Pondération et estimation

Aide à l'ordre

Résultats

Tout (49)

Tout (49) (0 à 10 de 49 résultats)

  • Articles et rapports : 12-001-X201800254952
    Description :

    Les enquêtes par panel sont souvent utilisées pour mesurer l’évolution de paramètres au cours du temps. Ces enquêtes peuvent souffrir de différentes formes de non-réponse totale, situation que l’on traite à l’heure actuelle en estimant les probabilités de réponse et en effectuant une nouvelle pondération des répondants. La présente étude porte sur l’estimation, ainsi que l’estimation de la variance en cas de non-réponse totale dans les enquêtes par panel. En étendant les travaux de Kim et Kim (2007) à plusieurs périodes, nous considérons un estimateur ajusté par un score de propension qui tient compte de la non-réponse initiale et de l’attrition, et proposons un estimateur de variance approprié. Nous étendons ensuite cet estimateur afin de couvrir la plupart des estimateurs utilisés dans les enquêtes, y compris les estimateurs calés, les estimateurs de paramètres complexes et les estimateurs longitudinaux. Les propriétés de l’estimateur de variance proposé et d’un estimateur de variance simplifié sont évaluées au moyen d’une étude en simulation. Une illustration de la méthode proposée sur des données provenant de l’enquête ELFE est également présentée.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254955
    Description :

    De nombreuses études menées dans les différentes compagnies d’électricité à travers le monde se basent sur l’analyse de courbes de consommation électrique moyennes pour différentes sous-populations, en particulier de nature géographique. Ces courbes moyennes sont estimées à partir d’échantillons de milliers de courbes mesurées à un pas de temps fin pendant de longues périodes. L’estimation sur de petites sous-populations, aussi appelées petits domaines, est un sujet très courant en théorie des sondages.

    Dans cet article, nous traitons cette problématique dans le cadre des données fonctionnelles et nous cherchons à estimer des courbes moyennes de petits domaines. Pour cela, nous proposons quatre méthodes : la régression linéaire fonctionnelle, la modélisation des scores d’une analyse en composantes principales par des modèles linéaires mixtes au niveau unité, ainsi que deux estimateurs non paramétriques basés l’un sur des arbres de régression, l’autre sur des forêts aléatoires, adaptés aux courbes. L’ensemble de ces méthodes ont été testées et comparées sur des données réelles de consommation électrique de ménages français.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254956
    Description :

    En Italie, l’Institut statistique national (ISTAT) mène tous les trimestres l’enquête sur la population active (EPA) et en tire des estimations de la situation d’activité de la population à différents niveaux géographiques. Il estime en particulier le nombre de salariés et de chômeurs en s’appuyant sur cette enquête pour les zones locales de marché du travail (ZLMT). En tant que ZLMT, on compte 611 grappes infrarégionales de municipalités. Ce sont là des domaines non planifiés pour lesquels les estimations directes sont entachées de trop grandes erreurs d’échantillonnage, d’où la nécessité de recourir aux méthodes d’estimation sur petits domaines (EPD). Nous exposerons ici une nouvelle méthode EPD à niveaux de zones avec un modèle latent ou caché de Markov (MLM) comme modèle de couplage. Dans de tels modèles, la caractéristique d’intérêt et son évolution dans le temps sont représentées par un processus caché en chaîne de Markov, habituellement du premier ordre. Ainsi, les zones en question sont à même de changer leur état latent dans le temps. Nous appliquons le modèle proposé aux données trimestrielles de l’EPA de 2004 à 2014 et l’ajustons dans un cadre bayésien hiérarchique au moyen d’un échantillonneur de Gibbs à augmentation de données. Nous comparons nos estimations à celles du modèle classique de Fay-Herriot, à un modèle EPD à niveaux de zones et en séries chronologiques et enfin aux données du recensement de la population de 2011.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254958
    Description :

