Inférence et fondements

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Géographie

1 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (82)

Tout (82) (0 à 10 de 82 résultats)

  • Articles et rapports : 12-001-X201800254956
    Description :

    En Italie, l’Institut statistique national (ISTAT) mène tous les trimestres l’enquête sur la population active (EPA) et en tire des estimations de la situation d’activité de la population à différents niveaux géographiques. Il estime en particulier le nombre de salariés et de chômeurs en s’appuyant sur cette enquête pour les zones locales de marché du travail (ZLMT). En tant que ZLMT, on compte 611 grappes infrarégionales de municipalités. Ce sont là des domaines non planifiés pour lesquels les estimations directes sont entachées de trop grandes erreurs d’échantillonnage, d’où la nécessité de recourir aux méthodes d’estimation sur petits domaines (EPD). Nous exposerons ici une nouvelle méthode EPD à niveaux de zones avec un modèle latent ou caché de Markov (MLM) comme modèle de couplage. Dans de tels modèles, la caractéristique d’intérêt et son évolution dans le temps sont représentées par un processus caché en chaîne de Markov, habituellement du premier ordre. Ainsi, les zones en question sont à même de changer leur état latent dans le temps. Nous appliquons le modèle proposé aux données trimestrielles de l’EPA de 2004 à 2014 et l’ajustons dans un cadre bayésien hiérarchique au moyen d’un échantillonneur de Gibbs à augmentation de données. Nous comparons nos estimations à celles du modèle classique de Fay-Herriot, à un modèle EPD à niveaux de zones et en séries chronologiques et enfin aux données du recensement de la population de 2011.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201800154928
    Description :

    Un processus à deux phases a été utilisé par la Substance Abuse and Mental Health Services Administration pour estimer la proportion d’Américains adultes atteints d’une maladie mentale grave (MMG). La première phase correspondait à la National Survey on Drug Use and Health (NSDUH) réalisée annuellement, tandis que la seconde phase consistait en un sous-échantillon aléatoire d’adultes ayant répondu à la NSDUH. Les personnes qui ont répondu à la deuxième phase d’échantillonnage ont été soumises à une évaluation clinique visant à déceler les maladies mentales graves. Un modèle de prédiction logistique a été ajusté à ce sous-échantillon en prenant la situation de MMG (oui ou non) déterminée au moyen de l’instrument de deuxième phase comme variable dépendante, et les variables connexes recueillies dans la NSDUH auprès de tous les adultes comme variables explicatives du modèle. Des estimations de la prévalence de la MMG chez l’ensemble des adultes et au sein de sous-populations d’adultes ont ensuite été calculées en attribuant à chaque participant à la NSDUH une situation de MMG établie en comparant sa probabilité estimée d’avoir une MMG avec un seuil diagnostique choisi sur la distribution des probabilités prédites. Nous étudions d’autres options que cet estimateur par seuil diagnostique classique, dont l’estimateur par probabilité. Ce dernier attribue une probabilité estimée d’avoir une MMG à chaque participant à la NSDUH. La prévalence estimée de la MMG est la moyenne pondérée de ces probabilités estimées. Au moyen des données de la NSDUH et de son sous-échantillon, nous montrons que, même si l’estimateur par probabilité donne une plus petite erreur quadratique moyenne quand on estime la prévalence de la MMG parmi l’ensemble des adultes, il a une plus grande tendance que l’estimateur par seuil diagnostique classique à présenter un biais au niveau de la sous-population.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201700254872
    Description :

    La présente note expose les fondements théoriques de l’extension de l’intervalle de couverture bilatéral de Wilson à une proportion estimée à partir de données d’enquêtes complexes. Il est démontré que l’intervalle est asymptotiquement équivalent à un intervalle calculé en partant d’une transformation logistique. Une légèrement meilleure version est examinée, mais les utilisateurs pourraient préférer construire un intervalle unilatéral déjà décrit dans la littérature.

    Date de diffusion : 2017-12-21

  • Articles et rapports : 12-001-X201700114822
    Description :

    Nous utilisons une méthode bayésienne pour inférer sur une proportion dans une population finie quand des données binaires sont recueillies selon un plan d’échantillonnage double sur des petits domaines. Le plan d’échantillonnage double correspond à un plan d’échantillonnage en grappes à deux degrés dans chaque domaine. Un modèle bayésien hiérarchique établi antérieurement suppose que, pour chaque domaine, les réponses binaires de premier degré suivent des lois de Bernoulli indépendantes et que les probabilités suivent des lois bêta paramétrisées par une moyenne et un coefficient de corrélation. La moyenne varie selon le domaine, tandis que la corrélation est la même dans tous les domaines. En vue d’accroître la flexibilité de ce modèle, nous l’avons étendu afin de permettre aux corrélations de varier. Les moyennes et les corrélations suivent des lois bêta indépendantes. Nous donnons à l’ancien modèle le nom de modèle homogène et au nouveau, celui de modèle hétérogène. Tous les hyperparamètres possèdent des distributions a priori non informatives appropriées. Une complication supplémentaire tient au fait que certains paramètres sont faiblement identifiés, ce qui rend difficile l’utilisation d’un échantillonneur de Gibbs classique pour les calculs. Donc, nous avons imposé des contraintes unimodales sur les distributions bêta a priori et utilisé un échantillonneur de Gibbs par blocs pour effectuer les calculs. Nous avons comparé les modèles hétérogène et homogène au moyen d’un exemple et d’une étude en simulation. Comme il fallait s’y attendre, le modèle double avec corrélations hétérogènes est celui qui est privilégié.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214662
    Description :

