Pondération et estimation

Aide à l'ordre

Résultats

Tout (44)

Tout (44) (0 à 10 de 44 résultats)

  • Articles et rapports : 12-001-X201800154925
    Description :

    Le présent article traite de l’inférence statistique sous un modèle de superpopulation en population finie quand on utilise des échantillons obtenus par échantillonnage d’ensembles ordonnés (EEO). Les échantillons sont construits sans remise. Nous montrons que la moyenne d’échantillon sous EEO est sans biais par rapport au modèle et présente une plus petite erreur de prédiction quadratique moyenne (EPQM) que la moyenne sous échantillonnage aléatoire simple (EAS). Partant d’un estimateur sans biais de l’EPQM, nous construisons aussi un intervalle de confiance de prédiction pour la moyenne de population. Une étude en simulation à petite échelle montre que cet estimateur est aussi bon qu’un estimateur sur échantillon aléatoire simple (EAS) quand l’information pour le classement est de qualité médiocre. Par ailleurs, cet estimateur est plus efficace que l’estimateur EAS quand la qualité de l’information de classement est bonne et que le ratio des coûts de l’obtention d’une unité sous EEO et sous EAS n’est pas très élevé. L’étude en simulation indique aussi que les probabilités de couverture des intervalles de prédiction sont très proches des probabilités de couverture nominales. La procédure d’inférence proposée est appliquée à un ensemble de données réel.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154959
    Description :

    Les modèles pour petits domaines conçus pour traiter les données au niveau du domaine reposent habituellement sur l’hypothèse de normalité des effets aléatoires. Cette hypothèse ne tient pas toujours. L’article présente un nouveau modèle pour petits domaines dont les effets aléatoires suivent une loi t. En outre, la modélisation conjointe des moyennes et des variances de petit domaine est examinée. Il est montré que cette approche donne de meilleurs résultats que les autres méthodes.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201800154963
    Description :

    Le cadre fondé sur l’échantillonnage probabiliste a joué un rôle dominant en recherche par sondage, parce qu’il fournit des outils mathématiques précis pour évaluer la variabilité d’échantillonnage. Toutefois, en raison de la hausse des coûts et de la baisse des taux de réponse, l’usage d’échantillons non probabilistes s’accroît, particulièrement dans le cas de populations générales, pour lesquelles le tirage d’échantillons à partir d’enquêtes en ligne devient de plus en plus économique et facile. Cependant, les échantillons non probabilistes posent un risque de biais de sélection dû à des différences d’accès et de degrés d’intérêt, ainsi qu’à d’autres facteurs. Le calage sur des totaux statistiques connus dans la population offre un moyen de réduire éventuellement l’effet du biais de sélection dans les échantillons non probabilistes. Ici, nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif peut donner un estimateur convergent d’un total de population à condition qu’un sous-ensemble des variables explicatives réelles soit inclus dans le modèle de prédiction, permettant ainsi qu’un grand nombre de covariables possibles soit incluses sans risque de surajustement. Nous montrons que le calage assisté par un modèle en utilisant le LASSO adaptatif produit une meilleure estimation, pour ce qui est de l’erreur quadratique moyenne, que les méthodes concurrentes classiques, tels les estimateurs par la régression généralisée (GREG), quand un grand nombre de covariables sont nécessaires pour déterminer le modèle réel, sans vraiment qu’il y ait perte d’efficacité par rapport à la méthode GREG quand de plus petits modèles suffisent. Nous obtenons aussi des formules analytiques pour les estimateurs de variance des totaux de population, et comparons le comportement de ces estimateurs aux estimateurs bootstrap. Nous concluons par un exemple réel en utilisant des données provenant de la National Health Interview Survey.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 11-626-X2017077
    Description :

    Le 13 avril 2017, le gouvernement du Canada a déposé le projet de loi de légalisation de la consommation récréative du cannabis pour les adultes. Cette décision aura une incidence directe sur le système statistique du Canada. Cet article d’Aperçus économiques vise à fournir des estimations expérimentales du volume de la consommation de cannabis, en se fondant sur des renseignements existants relatifs à la prévalence de la consommation de cannabis. Cet article présente les estimations expérimentales du nombre de tonnes de cannabis consommé par tranche d’âge au cours de la période allant de 1960 à 2015. Ces estimations expérimentales se fondent sur des données d’enquête de plusieurs sources, de techniques statistiques permettant de coupler les sources au cours du temps, et d’hypothèses relatives au comportement de consommation. Elles pourront faire l’objet de révisions à mesure que des sources de données améliorées ou supplémentaires deviennent disponibles.