    Les domaines (ou sous-populations) pour lesquels les échantillons sont de petite taille sont appelés petits domaines. Les estimateurs directs classiques ne sont pas suffisamment précis pour ces petits domaines, en raison de la petite taille des échantillons. Or, la demande de statistiques fiables pour les petits domaines a augmenté considérablement. On utilise à l’heure actuelle des estimateurs indirects des moyennes ou des totaux de petits domaines basés sur un modèle pour résoudre les difficultés que pose l’estimation directe. Ces estimateurs reposent sur des modèles de liaison qui empruntent de l’information aux divers domaines pour accroître l’efficacité. En particulier, beaucoup d’attention a été accordée dans la littérature aux meilleurs estimateurs empiriques ou estimateurs EB (pour Empirical Best) sous des modèles de régression linéaires au niveau du domaine et au niveau de l’unité contenant des effets aléatoires de petit domaine. L’erreur quadratique moyenne (EQM) des estimateurs EB sous le modèle sert fréquemment à mesurer la variabilité des estimateurs. Les estimateurs par linéarisation, ainsi que les estimateurs jackknife et bootstrap de l’EQM sous le modèle sont d’usage très répandu. Toutefois, les organismes statistiques nationaux s’intéressent souvent à l’estimation de l’EQM des estimateurs EB sous le plan de sondage, pour cadrer avec les estimateurs classiques de l’EQM sous le plan associés aux estimateurs directs pour les grands domaines dont les tailles d’échantillon sont adéquates. Les estimateurs de l’EQM sous le plan des estimateurs EB peuvent être obtenus pour les modèles au niveau du domaine, mais ils ont tendance à être instables quand la taille de l’échantillon du domaine est petite. Des estimateurs composites de l’EQM, obtenus en prenant une somme pondérée de l’estimateur de l’EQM sous le plan et de l’estimateur de l’EQM sous le modèle, sont proposés dans le présent article. Les propriétés des estimateurs de l’EQM sous le modèle au niveau du domaine sont étudiées en examinant le biais, la racine carrée de l’erreur quadratique moyenne relative et le taux de couverture des intervalles de confiance sous le plan de sondage. Le cas d’un modèle au niveau de l’unité est également examiné sous échantillonnage aléatoire simple dans chaque domaine. Les résultats d’une étude en simulation montrent que les estimateurs composites proposés de l’EQM offrent un bon compromis pour l’estimation de l’EQM sous le plan.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254960
    Description :

    En présence d’information auxiliaire, la technique de calage est souvent utilisée pour améliorer la précision des estimations produites. Cependant, les pondérations par calage peuvent ne pas convenir à toutes les variables d’intérêt de l’enquête, en particulier celles qui ne sont pas liées aux variables auxiliaires utilisées dans le calage. Dans ce papier, nous proposons un critère permettant d’évaluer pour toute variable d’intérêt l’effet de l’utilisation de la pondération par calage sur la précision de l’estimation de son total. Ce critère permet donc de décider des pondérations associées à chacune des variables d’intérêt d’une enquête et de déterminer ainsi celles pour lesquelles il convient d’utiliser la pondération par calage.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800254961
    Description :

    Dans les enquêtes auprès des entreprises, il est courant de collecter des variables économiques dont la distribution est fortement asymétrique. Dans ce contexte, la winsorisation est fréquemment utilisée afin de traiter le problème des valeurs influentes. Dans le cas d’un sondage aléatoire simple stratifié, il existe deux méthodes permettant de choisir les seuils intervenant dans la winsorisation. L’article se décompose de la façon suivante. Une première partie rappelle les notations et la notion d’estimateur par winsorisation. La deuxième partie consiste à détailler les deux méthodes et à les étendre dans le cas d’un sondage poissonnien, puis à les comparer sur des jeux de données simulées et sur l’Enquête sur le Coût de la Main d’Oeuvre et la structure des salaires réalisée par l’INSEE.