    Les plans d’échantillonnage à deux phases sont souvent utilisés dans les enquêtes lorsque la base de sondage ne contient que peu d’information auxiliaire, voire aucune. Dans la présente note, nous apportons certains éclaircissements sur le concept d’invariance souvent mentionné dans le contexte des plans d’échantillonnage à deux phases. Nous définissons deux types de plans d’échantillonnage à deux phases invariants, à savoir les plans fortement invariants et les plans faiblement invariants, et donnons des exemples. Enfin, nous décrivons les implications d’une forte ou d’une faible invariance du point de vue de l’inférence.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600114545
    Description :

    L’estimation des quantiles est une question d’intérêt dans le contexte non seulement de la régression, mais aussi de la théorie de l’échantillonnage. Les expectiles constituent une solution de rechange naturelle ou un complément aux quantiles. En tant que généralisation de la moyenne, les expectiles ont gagné en popularité ces dernières années parce qu’en plus d’offrir un portrait plus détaillé des données que la moyenne ordinaire, ils peuvent servir à calculer les quantiles grâce aux liens étroits qui les associent à ceux-ci. Nous expliquons comment estimer les expectiles en vertu d’un échantillonnage à probabilités inégales et comment les utiliser pour estimer la fonction de répartition. L’estimateur ajusté de la fonction de répartition obtenu peut être inversé pour établir les estimations des quantiles. Nous réalisons une étude par simulations pour examiner et comparer l’efficacité de l’estimateur fondé sur des expectiles.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 11-522-X201700014704
    Description :

    Il existe plusieurs domaines et sujets de recherche méthodologique en statistiques officielles. Nous expliquons pourquoi ils sont importants, et pourquoi il s’agit des plus importants pour les statistiques officielles. Nous décrivons les principaux sujets dans ces domaines de recherche et nous donnons un aperçu de ce qui semble le plus prometteur pour les aborder. Nous nous penchons ici sur: (i) la qualité des comptes nationaux, et plus particulièrement le taux de croissance du revenu national brut; (ii) les mégadonnées, et plus particulièrement la façon de créer des estimations représentatives et de tirer le meilleur parti possible des mégadonnées, lorsque cela semble difficile ou impossible; Nous abordons aussi : (i) l’amélioration de l’actualité des estimations statistiques provisoires et finales; (ii) l’analyse statistique, plus particulièrement des phénomènes complexes et cohérents. Ces sujets font partie de l’actuel programme de recherche méthodologique stratégique qui a été adopté récemment à Statistique Pays-Bas.

    Date de diffusion : 2016-03-24

  • Articles et rapports : 11-522-X201700014713
    Description :

    Le terme mégadonnées peut signifier différentes choses pour différentes personnes. Pour certaines, il s’agit d’ensembles de données que nos systèmes classiques de traitement et d’analyse ne peuvent plus traiter. Pour d’autres, cela veut simplement dire tirer parti des ensembles de données existants de toutes tailles et trouver des façons de les fusionner, avec comme objectif de produire de nouveaux éléments de connaissance. La première perspective présente un certain nombre de défis importants pour les études traditionnelles de marché, recherches sur l’opinion et recherches sociales. Dans l’un ou l’autre cas, il existe des répercussions pour l’avenir des enquêtes, qu’on commence à peine à explorer.

    Date de diffusion : 2016-03-24

  • Articles et rapports : 11-522-X201700014727
    Description :

