Inférence et fondements

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Aide à l'ordre
entrées

Résultats

Tout (15)

Tout (15) (0 à 10 de 15 résultats)

  • Enquêtes et programmes statistiques — Documentation : 11-522-X201300014259
    Description :

    Dans l’optique de réduire le fardeau de réponse des exploitants agricoles, Statistique Canada étudie d’autres approches que les enquêtes par téléphone pour produire des estimations des grandes cultures. Une option consiste à publier des estimations de la superficie récoltée et du rendement en septembre, comme cela se fait actuellement, mais de les calculer au moyen de modèles fondés sur des données par satellite et des données météorologiques, ainsi que les données de l’enquête téléphonique de juillet. Toutefois, avant d’adopter une telle approche, on doit trouver une méthode pour produire des estimations comportant un niveau d’exactitude suffisant. Des recherches sont en cours pour examiner différentes possibilités. Les résultats de la recherche initiale et les enjeux à prendre en compte sont abordés dans ce document.

    Date de diffusion : 2014-10-31

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201300211887
    Description :

    Les modèles multiniveaux sont d'usage très répandu pour analyser les données d'enquête en faisant concorder la hiérarchie du plan de sondage avec la hiérarchie du modèle. Nous proposons une approche unifiée, basée sur une log-vraisemblance composite pondérée par les poids de sondage pour des modèles à deux niveaux, qui mène à des estimateurs des paramètres du modèle convergents sous le plan et sous le modèle, même si les tailles d'échantillon dans les grappes sont petites, à condition que le nombre de grappes échantillonnées soit grand. Cette méthode permet de traiter les modèles à deux niveaux linéaires ainsi que linéaires généralisés et requiert les probabilités d'inclusion de niveau 2 et de niveau 1, ainsi que les probabilités d'inclusion conjointe de niveau 1, où le niveau 2 représente une grappe et le niveau 1, un élément dans une grappe. Nous présentons aussi les résultats d'une étude en simulation qui donnent la preuve que la méthode proposée est supérieure aux méthodes existantes sous échantillonnage informatif.

    Date de diffusion : 2014-01-15

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200211758
    Description :

    Le présent article décrit l'élaboration de deux méthodes bayésiennes d'inférence au sujet des quantiles de variables d'intérêt continues d'une population finie sous échantillonnage avec probabilités inégales. La première de ces méthodes consiste à estimer les fonctions de répartition des variables étudiées continues en ajustant un certain nombre de modèles de régression probit avec splines pénalisées sur les probabilités d'inclusion. Les quantiles de population finie sont alors obtenus par inversion des fonctions de répartition estimées. Cette méthode demande considérablement de calculs. La deuxième méthode consiste à prédire les valeurs pour les unités non échantillonnées en supposant qu'il existe une relation variant de façon lisse entre la variable étudiée continue et la probabilité d'inclusion, en modélisant la fonction moyenne ainsi que de la fonction de variance en se servant de splines. Les deux estimateurs bayésiens fondés sur un modèle avec splines donnent un compromis désirable entre la robustesse et l'efficacité. Des études par simulation montrent que les deux méthodes produisent une racine carrée de l'erreur quadratique moyenne plus faible que l'estimateur pondéré par les poids de sondage et que les estimateurs par le ratio et par différence décrits dans Rao, Kovar et Mantel (RKM 1990), et qu'ils sont plus robustes à la spécification incorrecte du modèle que l'estimateur fondé sur un modèle de régression passant par l'origine décrit dans Chambers et Dunstan (1986). Lorsque la taille de l'échantillon est petite, les intervalles de crédibilité à 95 % des deux nouvelles méthodes ont une couverture plus proche du niveau nominal que l'estimateur pondéré par les poids de sondage.