    Date de diffusion : 2018-12-20

  • Enquêtes et programmes statistiques — Documentation : 98-306-X
    Description :

    Ce rapport donne une description des méthodes d'échantillonnage, de pondération et d'estimation utilisées pour le Recensement de la population de 2016. Il fournit les justifications opérationnelles et théoriques et présente les résultats des évaluations de ces méthodes.

    Date de diffusion : 2018-09-11

  • Articles et rapports : 12-001-X201800154925
    Description :

    Le présent article traite de l’inférence statistique sous un modèle de superpopulation en population finie quand on utilise des échantillons obtenus par échantillonnage d’ensembles ordonnés (EEO). Les échantillons sont construits sans remise. Nous montrons que la moyenne d’échantillon sous EEO est sans biais par rapport au modèle et présente une plus petite erreur de prédiction quadratique moyenne (EPQM) que la moyenne sous échantillonnage aléatoire simple (EAS). Partant d’un estimateur sans biais de l’EPQM, nous construisons aussi un intervalle de confiance de prédiction pour la moyenne de population. Une étude en simulation à petite échelle montre que cet estimateur est aussi bon qu’un estimateur sur échantillon aléatoire simple (EAS) quand l’information pour le classement est de qualité médiocre. Par ailleurs, cet estimateur est plus efficace que l’estimateur EAS quand la qualité de l’information de classement est bonne et que le ratio des coûts de l’obtention d’une unité sous EEO et sous EAS n’est pas très élevé. L’étude en simulation indique aussi que les probabilités de couverture des intervalles de prédiction sont très proches des probabilités de couverture nominales. La procédure d’inférence proposée est appliquée à un ensemble de données réel.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154959
    Description :

    Les modèles pour petits domaines conçus pour traiter les données au niveau du domaine reposent habituellement sur l’hypothèse de normalité des effets aléatoires. Cette hypothèse ne tient pas toujours. L’article présente un nouveau modèle pour petits domaines dont les effets aléatoires suivent une loi t. En outre, la modélisation conjointe des moyennes et des variances de petit domaine est examinée. Il est montré que cette approche donne de meilleurs résultats que les autres méthodes.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154963
    Description :

    Le cadre fondé sur l’échantillonnage probabiliste a joué un rôle dominant en recherche par sondage, parce qu’il fournit des outils mathématiques précis pour évaluer la variabilité d’échantillonnage. Toutefois, en raison de la hausse des coûts et de la baisse des taux de réponse, l’usage d’échantillons non probabilistes s’accroît, particulièrement dans le cas de populations générales, pour lesquelles le tirage d’échantillons à partir d’enquêtes en ligne devient de plus en plus économique et facile. Cependant, les échantillons non probabilistes posent un risque de biais de sélection dû à des différences d’accès et de degrés d’intérêt, ainsi qu’à d’autres facteurs. Le calage sur des totaux statistiques connus dans la population offre un moyen de réduire éventuellement l’effet du biais de sélection dans les échantillons non probabilistes. Ici, nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif peut donner un estimateur convergent d’un total de population à condition qu’un sous-ensemble des variables explicatives réelles soit inclus dans le modèle de prédiction, permettant ainsi qu’un grand nombre de covariables possibles soit incluses sans risque de surajustement. Nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif produit une meilleure estimation, pour ce qui est de l’erreur quadratique moyenne, que les méthodes concurrentes classiques, tels les estimateurs par la régression généralisée (GREG), quand un grand nombre de covariables sont nécessaires pour déterminer le modèle réel, sans vraiment qu’il y ait perte d’efficacité par rapport à la méthode GREG quand de plus petits modèles suffisent. Nous obtenons aussi des formules analytiques pour les estimateurs de variance des totaux de population, et comparons le comportement de ces estimateurs aux estimateurs bootstrap. Nous concluons par un exemple réel en utilisant des données provenant de la National Health Interview Survey.