    "Des échantillons probabilistes tirés de bases de sondage quasi-universelles de ménages et de personnes, des mesures normalisées, qui donnent lieu à des enregistrements de données multivariées, analysés au moyen de procédures statistiques reflétant le plan de sondage – c’est-ce qui a constitué le fondement des sciences sociales empiriques pendant 75 ans. C’est cette structure de mesure qui a donné au monde développé la grande majorité de nos connaissances actuelles sur nos sociétés et leurs économies. Les données d’enquête conservées actuellement constituent un dossier historique unique. Cependant, nous vivons maintenant dans un monde de données bien différent de celui dans lequel les dirigeants des organismes statistiques et des sciences sociales ont grandi. Nous produisons maintenant des données multidimensionnelles à partir de recherches sur Internet, de dispositifs mobiles connectés à Internet, des médias sociaux, de différents capteurs, de lecteurs optiques de magasins de détails et d’autres dispositifs. Certains estiment que la taille de ces sources de données augmente de 40 % par année. La taille totale de ces nouvelles sources de données éclipse celle des enquêtes fondées sur un échantillon probabiliste. De plus, les enquêtes fondées sur des échantillons ne se portent pas très bien dans le monde développé. La baisse des taux de participation aux enquêtes est liée aux coûts de plus en plus élevés de la collecte des données. Malgré des besoins en information croissants, la création de nouveaux instruments d’enquête est entravée par les restrictions budgétaires imposées aux organismes de statistique officielle et aux sources de financement de la recherche en sciences sociales. Toutes ces observations représentent des défis sans précédent pour le paradigme de base de l’inférence dans les sciences sociales et économiques. L’article propose de nouvelles approches à mettre en œuvre pour ce moment charnière historique. "

    Date de diffusion : 2016-03-24

  • Articles et rapports : 11-522-X201700014738
    Description :

    Sous l’approche classique de traitement des observations manquantes fondée sur le plan de sondage, la construction de classes de pondération et le calage sont utilisés pour ajuster les poids de sondage pour les répondants présents dans l’échantillon. Ici, nous utilisons ces poids ajustés pour définir une loi de Dirichlet qui peut servir à faire des inférences au sujet de la population. Des exemples montrent que les procédures résultantes possèdent de meilleures propriétés de performance que les méthodes classiques quand la population est asymétrique.

    Date de diffusion : 2016-03-24
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (69)

Analyses (69) (30 à 40 de 69 résultats)

  • Articles et rapports : 11-522-X20030017700
    Description :

    Ce document propose un cadre utile pour examiner l'incidence des écarts modérés à partir de conditions idéalisées. On présente également des critères d'évaluation pour les estimateurs ponctuels et les estimateurs d'intervalles.

    Date de diffusion : 2005-01-26

  • Articles et rapports : 11-522-X20030017722
    Description :

    Dans ce document, on montre comment adapter les cadres de travail basés sur le plan de sondage et basés sur un modèle dans le cas de l'échantillonnage à deux degrés

    Date de diffusion : 2005-01-26

  • Articles et rapports : 11-522-X20020016708
    Description :

    Cette étude traite de l'analyse des données d'enquêtes complexes sur la santé par des méthodes de modélisation multivariées. L'étude porte principalement sur diverses méthodes basées sur le plan d'échantillonnage ou basées sur un modèle qui visent à tenir compte de la complexité du plan d'échantillonnage, y compris la mise en grappes, la stratification et la pondération. Les méthodes étudiées incluent la modélisation linéaire généralisée fondée sur la pseudo-méthode de vraisemblance et les équations d'estimations généralisées, les modèles linéaires mixtes estimés par le maximum de vraisemblance restreint et les techniques hiérarchiques bayesiennes basées sur les méthodes de simulation de Monte Carlo d'une chaîne de Markov (MCMC). On compare empiriquement les méthodes sur des données provenant d'une grande enquête comprenant une interview sur la santé et un examen physique réalisés en Finlande en 2000 (Health 2000 Study).

    Les données de la Health 2000 Study ont été recueillies au moyen d'interviews sur place, de questionnaires et d'examens cliniques. L'enquête a été réalisée auprès d'un échantillon en grappes stratifié à deux degrés. Le plan d'échantillonnage comportait des corrélations intra grappes positives pour nombre de variables étudiées. En vue d'une étude plus approfondie, on a choisi un petit nombre de variables tirées des volets de l'interview sur la santé et de l'examen clinique. Dans de nombreux cas, les diverses méthodes ont produit des résultats numériques comparables et appuyés des conclusions statistiques similaires. Celles qui ne tenaient pas compte de la complexité du plan d'échantillonnage ont parfois produit des conclusions contradictoires. On discute aussi de l'application des méthodes lors de l'utilisation de logiciels statistiques standards.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016717
    Description :

    Aux États-Unis, la National Health and Nutrition Examination Survey (NHANES) est couplée à la National Health Interview Survey (NHIS) au niveau de l'unité primaire d'échantillonnage (les mêmes comtés, mais pas nécessairement les mêmes personnes, participent aux deux enquêtes). La NHANES est réalisée auprès d'environ 5 000 personnes par année, tandis que la NHIS l'est auprès d'environ 100 000 personnes par année. Dans cet article, on expose les propriétés de modèles qui permettent d'utiliser les données de la NHIS et des données administratives comme information auxiliaire pour estimer les valeurs des variables étudiées dans le cadre de la NHANES. La méthode, qui est apparentée aux modèles régionaux de Fay Herriot (1979) et aux estimateurs par calage de Deville et Sarndal (1992), tient compte des plans de sondage dans la structure de l'erreur.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016719
    Description :