    Date de diffusion : 2012-12-19

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200111688
    Description :

    Nous étudions le problème de la non-réponse non ignorable dans un tableau de contingence bidimensionnel qui peut être créé individuellement pour plusieurs petits domaines en présence de non-réponse partielle ainsi que totale. En général, le fait de prendre en considération les deux types de non-réponse dans les données sur les petits domaines accroît considérablement la complexité de l'estimation des paramètres du modèle. Dans le présent article, nous conceptualisons le tableau complet des données pour chaque domaine comme étant constitué d'un tableau contenant les données complètes et de trois tableaux supplémentaires pour les données de ligne manquantes, les données de colonne manquantes et les données de ligne et de colonne manquantes, respectivement. Dans des conditions de non-réponse non ignorable, les probabilités totales de cellule peuvent varier en fonction du domaine, de la cellule et de ces trois types de « données manquantes ». Les probabilités de cellule sous-jacentes (c'est-à-dire celles qui s'appliqueraient s'il était toujours possible d'obtenir une classification complète) sont produites pour chaque domaine à partir d'une loi commune et leur similarité entre les domaines est quantifiée paramétriquement. Notre approche est une extension de l'approche de sélection sous non-réponse non ignorable étudiée par Nandram et Choi (2002a, b) pour les données binaires ; cette extension crée une complexité supplémentaire qui découle de la nature multivariée des données et de la structure des petits domaines. Comme dans les travaux antérieurs, nous utilisons un modèle d'extension centré sur un modèle de non-réponse ignorable de sorte que la probabilité totale de cellule dépend de la catégorie qui représente la réponse. Notre étude s'appuie sur des modèles hiérarchiques bayésiens et des méthodes Monte Carlo par chaîne de Markov pour l'inférence a posteriori. Nous nous servons de données provenant de la troisième édition de la National Health and Nutrition Examination Survey pour illustrer les modèles et les méthodes.

    Date de diffusion : 2012-06-27

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201100211603
    Description :

    De nombreuses enquêtes par sondage comprennent des questions suscitant une réponse binaire (par exemple, obèse, non obèse) pour un certain nombre de petits domaines. Une inférence est requise au sujet de la probabilité d'une réponse positive (par exemple obèse) dans chaque domaine, la probabilité étant la même pour tous les individus dans chaque domaine et différente entre les domaines. Étant donné le peu de données dans les domaines, les estimateurs directs ne sont pas fiables et il est nécessaire d'utiliser des données provenant d'autres domaines pour améliorer l'inférence pour un domaine particulier. Essentiellement, il est supposé a priori que les domaines sont similaires, si bien que le choix d'un modèle hiérarchique bayésien, le modèle bêta-binomial standard, est naturel. L'innovation tient au fait qu'un praticien peut disposer d'information a priori supplémentaire qui est nécessaire au sujet d'une combinaison linéaire des probabilités. Par exemple, une moyenne pondérée des probabilités est un paramètre, et l'information peut être obtenue au sujet de ce paramètre, ce qui rend le paradigme bayésien approprié. Nous avons modifié le modèle bêta-binomial standard pour petits domaines afin d'y intégrer l'information a priori sur la combinaison linéraire des probabilités, que nous appelons une contrainte. Donc, il existe trois cas. Le practicien a) ne spécifie pas de contrainte, b) spécifie une contrainte et le paramètre entièrement et c) spécifie une contrainte et l'information qui peut être utilisée pour construire une loi a priori pour le paramètre. L'échantillonneur de Gibbs « griddy » est utilisé pour ajuster les modèles. Pour illustrer notre méthode, nous prenons l'exemple de l'obésité chez les enfants dans la National Health and Nutrition Examination Survey dans laquelle les petits domaines sont formés par croisement de l'école (cycle secondaire inférieur ou supérieur), de l'etnicité (blanche, noire, mexicaine) et du sexe (masculin, féminin). Nous procédons à une étude en simulation pour évaluer certaines caractéristiques statistiques de notre méthode. Nous avons montré que le gain de précision au-delà de (a) est dans l'ordre où (b) est plus grand que (c).