    Date de diffusion : 2017-12-18

  • Articles et rapports : 12-001-X201700114819
    Description :

    La modélisation de séries chronologiques structurelle est une puissante technique de réduction des variances pour les estimations sur petits domaines (EPD) reposant sur des enquêtes répétées. Le bureau central de la statistique des Pays-Bas utilise un modèle de séries chronologiques structurel pour la production des chiffres mensuels de l’Enquête sur la population active (EPA) des Pays-Bas. Cependant, ce type de modèle renferme des hyperparamètres inconnus qui doivent être estimés avant que le filtre de Kalman ne puisse être appliqué pour estimer les variables d’état du modèle. Le présent article décrit une simulation visant à étudier les propriétés des estimateurs des hyperparamètres de tels modèles. La simulation des distributions de ces estimateurs selon différentes spécifications de modèle viennent compléter les diagnostics types pour les modèles espace-état. Une autre grande question est celle de l’incertitude entourant les hyperparamètres du modèle. Pour tenir compte de cette incertitude dans les estimations d’erreurs quadratiques moyennes (EQM) de l’EPA, différents modes d’estimation sont pris en compte dans une simulation. En plus de comparer les biais EQM, cet article examine les variances et les EQM des estimateurs EQM envisagés.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201700114823
    Description :

    L’obtention d’estimateurs dans un processus de calage à plusieurs phases requiert le calcul séquentiel des estimateurs et des poids calés des phases antérieures afin d’obtenir ceux de phases ultérieures. Déjà après deux phases de calage, les estimateurs et leurs variances comprennent des facteurs de calage provenant des deux phases, et les formules deviennent lourdes et non informatives. Par conséquent, les études publiées jusqu’à présent traitent principalement du calage à deux phases, tandis que le calage à trois phases ou plus est rarement envisagé. Dans certains cas, l’analyse s’applique à un plan de sondage particulier et aucune méthodologie complète n’est élaborée pour la construction d’estimateurs calés ni, tâche plus difficile, pour l’estimation de leur variance en trois phases ou plus. Nous fournissons une expression explicite pour calculer la variance d’estimateurs calés en plusieurs phases qui tient pour n’importe quel nombre de phases. En spécifiant une nouvelle représentation des poids calés en plusieurs phases, il est possible de construire des estimateurs calés qui ont la forme d’estimateurs par la régression multivariée, ce qui permet de calculer un estimateur convergent de leur variance. Ce nouvel estimateur de variance est non seulement général pour tout nombre de phases, mais possède aussi certaines caractéristiques favorables. Nous présentons une comparaison à d’autres estimateurs dans le cas particulier du calage à deux phases, ainsi qu’une étude indépendante pour le cas à trois phases.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214660
    Description :

    Dans le cadre d’une enquête économique auprès d’un échantillon d’entreprises, on sélectionne au hasard des professions dans une liste jusqu’à ce que l’on identifie un nombre r de professions présentes dans une unité locale. Il s’agit d’un problème d’échantillonnage inverse pour lequel nous proposons quelques solutions. Les plans simples avec et sans remise se traitent au moyen des distributions binomiale négative et hypergéométrique négative. On propose également des estimateurs pour le cas où les unités sont sélectionnées à probabilités inégales avec ou sans remise.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214663
    Description :

