêtes réelles.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114199
    Description :

    Dans les enquêtes auprès des entreprises, il est courant de collecter des variables économiques dont la distribution est fortement asymétrique. Dans ce contexte, la winsorisation est fréquemment utilisée afin de traiter le problème des valeurs influentes. Cette technique requiert la détermination d’une constante qui correspond au seuil à partir duquel les grandes valeurs sont réduites. Dans cet article, nous considérons une méthode de détermination de la constante qui consiste à minimiser le plus grand biais conditionnel estimé de l’échantillon. Dans le contexte de l’estimation pour des domaines, nous proposons également une méthode permettant d’assurer la cohérence entre les estimations winsorisées calculées au niveau des domaines et l’estimation winsorisée calculée au niveau de la population. Les résultats de deux études par simulation suggèrent que les méthodes proposées conduisent à des estimateurs winsorisés ayant de bonnes propriétés en termes de biais et d’efficacité relative.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114200
    Description :

    Nous considérons la méthode de la meilleure prédiction observée (MPO; Jiang, Nguyen et Rao 2011) pour l’estimation sur petits domaines sous le modèle de régression à erreurs emboîtées, où les fonctions moyenne et variance peuvent toutes deux être spécifiées inexactement. Nous montrons au moyen d’une étude par simulation que la MPO peut donner de nettement meilleurs résultats que la méthode du meilleur prédicteur linéaire sans biais empirique (MPLSBE) non seulement en ce qui concerne l’erreur quadratique moyenne de prédiction (EQMP) globale, mais aussi l’EQMP au niveau du domaine pour chacun des petits domaines. Nous proposons, pour estimer l’EQMP au niveau du domaine basée sur le plan de sondage, une méthode du bootstrap simple qui produit toujours des estimations positives de l’EQMP. Nous évaluons les propriétés de l’estimateur de l’EQMP proposé au moyen d’une étude par simulation. Nous examinons une application à la Television School and Family Smoking Prevention and Cessation study.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-002-X201500114147
    Description :

    En régression logistique, les observations influentes sont celles qui ont un effet notable sur certains aspects de l’adéquation du modèle. Une grande taille d’échantillon ne permet pas, à elle seule, d’écarter cette préoccupation; il demeure important d’examiner les observations qui pourraient être influentes, surtout dans les données d’enquêtes complexes. Le présent article décrit un algorithme simple pour rechercher les observations influentes potentielles dans les données d’enquête complexes en utilisant le logiciel SAS. Cet algorithme a été appliqué dans le cadre d’une étude fondée sur des données de l’Enquête sur la santé dans les collectivités canadiennes de 2005 en vue de déterminer les facteurs associés à l’utilisation des services des médecins de famille par les adolescents.

    Date de diffusion : 2015-03-25

  • Articles et rapports : 15-206-X2015039
    Description :

    Le présent document fournit les estimations mises à jour des taux de dépréciation qu’il convient d’utiliser dans les Comptes canadiens de productivité pour calculer le stock de capital et le coût d’usage du capital. Les estimations sont dérivées des courbes de dépréciation établies pour un ensemble varié d’actifs en se basant sur les profils des prix de revente et des âges de mise hors service.

    La méthode du maximum de vraisemblance est appliquée pour estimer conjointement les variations de la valeur des actifs au cours de leur vie utile, ainsi que la nature du processus de mise hors service des actifs utilisés, afin de produire les taux de dépréciation. Cette méthode convient mieux que d’autres, car elle produit des estimations dont le biais est plus faible et l’efficacité, plus élevée.

    Les estimations antérieures, calculées pour la période allant de 1985 à 2001, sont comparées à celles obtenues pour la période la plus récente, allant de 2002 à 2010.

    Date de diffusion : 2015-01-26

  • Articles et rapports : 12-001-X201400214090
    Description :

    Lorsqu'on s'intéresse à une population finie, il arrive qu'il soit nécessaire de tirer des échantillons dans plusieurs bases de sondage pour représenter l'ensemble des individus. Nous nous intéressons ici au cas de deux échantillons sélectionnés selon un plan à deux degrés, avec un premier degré de tirage commun. Nous appliquons les méthodes de Hartley (1962), Bankier (1986), et Kalton et Anderson (1986), et nous montrons que ces méthodes peuvent être appliquées conditionnellement au premier degré de tirage. Nous comparons également la performance de plusieurs estimateurs dans le cadre d'une étude par simulations. Nos résultats suggèrent que le choix d'un estimateur en présence de bases de sondage multiples se fasse de façon prudente, et qu'un estimateur simple est parfois préférable même s'il n'utilise qu'une partie de l'information collectée.

    Date de diffusion : 2014-12-19

  • Articles et rapports : 12-001-X201400214097
    Description :

    Lorsque les enquêtes mensuelles auprès des entreprises ne sont pas entièrement chevauchantes, il existe deux estimateurs différents du taux de croissance mensuelle du chiffre d’affaires, i) l’un fondé sur les totaux de population estimés mensuellement et ii) l’autre fondé purement sur les entreprises observées aux deux occasions dans la partie chevauchante des enquêtes correspondantes. Les estimations et les variances résultantes pourraient être assez différentes. Le présent article a pour but de proposer un estimateur composite optimal du taux de croissance, ainsi que des totaux de population.

    Date de diffusion : 2014-12-19

  • Articles et rapports : 12-001-X201400214113
    Description :

    Les enquêtes par panel à renouvellement servent à calculer des estimations des flux bruts entre deux périodes consécutives de mesure. Le présent article examine une procédure générale pour estimer les flux bruts lorsque l’enquête par panel à renouvellement a été générée à partir d’un plan de sondage complexe avec non-réponse aléatoire. Une approche à pseudo-maximum de vraisemblance est envisagée dans le contexte d’un modèle à deux degrés de chaînes de Markov pour le classement des personnes dans les catégories de l’enquête et pour la modélisation de la non-réponse.

    Date de diffusion : 2014-12-19
Références (3)

Références (3) ((3 résultats))

  • Enquêtes et programmes statistiques — Documentation : 91-528-X
    Description :

    Ce manuel offre des descriptions détaillées des sources de données et des méthodes utilisées par Statistique Canada pour produire des estimations de la population. Elles comportent : les estimations postcensitaires et intercensitaires de la population; la population de départ; les naissances et les décès; l'immigration; les émigrations; les résidents non permanents; la migration interprovinciale; les estimations infraprovinciales de la population; les estimations de la population selon l'âge, le sexe et l'état matrimonial et les estimations des familles de recensement. Un glossaire des termes courants est inclus à la fin du manuel, suivi de la notation normalisée utilisée.

    Auparavant, la documentation sur les changements méthodologiques pour le calcul des estimations était éparpillée dans plusieurs publications et documents d'information de Statistique Canada. Ce manuel offre aux utilisateurs de statistiques démographiques un recueil exhaustif des procédures actuelles utilisées par Statistique Canada pour élaborer des estimations de la population et des familles.

    Date de diffusion : 2015-11-17

  • Enquêtes et programmes statistiques — Documentation : 99-002-X
    Description : Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour l’Enquête nationale auprès des ménages de 2011. Il fournit les justifications opérationnelles et théoriques et présente les résultats des études d'évaluation de ces méthodes.
    Date de diffusion : 2015-01-28

  • Enquêtes et programmes statistiques — Documentation : 92-568-X
    Description :

    Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour le Recensement de 2006. Il fournit un historique de l'application de ces méthodes aux recensements du Canada ainsi que les fondements opérationnels et théoriques de ces méthodes, et présente les résultats des études d'évaluation.

    Date de diffusion : 2009-08-11
Date de modification :