    Date de diffusion : 2011-12-21

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201000111250
    Description :

    Nous proposons un estimateur de prédiction bayésien avec splines pénalisées (PBSP pour Bayesian Penalized Spline Predictive) pour une proportion de population finie sous échantillonnage avec probabilités inégales. Cette nouvelle méthode permet d'intégrer directement les probabilités d'inclusion dans l'estimation d'une proportion de population, en effectuant une régression probit du résultat binaire sur la fonction spline pénalisée des probabilités d'inclusion. La loi prédictive a posteriori de la proportion de population est obtenue en utilisant l'échantillonnage de Gibbs. Nous démontrons les avantages de l'estimateur PBSP comparativement à l'estimateur de Hájek (HK), à l'estimateur par la régression généralisée (RG) et aux estimateurs de prédiction fondés sur un modèle paramétrique au moyen d'études en simulation et d'un exemple réel de vérification fiscale. Les études en simulation montrent que l'estimateur PBSP est plus efficace et donne un intervalle de crédibilité à 95 % dont la probabilité de couverture est meilleure et dont la largeur moyenne est plus étroite que les estimateurs HK et RG, surtout quand la proportion de population est proche de zéro ou de un, ou que l'échantillon est petit. Comparativement aux estimateurs de prédiction fondés sur un modèle linéaire, les estimateurs PBSP sont robustes à l'erreur de spécification du modèle et à la présence d'observations influentes dans l'échantillon.

    Date de diffusion : 2010-06-29

  • Enquêtes et programmes statistiques — Documentation : 12-002-X20040027035
    Description :

    Lors du traitement des données du cycle 4 de l'Enquête longitudinale nationale sur les enfants et les jeunes (ELNEJ), des révisions historiques ont été apportées au trois premiers cycles de l'enquête afin de corriger des erreurs et faire une mise à jour des données. Au cours du traitement, une attention particulière a été portée à la variable PERSRUK (l'identificateur au niveau de la personne) et à la variable FIELDRUK (l'identificateur au niveau du ménage). Le même niveau d'attention n'a pas été accordé aux autres identificateurs incluent dans la base de données, soit, la variable CHILDID (un identificateur au niveau de l'enfant) et la variable _IDHD01 (un identificateur au niveau du ménage). Ces identificateurs ont été créés pour les fichiers publics et ils se retrouvent par défaut dans les fichiers maîtres. Lorsque les fichiers maîtres sont utilisés, la variable PERSRUK devrait être utilisée pour lier les différents fichiers de données de l'enquête entre eux et la variable FIELDRUK pour déterminer le ménage.

    Date de diffusion : 2004-10-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001003
    Description :

    Les premiers résultats de l'Enquête sur la sécurité financière (ESF), qui fournit de l'information sur la valeur nette du patrimoine des Canadiens, ont été publiés le 15 mars 2001 dans Le quotidien. L'enquête a recueilli des renseignements sur la valeur des avoirs financiers et non financiers de chaque unité familiale et sur le montant de sa dette.

    Statistique Canada travaille actuellement à préciser cette première estimation de la valeur nette en y ajoutant une estimation de la valeur des droits à pension constitués dans les régimes de retraite d'employeur. Il s'agit d'un volet essentiel pour toute enquête sur l'avoir et la dette étant donné que, pour la plupart des unités familiales, c'est probablement l'un des avoirs les plus importants. Le vieillissement de la population rend l'information sur la constitution des droits à pension nécessaire afin de mieux comprendre la situation financière des personnes qui approchent de la retraite. Ces estimations mises à jour seront publiées à la fin de l'automne 2001.

    Le processus utilisé pour obtenir une estimation de la valeur des droits à pension constitués dans les régimes de pension agréés d'employeur (RPA) est complexe. Le présent document décrit la méthodologie utilisée pour estimer cette valeur en ce qui concerne les groupes suivants : a) Les personnes qui faisaient partie d'un RPA au moment de l'enquête (appelées membres actuels d'un régime de retraite); b) Les personnes qui ont déjà fait partie d'un RPA et qui ont laissé l'argent dans le régime de retraite ou qui l'ont transféré dans un nouveau régime de retraite; c) Les personnes qui touchent des prestations d'un RPA.

    Cette méthodologie a été proposée par Hubert Frenken et Michael Cohen. Hubert Frenken compte de nombreuses années d'expérience avec Statistique Canada où il a travaillé avec des données sur les régimes de retraite d'employeur. Michael Cohen fait partie de la direction de la firme d'actuariat-conseil William M. Mercer. Plus tôt cette année, Statistique Canada a organisé une consultation publique sur la méthodologie proposée. Le présent rapport inclut des mises à jour faites après avoir reçu les rétroactions des utilisateurs des données.