    Nous présentons des preuves théoriques que les efforts déployés durant la collecte des données en vue d’équilibrer la réponse à l’enquête en ce qui concerne certaines variables auxiliaires augmentera les chances que le biais de non-réponse soit faible dans les estimations qui sont, en fin de compte, produites par pondération calée. Nous montrons que la variance du biais – mesurée ici comme étant l’écart de l’estimateur calé par rapport à l’estimateur sans biais sur échantillon complet (non réalisé) – diminue linéairement en fonction du déséquilibre de la réponse que nous supposons être mesuré et contrôlé continuellement tout au long de la période de collecte des données. Cela offre donc la perspective intéressante d’un plus faible risque de biais si l’on peut gérer la collecte des données de manière à réduire le déséquilibre. Les résultats théoriques sont validés au moyen d’une étude en simulation s’appuyant sur des données réelles provenant d’une enquête-ménages estonienne.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214664
    Description :

    Le présent article traite de l’inférence statistique de la moyenne d’une population finie fondée sur des échantillons poststratifiés par choix raisonné (PCR). L’échantillon PCR s’obtient en sélectionnant d’abord un échantillon aléatoire simple, puis en stratifiant les unités sélectionnées en H classes créées par choix raisonné en se basant sur les positions relatives (rangs) des unités dans un petit ensemble de taille H. Cela donne un échantillon présentant des tailles d’échantillon aléatoires dans les classes créées par choix raisonné. Le processus de classement peut être effectué en se servant de variables auxiliaires ou par inspection visuelle afin de déterminer les rangs des observations mesurées. L’article décrit l’élaboration d’un estimateur sans biais et la construction d’un intervalle de confiance pour la moyenne de population. Puisque les rangs déterminés par choix raisonné sont des variables aléatoires, en conditionnant sur les observations mesurées, nous construisons des estimateurs Rao-Blackwellisés de la moyenne de population. Nous montrons que les estimateurs Rao-Blackwellisés donnent de meilleurs résultats que les estimateurs PCR habituels. Les estimateurs proposés sont appliqués aux données du recensement de 2012 du United States Department of Agriculture.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600214677
    Description :

    Comment savoir si les ajustements de la pondération réduisent ou non le biais de non-réponse ? Si une variable est mesurée pour toutes les unités de l’échantillon sélectionné, on peut calculer une estimation approximativement sans biais de la moyenne ou du total de population pour cette variable en se servant des poids de sondage. Une seconde estimation de la moyenne ou du total de population peut être obtenue en se basant uniquement sur les répondants à l’enquête et en utilisant des poids ajustés pour tenir compte de la non-réponse. Si les deux estimations ne concordent pas, il y a des raisons de penser que les ajustements des poids n’ont peut-être pas éliminé le biais de non-réponse pour la variable en question. Dans le présent article, nous développons les propriétés théoriques des estimateurs de variance par linéarisation et par jackknife en vue d’évaluer le biais d’une estimation de la moyenne ou du total de population par comparaison des estimations obtenues pour des sous-ensembles chevauchants des mêmes données avec différents ensembles de poids, quand la poststratification ou la pondération par l’inverse de la propension à répondre servent à ajuster les poids pour tenir compte de la non-réponse. Nous donnons les conditions suffisantes sur la population, l’échantillon et le mécanisme de réponse pour que les estimateurs de variance soient convergents, et démontrons les propriétés de ces derniers pour un petit échantillon au moyen d’une étude par simulation.

    Date de diffusion : 2016-12-20
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (41)

Analyses (41) (10 à 20 de 41 résultats)

  • Articles et rapports : 12-001-X201600114540
    Description :