    Date de diffusion : 2018-06-21
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (45)

Analyses (45) (20 à 30 de 45 résultats)

  • Articles et rapports : 12-001-X201500214230
    Description :

    Le présent article décrit l’élaboration de méthodes de répartition pour des enquêtes par sondage avec stratification quand l’utilisation d’estimateurs sur petits domaines composites est une priorité et que les domaines servent de strates. Longford (2006) a proposé pour cette situation un critère objectif fondé sur une combinaison pondérée des erreurs quadratiques moyennes des moyennes de petit domaine et d’une moyenne globale. Ici, nous redéfinissons cette approche dans un cadre assisté par modèle, ce qui permet l’utilisation de variables explicatives et une interprétation plus naturelle des résultats en utilisant un paramètre de corrélation intraclasse. Nous considérons aussi plusieurs utilisations de la répartition exponentielle et permettons l’application d’autres contraintes, telle une valeur maximale de la racine carrée relative de l’erreur quadratique moyenne, aux estimateurs de strate. Nous constatons qu’une répartition exponentielle simple peut donner des résultats très près d’être aussi bons que le plan optimal, même quand l’objectif est de minimiser le critère de Longford (2006).

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214231
    Description :

    Les instituts nationaux de statistique font une grande utilisation des panels rotatifs, par exemple pour produire des statistiques officielles sur la population active. Les procédures d’estimation se fondent généralement sur les approches traditionnelles fondées sur le plan de sondage conformes à la théorie classique de l’échantillonnage. Un inconvénient important des estimateurs de cette classe est que les petites tailles d’échantillon entraînent de grandes erreurs-types et qu’ils ne sont pas robustes au biais de mesure. Deux exemples où les effets de biais de mesure deviennent apparents sont le biais de groupe de renouvellement dans les panels rotatifs et les différences systématiques dans les résultats d’une enquête dues à un remaniement important du processus sous-jacent. Dans cet article, nous appliquons un modèle de séries chronologiques structurel multivarié à l’enquête sur la population active des Pays-Bas pour produire des données mensuelles sur la population active qui se fondent sur un modèle. Le modèle réduit les erreurs-types des estimations en tirant parti des renseignements sur l’échantillon recueillis au cours des périodes précédentes, tient compte du biais de groupe de renouvellement et de l’autocorrélation induite par le panel rotatif, et modélise les discontinuités dues au remaniement de l’enquête. Nous examinons également l’utilisation des séries auxiliaires corrélées du modèle, qui vise à améliorer davantage l’exactitude des estimations du modèle. Statistics Netherlands utilise cette méthode pour produire des statistiques mensuelles officielles exactes sur la population active qui sont convergentes dans le temps, malgré le remaniement du processus d’enquête.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214248
    Description :

    L’utilisation de modèles de population au niveau de l’unité pour estimer des totaux et des moyennes de petit domaine en se fondant sur un modèle est fréquente, mais il se peut que le modèle ne soit pas vérifié pour l’échantillon si le plan d’échantillonnage est informatif pour le modèle. Par conséquent, les méthodes d’estimation classiques, qui supposent que le modèle est vérifié pour l’échantillon, peuvent donner des estimateurs biaisés. Nous étudions d’autres méthodes comprenant l’utilisation d’une fonction appropriée de la probabilité de sélection des unités en tant que variable auxiliaire supplémentaire dans le modèle de l’échantillon. Nous présentons les résultats d’une étude en simulation du biais et de l’erreur quadratique moyenne (EQM) des estimateurs proposés des moyennes de petit domaine et du biais relatif des estimateurs de l’EQM connexes, en utilisant des plans d’échantillonnage informatifs pour générer les échantillons. D’autres méthodes, fondées sur la modélisation de l’espérance conditionnelle du poids de sondage sous forme d’une fonction des covariables du modèle et de la réponse, sont également incluses dans l’étude en simulation.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500114150
    Description :