    Date de diffusion : 2001-09-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001002
    Description :

    L'Enquête sur la sécurité financière (ESF) fournira des renseignements sur la situation nette des Canadiens. C'est pourquoi elle a recueilli, en mai et juin 1999, des données sur la valeur de l'avoir et de la dette de chacune des familles ou personnes seules comprises dans l'échantillon. Il s'est avéré difficile de calculer ou d'estimer la valeur d'un avoir en particulier, à savoir la valeur actualisée du montant que les répondants ont constitué dans leur régime de retraite d'employeur. On appelle souvent ces régimes des régimes de pension agréés (RPA), car ils doivent être agréés par l'Agence des douanes et du revenu du Canada (ARDC) (c'est-à-dire enregistrés auprès de l'ADRC). Bien qu'on communique à certains participants à un RPA une estimation de la valeur de leurs droits constitués, ils l'ignorent dans la plupart des cas. Pourtant, il s'agit sans doute d'un des avoirs les plus importants pour bon nombre d'unités familiales. De plus, à mesure que la génération du baby boom se rapproche de la retraite, le besoin d'information sur ses rentes constituées se fait très pressant si l'on veut mieux comprendre sa capacité financière à négocier ce nouveau virage.

    La présente étude vise deux objectifs : décrire, pour stimuler des discussions, la méthodologie proposée en vue d'estimer la valeur actualisée des droits à pension pour les besoins de l'Enquête sur la sécurité financière; et recueillir des réactions à la méthodologie proposée. Le présent document propose une méthodologie pour estimer la valeur des droits constitués dans un régime d'employeur pour les groupes suivants : a) les personnes qui adhéraient à un RPA au moment de l'enquête (les «participants actuels»); b) les personnes qui ont déjà adhéré à un RPA et qui ont soit laissé leurs fonds dans le régime ou les ont transférés dans un nouveau régime; et c) les personnes qui touchent une rente prévue par un RPA.

    Date de diffusion : 2001-02-07

  • Enquêtes et programmes statistiques — Documentation : 11-522-X19990015642
    Description :

    La Base de données longitudinale sur l'immigration (BDIM) établit un lien entre les dossiers administratifs de l'immigration et de l'impôt en une source exhaustive de données sur le comportement sur le marché du travail de la population des immigrants ayant obtenu le droit d'établissement au Canada. Elle porte sur la période de 1980 à 1995 et sera mise à jour en 1999 pour l'année d'imposition 1996. Statistique Canada gère la base de données pour le compte d'un consortium fédéral-provincial dirigé par Citoyenneté et Immigration Canada. Le présent document examine les enjeux du développement d'une base de données longitudinale combinant des dossiers administratifs, à l'appui de la recherche et de l'analyse en matière de politiques. L'accent est plus particulièrement mis sur les questions de méthodologie, de concepts, d'analyse et de protection des renseignements personnels découlant de la création et du développement continu de cette base de données. Le présent document aborde en outre brièvement les résultats des recherches, qui illustrent les liens en matière de résultats des politiques que la BDIM permet aux décideurs d'examiner.

    Date de diffusion : 2000-03-02
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (3)

Analyses (3) ((3 résultats))

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19970013101
    Description :

    Dans le travail ordinaire en statistique, l'échantillonnage est souvent exécuté en fonction d'un processus qui choisit des variables aléatoires telles sont indépendantes et distribuées de façon identique (IDI), de sorte qu'il faut avoir recours à des rajustements pour les utiliser dans le contexte d'une enquête complexe. Toutefois, au lieu de rajuster l'analyse, les auteurs ont adopté une formulation qui a ceci de nouveau qu'elle prélève un second échantillon dans l'échantillon original. Dans ce second échantillon, le premier ensemble de sélections est inversé de façon à fournir à terme un échantillon aléatoire simple. Bien entendu, il serait inefficace d'utiliser ce processus en deux étapes pour tirer un échantillon aléatoire simple unique d'une enquête complexe normalement beaucoup plus grande, et c'est pourquoi des échantillons aléatoires simples multiples sont prélevés, les auteurs ayant élaboré une façon de fonder sur eux des inférences. Les échantillons originaux ne peuvent pas tous être inversés, mais les auteurs abordent de nombreux cas spéciaux qui couvrent tout un éventail de possibilités.