    Les auteurs comparent les estimateurs EBLUP et pseudo EBLUP pour l’estimation sur petits domaines en vertu d’un modèle de régression à erreur emboîtée, ainsi que trois autres estimateurs fondés sur un modèle au niveau du domaine à l’aide du modèle de Fay Herriot. Ils réalisent une étude par simulations fondée sur un plan de sondage pour comparer les estimateurs fondés sur un modèle pour des modèles au niveau de l’unité et au niveau du domaine sous un échantillonnage informatif et non informatif. Ils s’intéressent particulièrement aux taux de couverture des intervalles de confiance des estimateurs au niveau de l’unité et au niveau du domaine. Les auteurs comparent aussi les estimateurs sous un modèle dont la spécification est inexacte. Les résultats de la simulation montrent que les estimateurs au niveau de l’unité sont plus efficaces que les estimateurs au niveau du domaine. L’estimateur pseudo EBLUP donne les meilleurs résultats à la fois au niveau de l’unité et au niveau du domaine.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201600114543
    Description :

    L’estimateur par régression est utilisé de façon intensive en pratique, car il peut améliorer la fiabilité de l’estimation des paramètres d’intérêt tels que les moyennes ou les totaux. Il utilise les totaux de contrôle des variables connues au niveau de la population qui sont incluses dans le modèle de régression. Dans cet article, nous examinons les propriétés de l’estimateur par régression qui utilise les totaux de contrôle estimés à partir de l’échantillon, ainsi que ceux connus au niveau de la population. Cet estimateur est comparé aux estimateurs par régression qui utilisent uniquement les totaux connus du point de vue théorique et par simulation.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201600114544
    Description :

    Aux Pays-Bas, les données statistiques sur le revenu et le patrimoine reposent sur deux grands panels auprès des ménages qui sont entièrement dérivés de données administratives. L’utilisation de ménages comme unités d’échantillonnage dans les plans de sondage des panels pose problème en raison de l’instabilité de ces unités au fil du temps. Les changements dans la composition des ménages influent sur les probabilités d’inclusion nécessaires aux méthodes d’inférence fondées sur le plan et assistées par modèle. Dans les deux panels auprès des ménages susmentionnés, ces problèmes sont surmontés par la sélection de personnes que l’on suit au fil du temps. À chaque période, les membres des ménages auxquels appartiennent les personnes choisies sont inclus dans l’échantillon. Il s’agit d’une méthode équivalente à un échantillonnage selon des probabilités proportionnelles à la taille du ménage, selon laquelle les ménages peuvent être sélectionnés plus d’une fois jusqu’à concurrence du nombre de membres du ménage. Dans le présent article, nous décrivons les propriétés de ce plan d’échantillonnage et les comparons avec la méthode généralisée du partage des poids pour l’échantillonnage indirect (Lavallée 1995, 2007). Les méthodes sont illustrées au moyen d’une application à la Dutch Regional Income Survey.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 82-003-X201600414489
    Description :

    À partir de données d’accélérométrie pour les enfants et les jeunes de 3 à 17 ans tirées de l’Enquête canadienne sur les mesures de la santé, la probabilité d’observation des lignes directrices en matière d’activité physique est estimée au moyen d’une loi conditionnelle, étant donné le nombre de jours d’activité et d’inactivité distribué selon une loi bêta-binomiale.

    Date de diffusion : 2016-04-20

  • Articles et rapports : 12-001-X201500214230
    Description :

    Le présent article décrit l’élaboration de méthodes de répartition pour des enquêtes par sondage avec stratification quand l’utilisation d’estimateurs sur petits domaines composites est une priorité et que les domaines servent de strates. Longford (2006) a proposé pour cette situation un critère objectif fondé sur une combinaison pondérée des erreurs quadratiques moyennes des moyennes de petit domaine et d’une moyenne globale. Ici, nous redéfinissons cette approche dans un cadre assisté par modèle, ce qui permet l’utilisation de variables explicatives et une interprétation plus naturelle des résultats en utilisant un paramètre de corrélation intraclasse. Nous considérons aussi plusieurs utilisations de la répartition exponentielle et permettons l’application d’autres contraintes, telle une valeur maximale de la racine carrée relative de l’erreur quadratique moyenne, aux estimateurs de strate. Nous constatons qu’une répartition exponentielle simple peut donner des résultats très près d’être aussi bons que le plan optimal, même quand l’objectif est de minimiser le critère de Longford (2006).