    Dans cette étude, on examine les méthodes de modélisation utilisées pour les données sur la santé publique. Les spécialistes de la santé publique manifestent un regain d'intérêt pour l'étude des effets de l'environnement sur la santé. Idéalement, les études écologiques ou contextuelles explorent ces liens au moyen de données sur la santé publique étoffées de données sur les caractéristiques environnementales à l'aide de modèles multiniveaux ou hiérarchiques. Dans ces modèles, le premier niveau correspond aux données des personnes sur la santé et le deuxième, aux données des collectivités. La plupart des données sur la santé publique proviennent d'enquêtes à plan d'échantillonnage complexe qui obligent, lors de l'analyse, à tenir compte de la mise en grappes, de la non-réponse et de la post-stratification pour obtenir des estimations représentatives de la prévalence des comportements posant un risque pour la santé.

    Cette étude est basée sur le Behavioral Risk Factor Surveillance System (BRFSS). Il s'agit d'un système américain de surveillance des facteurs de risque pour la santé selon l'État exploité par les Centers for Disease Control and Prevention en vue d'évaluer chaque année les facteurs de risque pour la santé chez plus de 200 000 adultes. Les données du BRFSS sont maintenant produites à l'échelle de la région métropolitaine statistique (MSA pour metropolitan statistical area) et fournissent des données de qualité sur la santé pour les études des effets de l'environnement. Les exigences conjuguées du plan d'échantillonnage et des analyses à plusieurs niveaux compliquent encore davantage les analyses à l'échelle de la MSA combinant les données sur la santé et sur l'environnement.

    On compare trois méthodes de modélisation dans le cadre d'une étude sur l'activité physique et certains facteurs environnementaux à l'aide de données du BRFSS de 2000. Chaque méthode décrite ici est un moyen valide d'analyser des données d'enquête à plan d'échantillonnage complexe complétées de données environnementales, quoique chacune tienne compte de façon différente du plan d'échantillonnage et de la structure multiniveau des données. Ces méthodes conviennent donc à l'étude de questions légèrement différentes.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016727
    Description :

    Les données tirées du recensement sont largement utilisées pour procéder à la répartition et au ciblage des ressources aux échelons national, régional et local. Au Royaume-Uni, un recensement de la population est mené tous les 10 ans. En s'éloignant de la date du recensement, les données du recensement deviennent périmées et moins pertinentes, ce qui rend la répartition des ressources moins équitable. Dans cette étude, on analyse les différentes méthodes pour résoudre ce problème.

    Plusieurs méthodes aréolaires ont été mises au point pour produire des estimations postcensitaires, y compris la technique d'estimation préservant la structure mise au point par Purcell et Kish (1980). Cette étude porte sur la méthode de modélisation linéaire variable pour produire des estimations postcensitaires. On teste la validité de la méthode au moyen de données simulées à partir du registre de population de la Finlande et on applique la technique aux données britanniques pour produire des estimations mises à jour pour plusieurs indicateurs du recensement de 1991.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016730
    Description :

    Une vaste gamme de modèles utilisés dans le domaine de la recherche sociale et économique peuvent être représentés en spécifiant une structure paramétrique pour les covariances des variables observées. L'existence de logiciels tels que LISREL (Jöreskog et Sörbom, 1988) et EQS (Bentler, 1995) a permis d'ajuster ces modèles aux données d'enquêtes dans de nombreuses applications. Dans cet article, on étudie deux inférences au sujet de ce genre de modèle en utilisant des données d'enquêtes à plan d'échantillonnage complexe. On examine les preuves de l'existence de biais d'échantillon fini dans l'estimation des paramètres et les moyens de réduire ces biais (Altonji et Segal, 1996), ainsi que les questions connexes de l'efficacité de l'estimation, de l'estimation de l'erreur type et des tests. On utilise des données longitudinales provenant de la British Household Panel Survey en guise d'illustration. La collecte de ces données étant sujette à l'érosion de l'échantillon, on examine aussi comment utiliser des poids de non réponse dans la modélisation.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016731
    Description :