    Date de diffusion : 1997-08-18

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19970013102
    Description :

    Les auteurs examinent la sélection des variables auxiliaires pour l'estimation par régression des paramètres des populations finies dans le cas d'un plan de sondage aléatoire simple. Ce problème fondamental que posent les méthodes d'échantillonnage fondé sur un modèle ou assisté par un modèle prend une importance d'ordre pratique quand le nombre de variables disponibles est grand. Les auteurs élaborent une méthode consistant à minimiser un estimateur de l'erreur quadratique moyenne, puis, la comparent à d'autres en utilisant un ensemble fixe de variables auxiliaires, un test de signification classique, une méthode de réduction du nombre de conditions et une méthode de régression ridge. Selon les résultats de l'étude, la méthode proposée est efficace. Les auteurs soulignent que la méthode de sélection des variables influe sur les propriétés des estimateurs types de la variance, ce qui entraîne par conséquent un problème d'estimation de la variance.

    Date de diffusion : 1997-08-18

  • Enquêtes et programmes statistiques — Documentation : 12-001-X19960022980
    Description :

    Dans le présent article, nous présentons une méthode qui permet d'estimer l'intervalle de confiance de la moyenne d'une population finie quand on dispose de certaines données auxiliaires. Comme l'ont montré Royall et Cumberland grâce à une série d'études empiriques, l'application naïve des méthodes existantes de construction des intervalles de confiance de la moyenne d'une population aboutit parfois à de très médiocres probabilités conditionnelles de couverture subordonnées à la moyenne d'échantillon de la covariable. Le cas échéant, nous proposons de transformer les données pour améliorer la précision de l'approximation normale. Puis, d'après les données transformées, nous faisons une inférence quant à la moyenne de la population originale et intégrons les données auxiliaires à l'inférence soit directement, soit par calage au moyen d'une fonction empirique de vraisemblance. Nous appliquons notre méthode, qui est basée sur le plan de sondage, à six populations réelles et constatons que, dans les cas où la transformation est nécessaire, elle donne de bons résultats comparativement à la méthode de régression habituelle.

    Date de diffusion : 1997-01-30
Références (15)

Références (15) (0 à 10 de 15 résultats)

  • Enquêtes et programmes statistiques — Documentation : 11-522-X201300014259
    Description :

    Dans l’optique de réduire le fardeau de réponse des exploitants agricoles, Statistique Canada étudie d’autres approches que les enquêtes par téléphone pour produire des estimations des grandes cultures. Une option consiste à publier des estimations de la superficie récoltée et du rendement en septembre, comme cela se fait actuellement, mais de les calculer au moyen de modèles fondés sur des données par satellite et des données météorologiques, ainsi que les données de l’enquête téléphonique de juillet. Toutefois, avant d’adopter une telle approche, on doit trouver une méthode pour produire des estimations comportant un niveau d’exactitude suffisant. Des recherches sont en cours pour examiner différentes possibilités. Les résultats de la recherche initiale et les enjeux à prendre en compte sont abordés dans ce document.

    Date de diffusion : 2014-10-31

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201300211887
    Description :

    Les modèles multiniveaux sont d'usage très répandu pour analyser les données d'enquête en faisant concorder la hiérarchie du plan de sondage avec la hiérarchie du modèle. Nous proposons une approche unifiée, basée sur une log-vraisemblance composite pondérée par les poids de sondage pour des modèles à deux niveaux, qui mène à des estimateurs des paramètres du modèle convergents sous le plan et sous le modèle, même si les tailles d'échantillon dans les grappes sont petites, à condition que le nombre de grappes échantillonnées soit grand. Cette méthode permet de traiter les modèles à deux niveaux linéaires ainsi que linéaires généralisés et requiert les probabilités d'inclusion de niveau 2 et de niveau 1, ainsi que les probabilités d'inclusion conjointe de niveau 1, où le niveau 2 représente une grappe et le niveau 1, un élément dans une grappe. Nous présentons aussi les résultats d'une étude en simulation qui donnent la preuve que la méthode proposée est supérieure aux méthodes existantes sous échantillonnage informatif.