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214231
    Description :

    Les instituts nationaux de statistique font une grande utilisation des panels rotatifs, par exemple pour produire des statistiques officielles sur la population active. Les procédures d’estimation se fondent généralement sur les approches traditionnelles fondées sur le plan de sondage conformes à la théorie classique de l’échantillonnage. Un inconvénient important des estimateurs de cette classe est que les petites tailles d’échantillon entraînent de grandes erreurs-types et qu’ils ne sont pas robustes au biais de mesure. Deux exemples où les effets de biais de mesure deviennent apparents sont le biais de groupe de renouvellement dans les panels rotatifs et les différences systématiques dans les résultats d’une enquête dues à un remaniement important du processus sous-jacent. Dans cet article, nous appliquons un modèle de séries chronologiques structurel multivarié à l’enquête sur la population active des Pays-Bas pour produire des données mensuelles sur la population active qui se fondent sur un modèle. Le modèle réduit les erreurs-types des estimations en tirant parti des renseignements sur l’échantillon recueillis au cours des périodes précédentes, tient compte du biais de groupe de renouvellement et de l’autocorrélation induite par le panel rotatif, et modélise les discontinuités dues au remaniement de l’enquête. Nous examinons également l’utilisation des séries auxiliaires corrélées du modèle, qui vise à améliorer davantage l’exactitude des estimations du modèle. Statistics Netherlands utilise cette méthode pour produire des statistiques mensuelles officielles exactes sur la population active qui sont convergentes dans le temps, malgré le remaniement du processus d’enquête.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214248
    Description :

    L’utilisation de modèles de population au niveau de l’unité pour estimer des totaux et des moyennes de petit domaine en se fondant sur un modèle est fréquente, mais il se peut que le modèle ne soit pas vérifié pour l’échantillon si le plan d’échantillonnage est informatif pour le modèle. Par conséquent, les méthodes d’estimation classiques, qui supposent que le modèle est vérifié pour l’échantillon, peuvent donner des estimateurs biaisés. Nous étudions d’autres méthodes comprenant l’utilisation d’une fonction appropriée de la probabilité de sélection des unités en tant que variable auxiliaire supplémentaire dans le modèle de l’échantillon. Nous présentons les résultats d’une étude en simulation du biais et de l’erreur quadratique moyenne (EQM) des estimateurs proposés des moyennes de petit domaine et du biais relatif des estimateurs de l’EQM connexes, en utilisant des plans d’échantillonnage informatifs pour générer les échantillons. D’autres méthodes, fondées sur la modélisation de l’espérance conditionnelle du poids de sondage sous forme d’une fonction des covariables du modèle et de la réponse, sont également incluses dans l’étude en simulation.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500114150
    Description :

    Une approche basée sur un modèle au niveau du domaine pour combiner des données provenant de plusieurs sources est examinée dans le contexte de l’estimation sur petits domaines. Pour chaque petit domaine, plusieurs estimations sont calculées et reliées au moyen d’un système de modèles d’erreur structurels. Le meilleur prédicteur linéaire sans biais du paramètre de petit domaine peut être calculé par la méthode des moindres carrés généralisés. Les paramètres des modèles d’erreur structurels sont estimés en s’appuyant sur la théorie des modèles d’erreur de mesure. L’estimation des erreurs quadratiques moyennes est également discutée. La méthode proposée est appliquée au problème réel des enquêtes sur la population active en Corée.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114160
    Description :

    L’estimation composite est une technique applicable aux enquêtes répétées avec chevauchement contrôlé entre les enquêtes successives. Le présent article examine les estimateurs par la régression modifiée qui permettent d’intégrer l’information provenant de périodes antérieures dans les estimations pour la période courante. La gamme d’estimateurs par la régression modifiée est étendue au cas des enquêtes-entreprises dont la base de sondage évolue avec le temps en raison de l’ajout des « nouvelles entreprises » et de la suppression des « entreprises disparues ». Puisque les estimateurs par la régression modifiée peuvent s’écarter de l’estimateur par la régression généralisée au cours du temps, il est proposé d’utiliser un estimateur par la régression modifiée de compromis correspondant à la moyenne pondérée de l’estimateur par la régression modifiée et de l’estimateur par la régression généralisée. Une étude par simulation Monte Carlo montre que l’estimateur par la régression modifiée de compromis proposé donne lieu à d’importants gains d’efficacité en ce qui concerne les estimations ponctuelles ainsi que les estimations des variations.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114161
    Description :