    En recherche behavioriste, diverses techniques sont utilisées pour prédire les scores des répondants pour des facteurs ou des concepts que l'on ne peut observer directement. La satisfaction concernant l'emploi, le stress au travail, l'aptitude à poursuivre des études de deuxième ou de troisième cycle et les aptitudes mathématiques des enfants en sont des exemples. Les méthodes utilisées couramment pour modéliser ce genre de concepts incluent l'analyse factorielle, la modélisation d'équation structurelle, les échelles psychométriques classiques et la théorie de la réponse à l'item, et, pour chaque méthode, il existe souvent plusieurs stratégies distinctes permettant de produire des scores individuels. Cependant, les chercheurs se satisfont rarement de simples mesures de ces concepts. Souvent, ils utilisent des scores dérivés en tant que variables dépendantes ou indépendantes dans la régression multiple, l'analyse de la variance et de nombreuses autres procédures multivariées. Bien que ces applications de scores dérivés puissent produire des estimations biaisées des paramètres des modèles structuraux, ces difficultés sont mal comprises et souvent ignorées. Nous passerons en revue les publications qui traitent de la question, en mettant l'accent sur les méthodes de la TRI, en vue de déterminer quels sont les domaines problématiques et de formuler des questions à étudier dans l'avenir.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016733
    Description :

    Bien qu'on considère souvent que les recensements et les enquêtes donnent des mesures des populations telles qu'elles sont, la plupart reflètent les renseignements sur les particuliers tels qu'ils étaient au moment où la mesure a été effectuée, voire à un point antérieur dans le temps. Par conséquent, les inférences faites à partir de telles données doivent tenir compte des changements qui surviennent au fil du temps à l'échelle de la population et des particuliers. Dans cet article, on fournit un cadre unique pour ce type de problèmes d'inférence, en l'illustrant au moyen de divers exemples, dont : 1) l'estimation de la situation de résidence le jour du recensement d'après des dossiers administratifs multiples; 2) la combinaison de dossiers administratifs pour estimer la taille de la population des États-Unis; 3) l'utilisation de moyennes mobiles tirées de l'American Community Survey; 4) l'estimation de la prévalence de l'abus des droits de l'homme.

    Plus précisément, à l'échelle de la population, les variables étudiées, telles que la taille ou les caractéristiques moyennes d'une population, pourraient évoluer. Parallèlement, des sujets individuels pourraient rentrer dans le champ de l'étude ou en sortir, ou changer de caractéristiques. Ces changements au fil du temps peuvent avoir des répercussions sur les études statistiques de données gouvernementales qui regroupent des renseignements provenant de sources multiples, y compris des recensements, des enquêtes et des dossiers administratifs, une pratique de plus en plus courante. Les inférences d'après les bases de données fusionnées résultantes dépendent souvent fortement de choix particuliers faits au moment de combiner, de vérifier et d'analyser les données qui reflètent des hypothèses quant à l'évolution ou à la stabilité de la population au fil du temps.

    Date de diffusion : 2004-09-13

  • Articles et rapports : 11-522-X20020016743
    Description :

    On s'intéresse beaucoup à l'utilisation de données provenant d'enquêtes longitudinales pour comprendre les processus qui surviennent au cours de la vie, comme la scolarité, l'emploi, la fécondité, la santé et le mariage. L'analyse des données sur la durée des épisodes que vivent les personnes dans certains états (par exemple, l'emploi, le mariage) est un des outils principaux de l'étude de ces processus. Cet article porte sur les méthodes d'analyse des données sur la durée qui tiennent compte de caractéristiques importantes des enquêtes longitudinales, à savoir l'utilisation de plans d'échantillonnage complexes dans des populations hétérogènes, l'absence ou l'inexactitude des renseignements sur le moment où ont lieu les événements et la possibilité qu'il existe des mécanismes de retrait de l'enquête ou de censure des données qui ne peuvent être ignorés. On considère des méthodes paramétriques et non paramétriques d'estimation et de vérification des modèles. On propose de nouvelles méthodes, ainsi que des méthodes existantes qu'on applique à l'analyse des données sur la durée provenant de l'Enquête sur la dynamique du travail et du revenu (EDTR) réalisée au Canada.

    Date de diffusion : 2004-09-13
Références (16)

Références (16) (0 à 10 de 16 résultats)

  • Enquêtes et programmes statistiques — Documentation : 11-522-X201300014259
    Description :

    Dans l’optique de réduire le fardeau de réponse des exploitants agricoles, Statistique Canada étudie d’autres approches que les enquêtes par téléphone pour produire des estimations des grandes cultures. Une option consiste à publier des estimations de la superficie récoltée et du rendement en septembre, comme cela se fait actuellement, mais de les calculer au moyen de modèles fondés sur des données par satellite et des données météorologiques, ainsi que les données de l’enquête téléphonique de juillet. Toutefois, avant d’adopter une telle approche, on doit trouver une méthode pour produire des estimations comportant un niveau d’exactitude suffisant. Des recherches sont en cours pour examiner différentes possibilités. Les résultats de la recherche initiale et les enjeux à prendre en compte sont abordés dans ce document.