    Date de diffusion : 2014-01-15

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200211758
    Description :

    Le présent article décrit l'élaboration de deux méthodes bayésiennes d'inférence au sujet des quantiles de variables d'intérêt continues d'une population finie sous échantillonnage avec probabilités inégales. La première de ces méthodes consiste à estimer les fonctions de répartition des variables étudiées continues en ajustant un certain nombre de modèles de régression probit avec splines pénalisées sur les probabilités d'inclusion. Les quantiles de population finie sont alors obtenus par inversion des fonctions de répartition estimées. Cette méthode demande considérablement de calculs. La deuxième méthode consiste à prédire les valeurs pour les unités non échantillonnées en supposant qu'il existe une relation variant de façon lisse entre la variable étudiée continue et la probabilité d'inclusion, en modélisant la fonction moyenne ainsi que de la fonction de variance en se servant de splines. Les deux estimateurs bayésiens fondés sur un modèle avec splines donnent un compromis désirable entre la robustesse et l'efficacité. Des études par simulation montrent que les deux méthodes produisent une racine carrée de l'erreur quadratique moyenne plus faible que l'estimateur pondéré par les poids de sondage et que les estimateurs par le ratio et par différence décrits dans Rao, Kovar et Mantel (RKM 1990), et qu'ils sont plus robustes à la spécification incorrecte du modèle que l'estimateur fondé sur un modèle de régression passant par l'origine décrit dans Chambers et Dunstan (1986). Lorsque la taille de l'échantillon est petite, les intervalles de crédibilité à 95 % des deux nouvelles méthodes ont une couverture plus proche du niveau nominal que l'estimateur pondéré par les poids de sondage.

    Date de diffusion : 2012-12-19

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201200111688
    Description :

    Nous étudions le problème de la non-réponse non ignorable dans un tableau de contingence bidimensionnel qui peut être créé individuellement pour plusieurs petits domaines en présence de non-réponse partielle ainsi que totale. En général, le fait de prendre en considération les deux types de non-réponse dans les données sur les petits domaines accroît considérablement la complexité de l'estimation des paramètres du modèle. Dans le présent article, nous conceptualisons le tableau complet des données pour chaque domaine comme étant constitué d'un tableau contenant les données complètes et de trois tableaux supplémentaires pour les données de ligne manquantes, les données de colonne manquantes et les données de ligne et de colonne manquantes, respectivement. Dans des conditions de non-réponse non ignorable, les probabilités totales de cellule peuvent varier en fonction du domaine, de la cellule et de ces trois types de « données manquantes ». Les probabilités de cellule sous-jacentes (c'est-à-dire celles qui s'appliqueraient s'il était toujours possible d'obtenir une classification complète) sont produites pour chaque domaine à partir d'une loi commune et leur similarité entre les domaines est quantifiée paramétriquement. Notre approche est une extension de l'approche de sélection sous non-réponse non ignorable étudiée par Nandram et Choi (2002a, b) pour les données binaires ; cette extension crée une complexité supplémentaire qui découle de la nature multivariée des données et de la structure des petits domaines. Comme dans les travaux antérieurs, nous utilisons un modèle d'extension centré sur un modèle de non-réponse ignorable de sorte que la probabilité totale de cellule dépend de la catégorie qui représente la réponse. Notre étude s'appuie sur des modèles hiérarchiques bayésiens et des méthodes Monte Carlo par chaîne de Markov pour l'inférence a posteriori. Nous nous servons de données provenant de la troisième édition de la National Health and Nutrition Examination Survey pour illustrer les modèles et les méthodes.