    Une approche basée sur un modèle au niveau du domaine pour combiner des données provenant de plusieurs sources est examinée dans le contexte de l’estimation sur petits domaines. Pour chaque petit domaine, plusieurs estimations sont calculées et reliées au moyen d’un système de modèles d’erreur structurels. Le meilleur prédicteur linéaire sans biais du paramètre de petit domaine peut être calculé par la méthode des moindres carrés généralisés. Les paramètres des modèles d’erreur structurels sont estimés en s’appuyant sur la théorie des modèles d’erreur de mesure. L’estimation des erreurs quadratiques moyennes est également discutée. La méthode proposée est appliquée au problème réel des enquêtes sur la population active en Corée.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114160
    Description :

    L’estimation composite est une technique applicable aux enquêtes répétées avec chevauchement contrôlé entre les enquêtes successives. Le présent article examine les estimateurs par la régression modifiée qui permettent d’intégrer l’information provenant de périodes antérieures dans les estimations pour la période courante. La gamme d’estimateurs par la régression modifiée est étendue au cas des enquêtes-entreprises dont la base de sondage évolue avec le temps en raison de l’ajout des « nouvelles entreprises » et de la suppression des « entreprises disparues ». Puisque les estimateurs par la régression modifiée peuvent s’écarter de l’estimateur par la régression généralisée au cours du temps, il est proposé d’utiliser un estimateur par la régression modifiée de compromis correspondant à la moyenne pondérée de l’estimateur par la régression modifiée et de l’estimateur par la régression généralisée. Une étude par simulation Monte Carlo montre que l’estimateur par la régression modifiée de compromis proposé donne lieu à d’importants gains d’efficacité en ce qui concerne les estimations ponctuelles ainsi que les estimations des variations.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114161
    Description :

    Le modèle de Fay Herriot est un modèle au niveau du domaine d’usage très répandu pour l’estimation des moyennes de petit domaine. Ce modèle contient des effets aléatoires en dehors de la régression linéaire (fixe) basée sur les covariables au niveau du domaine. Les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine s’obtiennent en estimant les effets aléatoires de domaine, et ils peuvent être exprimés sous forme d’une moyenne pondérée des estimateurs directs propres aux domaines et d’estimateurs synthétiques de type régression. Dans certains cas, les données observées n’appuient pas l’inclusion des effets aléatoires de domaine dans le modèle. L’exclusion de ces effets de domaine aboutit à l’estimateur synthétique de type régression, autrement dit un poids nul est appliqué à l’estimateur direct. L’étude porte sur un estimateur à test préliminaire d’une moyenne de petit domaine obtenu après l’exécution d’un test pour déceler la présence d’effets aléatoires de domaine. Parallèlement, elle porte sur les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine qui donnent toujours des poids non nuls aux estimateurs directs dans tous les domaines, ainsi que certains estimateurs de rechange basés sur le test préliminaire. La procédure de test préliminaire est également utilisée pour définir de nouveaux estimateurs de l’erreur quadratique moyenne des estimateurs ponctuels des moyennes de petit domaine. Les résultats d’une étude par simulation limitée montrent que, si le nombre de domaines est petit, la procédure d’essai préliminaire mène à des estimateurs de l’erreur quadratique moyenne présentant un biais relatif absolu moyen considérablement plus faible que les estimateurs de l’erreur quadratique moyenne usuels, surtout quand la variance des effets aléatoires est faible comparativement aux variances d’échantillonnage.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114172
    Description :

    Quand un échantillon aléatoire tiré d’une base liste complète souffre de non-réponse totale, on peut faire appel à la pondération par calage sur des totaux de population pour éliminer le biais de non-réponse sous un modèle hypothétique de réponse (sélection) ou de prédiction (résultat). De cette façon, la pondération par calage peut non seulement procurer une double protection contre le biais de non-réponse, mais aussi réduire la variance. En employant une astuce simple, on peut estimer simultanément la variance sous le modèle hypothétique de prédiction et l’erreur quadratique moyenne sous la combinaison du modèle hypothétique de réponse et du mécanisme d’échantillonnage probabiliste. Malheureusement, il existe une limite pratique aux types de modèle de réponse que l’on peut supposer lorsque les poids de sondage sont calés sur les totaux de population en une seule étape. En particulier, la fonction de réponse choisie ne peut pas toujours être logistique. Cette limite ne gêne pas la pondération par calage lorsqu’elle est effectuée en deux étapes : de l’échantillon de répondants à l’échantillon complet pour éliminer le biais de réponse, et puis de l’échantillon complet à la population pour réduire la variance. Des gains d’efficacité pourraient découler de l’utilisation de l’approche en deux étapes, même si les variables de calage employées à chaque étape représentent un sous-ensemble des variables de calage de l’approche en une seule étape. L’estimation simultanée de l’erreur quadratique moyenne par linéarisation est possible, mais plus compliquée que lorsque le calage est effectué en une seule étape.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114174
    Description :