    Date de diffusion : 2014-10-31

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201300211887
    Description :

    Les modèles multiniveaux sont d'usage très répandu pour analyser les données d'enquête en faisant concorder la hiérarchie du plan de sondage avec la hiérarchie du modèle. Nous proposons une approche unifiée, basée sur une log-vraisemblance composite pondérée par les poids de sondage pour des modèles à deux niveaux, qui mène à des estimateurs des paramètres du modèle convergents sous le plan et sous le modèle, même si les tailles d'échantillon dans les grappes sont petites, à condition que le nombre de grappes échantillonnées soit grand. Cette méthode permet de traiter les modèles à deux niveaux linéaires ainsi que linéaires généralisés et requiert les probabilités d'inclusion de niveau 2 et de niveau 1, ainsi que les probabilités d'inclusion conjointe de niveau 1, où le niveau 2 représente une grappe et le niveau 1, un élément dans une grappe. Nous présentons aussi les résultats d'une étude en simulation qui donnent la preuve que la méthode proposée est supérieure aux méthodes existantes sous échantillonnage informatif.

    Date de diffusion : 2014-01-15

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200211758
    Description :

    Le présent article décrit l'élaboration de deux méthodes bayésiennes d'inférence au sujet des quantiles de variables d'intérêt continues d'une population finie sous échantillonnage avec probabilités inégales. La première de ces méthodes consiste à estimer les fonctions de répartition des variables étudiées continues en ajustant un certain nombre de modèles de régression probit avec splines pénalisées sur les probabilités d'inclusion. Les quantiles de population finie sont alors obtenus par inversion des fonctions de répartition estimées. Cette méthode demande considérablement de calculs. La deuxième méthode consiste à prédire les valeurs pour les unités non échantillonnées en supposant qu'il existe une relation variant de façon lisse entre la variable étudiée continue et la probabilité d'inclusion, en modélisant la fonction moyenne ainsi que de la fonction de variance en se servant de splines. Les deux estimateurs bayésiens fondés sur un modèle avec splines donnent un compromis désirable entre la robustesse et l'efficacité. Des études par simulation montrent que les deux méthodes produisent une racine carrée de l'erreur quadratique moyenne plus faible que l'estimateur pondéré par les poids de sondage et que les estimateurs par le ratio et par différence décrits dans Rao, Kovar et Mantel (RKM 1990), et qu'ils sont plus robustes à la spécification incorrecte du modèle que l'estimateur fondé sur un modèle de régression passant par l'origine décrit dans Chambers et Dunstan (1986). Lorsque la taille de l'échantillon est petite, les intervalles de crédibilité à 95 % des deux nouvelles méthodes ont une couverture plus proche du niveau nominal que l'estimateur pondéré par les poids de sondage.

    Date de diffusion : 2012-12-19

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200111688
    Description :

    Nous étudions le problème de la non-réponse non ignorable dans un tableau de contingence bidimensionnel qui peut être créé individuellement pour plusieurs petits domaines en présence de non-réponse partielle ainsi que totale. En général, le fait de prendre en considération les deux types de non-réponse dans les données sur les petits domaines accroît considérablement la complexité de l'estimation des paramètres du modèle. Dans le présent article, nous conceptualisons le tableau complet des données pour chaque domaine comme étant constitué d'un tableau contenant les données complètes et de trois tableaux supplémentaires pour les données de ligne manquantes, les données de colonne manquantes et les données de ligne et de colonne manquantes, respectivement. Dans des conditions de non-réponse non ignorable, les probabilités totales de cellule peuvent varier en fonction du domaine, de la cellule et de ces trois types de « données manquantes ». Les probabilités de cellule sous-jacentes (c'est-à-dire celles qui s'appliqueraient s'il était toujours possible d'obtenir une classification complète) sont produites pour chaque domaine à partir d'une loi commune et leur similarité entre les domaines est quantifiée paramétriquement. Notre approche est une extension de l'approche de sélection sous non-réponse non ignorable étudiée par Nandram et Choi (2002a, b) pour les données binaires ; cette extension crée une complexité supplémentaire qui découle de la nature multivariée des données et de la structure des petits domaines. Comme dans les travaux antérieurs, nous utilisons un modèle d'extension centré sur un modèle de non-réponse ignorable de sorte que la probabilité totale de cellule dépend de la catégorie qui représente la réponse. Notre étude s'appuie sur des modèles hiérarchiques bayésiens et des méthodes Monte Carlo par chaîne de Markov pour l'inférence a posteriori. Nous nous servons de données provenant de la troisième édition de la National Health and Nutrition Examination Survey pour illustrer les modèles et les méthodes.