    Date de diffusion : 2012-06-27

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201100211603
    Description :

    De nombreuses enquêtes par sondage comprennent des questions suscitant une réponse binaire (par exemple, obèse, non obèse) pour un certain nombre de petits domaines. Une inférence est requise au sujet de la probabilité d'une réponse positive (par exemple obèse) dans chaque domaine, la probabilité étant la même pour tous les individus dans chaque domaine et différente entre les domaines. Étant donné le peu de données dans les domaines, les estimateurs directs ne sont pas fiables et il est nécessaire d'utiliser des données provenant d'autres domaines pour améliorer l'inférence pour un domaine particulier. Essentiellement, il est supposé a priori que les domaines sont similaires, si bien que le choix d'un modèle hiérarchique bayésien, le modèle bêta-binomial standard, est naturel. L'innovation tient au fait qu'un praticien peut disposer d'information a priori supplémentaire qui est nécessaire au sujet d'une combinaison linéaire des probabilités. Par exemple, une moyenne pondérée des probabilités est un paramètre, et l'information peut être obtenue au sujet de ce paramètre, ce qui rend le paradigme bayésien approprié. Nous avons modifié le modèle bêta-binomial standard pour petits domaines afin d'y intégrer l'information a priori sur la combinaison linéraire des probabilités, que nous appelons une contrainte. Donc, il existe trois cas. Le practicien a) ne spécifie pas de contrainte, b) spécifie une contrainte et le paramètre entièrement et c) spécifie une contrainte et l'information qui peut être utilisée pour construire une loi a priori pour le paramètre. L'échantillonneur de Gibbs « griddy » est utilisé pour ajuster les modèles. Pour illustrer notre méthode, nous prenons l'exemple de l'obésité chez les enfants dans la National Health and Nutrition Examination Survey dans laquelle les petits domaines sont formés par croisement de l'école (cycle secondaire inférieur ou supérieur), de l'etnicité (blanche, noire, mexicaine) et du sexe (masculin, féminin). Nous procédons à une étude en simulation pour évaluer certaines caractéristiques statistiques de notre méthode. Nous avons montré que le gain de précision au-delà de (a) est dans l'ordre où (b) est plus grand que (c).

    Date de diffusion : 2011-12-21

  • Enquêtes et programmes statistiques — Documentation : 12-001-X201000111250
    Description :

    Nous proposons un estimateur de prédiction bayésien avec splines pénalisées (PBSP pour Bayesian Penalized Spline Predictive) pour une proportion de population finie sous échantillonnage avec probabilités inégales. Cette nouvelle méthode permet d'intégrer directement les probabilités d'inclusion dans l'estimation d'une proportion de population, en effectuant une régression probit du résultat binaire sur la fonction spline pénalisée des probabilités d'inclusion. La loi prédictive a posteriori de la proportion de population est obtenue en utilisant l'échantillonnage de Gibbs. Nous démontrons les avantages de l'estimateur PBSP comparativement à l'estimateur de Hájek (HK), à l'estimateur par la régression généralisée (RG) et aux estimateurs de prédiction fondés sur un modèle paramétrique au moyen d'études en simulation et d'un exemple réel de vérification fiscale. Les études en simulation montrent que l'estimateur PBSP est plus efficace et donne un intervalle de crédibilité à 95 % dont la probabilité de couverture est meilleure et dont la largeur moyenne est plus étroite que les estimateurs HK et RG, surtout quand la proportion de population est proche de zéro ou de un, ou que l'échantillon est petit. Comparativement aux estimateurs de prédiction fondés sur un modèle linéaire, les estimateurs PBSP sont robustes à l'erreur de spécification du modèle et à la présence d'observations influentes dans l'échantillon.

    Date de diffusion : 2010-06-29

  • Enquêtes et programmes statistiques — Documentation : 12-002-X20040027035
    Description :

    Lors du traitement des données du cycle 4 de l'Enquête longitudinale nationale sur les enfants et les jeunes (ELNEJ), des révisions historiques ont été apportées au trois premiers cycles de l'enquête afin de corriger des erreurs et faire une mise à jour des données. Au cours du traitement, une attention particulière a été portée à la variable PERSRUK (l'identificateur au niveau de la personne) et à la variable FIELDRUK (l'identificateur au niveau du ménage). Le même niveau d'attention n'a pas été accordé aux autres identificateurs incluent dans la base de données, soit, la variable CHILDID (un identificateur au niveau de l'enfant) et la variable _IDHD01 (un identificateur au niveau du ménage). Ces identificateurs ont été créés pour les fichiers publics et ils se retrouvent par défaut dans les fichiers maîtres. Lorsque les fichiers maîtres sont utilisés, la variable PERSRUK devrait être utilisée pour lier les différents fichiers de données de l'enquête entre eux et la variable FIELDRUK pour déterminer le ménage.