    Le modèle de Fay Herriot est un modèle au niveau du domaine d’usage très répandu pour l’estimation des moyennes de petit domaine. Ce modèle contient des effets aléatoires en dehors de la régression linéaire (fixe) basée sur les covariables au niveau du domaine. Les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine s’obtiennent en estimant les effets aléatoires de domaine, et ils peuvent être exprimés sous forme d’une moyenne pondérée des estimateurs directs propres aux domaines et d’estimateurs synthétiques de type régression. Dans certains cas, les données observées n’appuient pas l’inclusion des effets aléatoires de domaine dans le modèle. L’exclusion de ces effets de domaine aboutit à l’estimateur synthétique de type régression, autrement dit un poids nul est appliqué à l’estimateur direct. L’étude porte sur un estimateur à test préliminaire d’une moyenne de petit domaine obtenu après l’exécution d’un test pour déceler la présence d’effets aléatoires de domaine. Parallèlement, elle porte sur les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine qui donnent toujours des poids non nuls aux estimateurs directs dans tous les domaines, ainsi que certains estimateurs de rechange basés sur le test préliminaire. La procédure de test préliminaire est également utilisée pour définir de nouveaux estimateurs de l’erreur quadratique moyenne des estimateurs ponctuels des moyennes de petit domaine. Les résultats d’une étude par simulation limitée montrent que, si le nombre de domaines est petit, la procédure d’essai préliminaire mène à des estimateurs de l’erreur quadratique moyenne présentant un biais relatif absolu moyen considérablement plus faible que les estimateurs de l’erreur quadratique moyenne usuels, surtout quand la variance des effets aléatoires est faible comparativement aux variances d’échantillonnage.

    Date de diffusion : 2015-06-29
Références (3)

Références (3) ((3 résultats))

  • Enquêtes et programmes statistiques — Documentation : 91-528-X
    Description :

    Ce manuel offre des descriptions détaillées des sources de données et des méthodes utilisées par Statistique Canada pour produire des estimations de la population. Elles comportent : les estimations postcensitaires et intercensitaires de la population; la population de départ; les naissances et les décès; l'immigration; les émigrations; les résidents non permanents; la migration interprovinciale; les estimations infraprovinciales de la population; les estimations de la population selon l'âge, le sexe et l'état matrimonial et les estimations des familles de recensement. Un glossaire des termes courants est inclus à la fin du manuel, suivi de la notation normalisée utilisée.

    Auparavant, la documentation sur les changements méthodologiques pour le calcul des estimations était éparpillée dans plusieurs publications et documents d'information de Statistique Canada. Ce manuel offre aux utilisateurs de statistiques démographiques un recueil exhaustif des procédures actuelles utilisées par Statistique Canada pour élaborer des estimations de la population et des familles.

    Date de diffusion : 2015-11-17

  • Enquêtes et programmes statistiques — Documentation : 99-002-X
    Description : Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour l’Enquête nationale auprès des ménages de 2011. Il fournit les justifications opérationnelles et théoriques et présente les résultats des études d'évaluation de ces méthodes.
    Date de diffusion : 2015-01-28

  • Enquêtes et programmes statistiques — Documentation : 92-568-X
    Description :

    Ce rapport donne une description des méthodes d'échantillonnage et de pondération utilisées pour le Recensement de 2006. Il fournit un historique de l'application de ces méthodes aux recensements du Canada ainsi que les fondements opérationnels et théoriques de ces méthodes, et présente les résultats des études d'évaluation.

    Date de diffusion : 2009-08-11
Date de modification :