    L’échantillonnage matriciel, aussi appelé échantillonnage avec questionnaire fractionné ou scindé, est un plan d’échantillonnage qui consiste à diviser un questionnaire en sous-ensembles de questions, éventuellement chevauchants, puis à administrer chaque sous-ensemble à un ou à plusieurs sous-échantillons aléatoires d’un échantillon initial. Ce type de plan, de plus en plus attrayant, répond aux préoccupations concernant les coûts de la collecte, le fardeau de réponse et la qualité des données, mais réduit le nombre d’unités échantillonnées auxquelles les questions sont posées. Un concept élargi du plan d’échantillonnage matriciel comprend l’intégration d’échantillons provenant d’enquêtes distinctes afin de rationaliser les opérations d’enquête et d’accroître la cohérence des données de sortie. Dans le cas de l’échantillonnage matriciel avec sous-ensembles chevauchants de questions, nous proposons une méthode d’estimation efficace qui exploite les corrélations entre les items étudiés dans les divers sous-échantillons afin d’améliorer la précision des estimations de l’enquête. La méthode proposée, fondée sur le principe de la meilleure estimation linéaire sans biais, produit des estimateurs par régression optimale composites des totaux de population en utilisant un scénario approprié de calage des poids d’échantillonnage de l’échantillon complet. Une variante de ce scénario de calage, d’usage plus général, produit des estimateurs par régression généralisée composites qui sont également très efficaces sur le plan des calculs.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114192
    Description :

    Nous nous intéressons à l’estimation linéaire optimale des moyennes pour des éditions subséquentes d’une enquête sous renouvellement de l’échantillon, où l’évolution temporelle des échantillons est conçue selon un schéma en cascade. Depuis la publication de l’article fondamental de Patterson (1950), on sait que, si les unités n’ont pas le droit de revenir dans l’échantillon après en être sorties pendant une certaine période (pas d’intervalles dans les schémas de renouvellement), la récursion en une étape tient pour l’estimateur optimal. Cependant, dans certaines enquêtes réelles importantes, par exemple, la Current Population Survey aux États-Unis ou l’Enquête sur la population active dans de nombreux pays européens, les unités reviennent dans l’échantillon après en avoir été absentes pendant plusieurs éditions de l’enquête (existence d’intervalles dans les schémas de renouvellement). Le cas échéant, la question de la forme de la récurrence pour l’estimateur optimal devient considérablement plus difficile. Ce problème n’a pas encore été résolu. On a plutôt élaboré des approches sous-optimales de rechange, comme l’estimation composite K (voir, par exemple, Hansen, Hurwitz, Nisselson et Steinberg (1955)), l’estimation composite AK (voir, par exemple, Gurney et Daly (1965)) ou l’approche des séries chronologiques (voir, par exemple, Binder et Hidiroglou (1988)).