    Date de diffusion : 2012-06-27

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201100211603
    Description :

    De nombreuses enquêtes par sondage comprennent des questions suscitant une réponse binaire (par exemple, obèse, non obèse) pour un certain nombre de petits domaines. Une inférence est requise au sujet de la probabilité d'une réponse positive (par exemple obèse) dans chaque domaine, la probabilité étant la même pour tous les individus dans chaque domaine et différente entre les domaines. Étant donné le peu de données dans les domaines, les estimateurs directs ne sont pas fiables et il est nécessaire d'utiliser des données provenant d'autres domaines pour améliorer l'inférence pour un domaine particulier. Essentiellement, il est supposé a priori que les domaines sont similaires, si bien que le choix d'un modèle hiérarchique bayésien, le modèle bêta-binomial standard, est naturel. L'innovation tient au fait qu'un praticien peut disposer d'information a priori supplémentaire qui est nécessaire au sujet d'une combinaison linéaire des probabilités. Par exemple, une moyenne pondérée des probabilités est un paramètre, et l'information peut être obtenue au sujet de ce paramètre, ce qui rend le paradigme bayésien approprié. Nous avons modifié le modèle bêta-binomial standard pour petits domaines afin d'y intégrer l'information a priori sur la combinaison linéraire des probabilités, que nous appelons une contrainte. Donc, il existe trois cas. Le practicien a) ne spécifie pas de contrainte, b) spécifie une contrainte et le paramètre entièrement et c) spécifie une contrainte et l'information qui peut être utilisée pour construire une loi a priori pour le paramètre. L'échantillonneur de Gibbs « griddy » est utilisé pour ajuster les modèles. Pour illustrer notre méthode, nous prenons l'exemple de l'obésité chez les enfants dans la National Health and Nutrition Examination Survey dans laquelle les petits domaines sont formés par croisement de l'école (cycle secondaire inférieur ou supérieur), de l'etnicité (blanche, noire, mexicaine) et du sexe (masculin, féminin). Nous procédons à une étude en simulation pour évaluer certaines caractéristiques statistiques de notre méthode. Nous avons montré que le gain de précision au-delà de (a) est dans l'ordre où (b) est plus grand que (c).

    Date de diffusion : 2011-12-21

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201000111250
    Description :

    Nous proposons un estimateur de prédiction bayésien avec splines pénalisées (PBSP pour Bayesian Penalized Spline Predictive) pour une proportion de population finie sous échantillonnage avec probabilités inégales. Cette nouvelle méthode permet d'intégrer directement les probabilités d'inclusion dans l'estimation d'une proportion de population, en effectuant une régression probit du résultat binaire sur la fonction spline pénalisée des probabilités d'inclusion. La loi prédictive a posteriori de la proportion de population est obtenue en utilisant l'échantillonnage de Gibbs. Nous démontrons les avantages de l'estimateur PBSP comparativement à l'estimateur de Hájek (HK), à l'estimateur par la régression généralisée (RG) et aux estimateurs de prédiction fondés sur un modèle paramétrique au moyen d'études en simulation et d'un exemple réel de vérification fiscale. Les études en simulation montrent que l'estimateur PBSP est plus efficace et donne un intervalle de crédibilité à 95 % dont la probabilité de couverture est meilleure et dont la largeur moyenne est plus étroite que les estimateurs HK et RG, surtout quand la proportion de population est proche de zéro ou de un, ou que l'échantillon est petit. Comparativement aux estimateurs de prédiction fondés sur un modèle linéaire, les estimateurs PBSP sont robustes à l'erreur de spécification du modèle et à la présence d'observations influentes dans l'échantillon.

    Date de diffusion : 2010-06-29

  • Enquêtes et programmes statistiques — Documentation : 12-002-X20040027035
    Description :

    Lors du traitement des données du cycle 4 de l'Enquête longitudinale nationale sur les enfants et les jeunes (ELNEJ), des révisions historiques ont été apportées au trois premiers cycles de l'enquête afin de corriger des erreurs et faire une mise à jour des données. Au cours du traitement, une attention particulière a été portée à la variable PERSRUK (l'identificateur au niveau de la personne) et à la variable FIELDRUK (l'identificateur au niveau du ménage). Le même niveau d'attention n'a pas été accordé aux autres identificateurs incluent dans la base de données, soit, la variable CHILDID (un identificateur au niveau de l'enfant) et la variable _IDHD01 (un identificateur au niveau du ménage). Ces identificateurs ont été créés pour les fichiers publics et ils se retrouvent par défaut dans les fichiers maîtres. Lorsque les fichiers maîtres sont utilisés, la variable PERSRUK devrait être utilisée pour lier les différents fichiers de données de l'enquête entre eux et la variable FIELDRUK pour déterminer le ménage.

    Date de diffusion : 2004-10-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001003
    Description :

    Les premiers résultats de l'Enquête sur la sécurité financière (ESF), qui fournit de l'information sur la valeur nette du patrimoine des Canadiens, ont été publiés le 15 mars 2001 dans Le quotidien. L'enquête a recueilli des renseignements sur la valeur des avoirs financiers et non financiers de chaque unité familiale et sur le montant de sa dette.