    Dans le présent article, nous surmontons cette difficulté de longue date, autrement dit, nous présentons des formules de récurrence analytiques pour l’estimateur linéaire optimal de la moyenne pour des schémas de renouvellement contenant des intervalles. Ces formules sont obtenues sous certaines conditions techniques, à savoir l’HYPOTHÈSE I et l’HYPOTHÈSE II (des expériences numériques donnent à penser que ces hypothèses pourraient être universellement satisfaites). Pour atteindre l’objectif, nous élaborons une approche par opérateurs algébriques qui permet de réduire le problème de récursion pour l’estimateur linéaire optimal à deux questions : 1) la localisation des racines (éventuellement complexes) d’un polynôme Qp défini en fonction du schéma de renouvellement (le polynôme Qp s’exprime de façon pratique au moyen de polynômes de Tchebychev de la première espèce) et 2) le rang d’une matrice définie en fonction du schéma de renouvellement et des racines du polynôme Qp. En particulier, nous montrons que l’ordre de la récurrence est égal à un plus la taille de l’intervalle le plus grand dans le schéma de renouvellement. Nous donnons les formules exactes de calcul des coefficients de récurrence – naturellement, pour les utiliser il faut confirmer (dans de nombreux cas, numériquement) que les HYPOTHÈSES I et II sont satisfaites. Nous illustrons la solution à l’aide de plusieurs exemples de schémas de renouvellement tirés d’enquêtes réelles.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114199
    Description :

    Dans les enquêtes auprès des entreprises, il est courant de collecter des variables économiques dont la distribution est fortement asymétrique. Dans ce contexte, la winsorisation est fréquemment utilisée afin de traiter le problème des valeurs influentes. Cette technique requiert la détermination d’une constante qui correspond au seuil à partir duquel les grandes valeurs sont réduites. Dans cet article, nous considérons une méthode de détermination de la constante qui consiste à minimiser le plus grand biais conditionnel estimé de l’échantillon. Dans le contexte de l’estimation pour des domaines, nous proposons également une méthode permettant d’assurer la cohérence entre les estimations winsorisées calculées au niveau des domaines et l’estimation winsorisée calculée au niveau de la population. Les résultats de deux études par simulation suggèrent que les méthodes proposées conduisent à des estimateurs winsorisés ayant de bonnes propriétés en termes de biais et d’efficacité relative.

    Date de diffusion : 2015-06-29
Références (4)

Références (4) ((4 résultats))

  • Enquêtes et programmes statistiques — Documentation : 98-306-X
    Description :

    Ce rapport donne une description des méthodes d'échantillonnage, de pondération et d'estimation utilisées pour le Recensement de la population de 2016. Il fournit les justifications opérationnelles et théoriques et présente les résultats des évaluations de ces méthodes.

    Date de diffusion : 2018-09-11

  • Enquêtes et programmes statistiques — Documentation : 91-528-X
    Description :

    Ce manuel offre des descriptions détaillées des sources de données et des méthodes utilisées par Statistique Canada pour produire des estimations de la population. Elles comportent : les estimations postcensitaires et intercensitaires de la population; la population de départ; les naissances et les décès; l'immigration; les émigrations; les résidents non permanents; la migration interprovinciale; les estimations infraprovinciales de la population; les estimations de la population selon l'âge, le sexe et l'état matrimonial et les estimations des familles de recensement. Un glossaire des termes courants est inclus à la fin du manuel, suivi de la notation normalisée utilisée.

    Auparavant, la documentation sur les changements méthodologiques pour le calcul des estimations était éparpillée dans plusieurs publications et documents d'information de Statistique Canada. Ce manuel offre aux utilisateurs de statistiques démographiques un recueil exhaustif des procédures actuelles utilisées par Statistique Canada pour élaborer des estimations de la population et des familles.

    Date de diffusion : 2015-11-17

  • Enquêtes et programmes statistiques — Documentation : 99-002-X
    Description : Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour l’Enquête nationale auprès des ménages de 2011. Il fournit les justifications opérationnelles et théoriques et présente les résultats des études d'évaluation de ces méthodes.
    Date de diffusion : 2015-01-28

  • Enquêtes et programmes statistiques — Documentation : 92-568-X
    Description :

    Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour le Recensement de 2006. Il fournit un historique de l'application de ces méthodes aux recensements du Canada ainsi que les fondements opérationnels et théoriques de ces méthodes, et présente les résultats des études d'évaluation.

    Date de diffusion : 2009-08-11
Date de modification :