    Statistique Canada travaille actuellement à préciser cette première estimation de la valeur nette en y ajoutant une estimation de la valeur des droits à pension constitués dans les régimes de retraite d'employeur. Il s'agit d'un volet essentiel pour toute enquête sur l'avoir et la dette étant donné que, pour la plupart des unités familiales, c'est probablement l'un des avoirs les plus importants. Le vieillissement de la population rend l'information sur la constitution des droits à pension nécessaire afin de mieux comprendre la situation financière des personnes qui approchent de la retraite. Ces estimations mises à jour seront publiées à la fin de l'automne 2001.

    Le processus utilisé pour obtenir une estimation de la valeur des droits à pension constitués dans les régimes de pension agréés d'employeur (RPA) est complexe. Le présent document décrit la méthodologie utilisée pour estimer cette valeur en ce qui concerne les groupes suivants : a) Les personnes qui faisaient partie d'un RPA au moment de l'enquête (appelées membres actuels d'un régime de retraite); b) Les personnes qui ont déjà fait partie d'un RPA et qui ont laissé l'argent dans le régime de retraite ou qui l'ont transféré dans un nouveau régime de retraite; c) Les personnes qui touchent des prestations d'un RPA.

    Cette méthodologie a été proposée par Hubert Frenken et Michael Cohen. Hubert Frenken compte de nombreuses années d'expérience avec Statistique Canada où il a travaillé avec des données sur les régimes de retraite d'employeur. Michael Cohen fait partie de la direction de la firme d'actuariat-conseil William M. Mercer. Plus tôt cette année, Statistique Canada a organisé une consultation publique sur la méthodologie proposée. Le présent rapport inclut des mises à jour faites après avoir reçu les rétroactions des utilisateurs des données.

    Date de diffusion : 2001-09-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001002
    Description :

    L'Enquête sur la sécurité financière (ESF) fournira des renseignements sur la situation nette des Canadiens. C'est pourquoi elle a recueilli, en mai et juin 1999, des données sur la valeur de l'avoir et de la dette de chacune des familles ou personnes seules comprises dans l'échantillon. Il s'est avéré difficile de calculer ou d'estimer la valeur d'un avoir en particulier, à savoir la valeur actualisée du montant que les répondants ont constitué dans leur régime de retraite d'employeur. On appelle souvent ces régimes des régimes de pension agréés (RPA), car ils doivent être agréés par l'Agence des douanes et du revenu du Canada (ARDC) (c'est-à-dire enregistrés auprès de l'ADRC). Bien qu'on communique à certains participants à un RPA une estimation de la valeur de leurs droits constitués, ils l'ignorent dans la plupart des cas. Pourtant, il s'agit sans doute d'un des avoirs les plus importants pour bon nombre d'unités familiales. De plus, à mesure que la génération du baby boom se rapproche de la retraite, le besoin d'information sur ses rentes constituées se fait très pressant si l'on veut mieux comprendre sa capacité financière à négocier ce nouveau virage.

    La présente étude vise deux objectifs : décrire, pour stimuler des discussions, la méthodologie proposée en vue d'estimer la valeur actualisée des droits à pension pour les besoins de l'Enquête sur la sécurité financière; et recueillir des réactions à la méthodologie proposée. Le présent document propose une méthodologie pour estimer la valeur des droits constitués dans un régime d'employeur pour les groupes suivants : a) les personnes qui adhéraient à un RPA au moment de l'enquête (les «participants actuels»); b) les personnes qui ont déjà adhéré à un RPA et qui ont soit laissé leurs fonds dans le régime ou les ont transférés dans un nouveau régime; et c) les personnes qui touchent une rente prévue par un RPA.

    Date de diffusion : 2001-02-07

  • Enquêtes et programmes statistiques — Documentation : 11-522-X19990015642
    Description :

    La Base de données longitudinale sur l'immigration (BDIM) établit un lien entre les dossiers administratifs de l'immigration et de l'impôt en une source exhaustive de données sur le comportement sur le marché du travail de la population des immigrants ayant obtenu le droit d'établissement au Canada. Elle porte sur la période de 1980 à 1995 et sera mise à jour en 1999 pour l'année d'imposition 1996. Statistique Canada gère la base de données pour le compte d'un consortium fédéral-provincial dirigé par Citoyenneté et Immigration Canada. Le présent document examine les enjeux du développement d'une base de données longitudinale combinant des dossiers administratifs, à l'appui de la recherche et de l'analyse en matière de politiques. L'accent est plus particulièrement mis sur les questions de méthodologie, de concepts, d'analyse et de protection des renseignements personnels découlant de la création et du développement continu de cette base de données. Le présent document aborde en outre brièvement les résultats des recherches, qui illustrent les liens en matière de résultats des politiques que la BDIM permet aux décideurs d'examiner.

    Date de diffusion : 2000-03-02
Date de modification :