    Date de diffusion : 2004-10-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001003
    Description :

    Les premiers résultats de l'Enquête sur la sécurité financière (ESF), qui fournit de l'information sur la valeur nette du patrimoine des Canadiens, ont été publiés le 15 mars 2001 dans Le quotidien. L'enquête a recueilli des renseignements sur la valeur des avoirs financiers et non financiers de chaque unité familiale et sur le montant de sa dette.

    Statistique Canada travaille actuellement à préciser cette première estimation de la valeur nette en y ajoutant une estimation de la valeur des droits à pension constitués dans les régimes de retraite d'employeur. Il s'agit d'un volet essentiel pour toute enquête sur l'avoir et la dette étant donné que, pour la plupart des unités familiales, c'est probablement l'un des avoirs les plus importants. Le vieillissement de la population rend l'information sur la constitution des droits à pension nécessaire afin de mieux comprendre la situation financière des personnes qui approchent de la retraite. Ces estimations mises à jour seront publiées à la fin de l'automne 2001.

    Le processus utilisé pour obtenir une estimation de la valeur des droits à pension constitués dans les régimes de pension agréés d'employeur (RPA) est complexe. Le présent document décrit la méthodologie utilisée pour estimer cette valeur en ce qui concerne les groupes suivants : a) Les personnes qui faisaient partie d'un RPA au moment de l'enquête (appelées membres actuels d'un régime de retraite); b) Les personnes qui ont déjà fait partie d'un RPA et qui ont laissé l'argent dans le régime de retraite ou qui l'ont transféré dans un nouveau régime de retraite; c) Les personnes qui touchent des prestations d'un RPA.

    Cette méthodologie a été proposée par Hubert Frenken et Michael Cohen. Hubert Frenken compte de nombreuses années d'expérience avec Statistique Canada où il a travaillé avec des données sur les régimes de retraite d'employeur. Michael Cohen fait partie de la direction de la firme d'actuariat-conseil William M. Mercer. Plus tôt cette année, Statistique Canada a organisé une consultation publique sur la méthodologie proposée. Le présent rapport inclut des mises à jour faites après avoir reçu les rétroactions des utilisateurs des données.

    Date de diffusion : 2001-09-05

  • Enquêtes et programmes statistiques — Documentation : 13F0026M2001002
    Description :

    L'Enquête sur la sécurité financière (ESF) fournira des renseignements sur la situation nette des Canadiens. C'est pourquoi elle a recueilli, en mai et juin 1999, des données sur la valeur de l'avoir et de la dette de chacune des familles ou personnes seules comprises dans l'échantillon. Il s'est avéré difficile de calculer ou d'estimer la valeur d'un avoir en particulier, à savoir la valeur actualisée du montant que les répondants ont constitué dans leur régime de retraite d'employeur. On appelle souvent ces régimes des régimes de pension agréés (RPA), car ils doivent être agréés par l'Agence des douanes et du revenu du Canada (ARDC) (c'est-à-dire enregistrés auprès de l'ADRC). Bien qu'on communique à certains participants à un RPA une estimation de la valeur de leurs droits constitués, ils l'ignorent dans la plupart des cas. Pourtant, il s'agit sans doute d'un des avoirs les plus importants pour bon nombre d'unités familiales. De plus, à mesure que la génération du baby boom se rapproche de la retraite, le besoin d'information sur ses rentes constituées se fait très pressant si l'on veut mieux comprendre sa capacité financière à négocier ce nouveau virage.

    La présente étude vise deux objectifs : décrire, pour stimuler des discussions, la méthodologie proposée en vue d'estimer la valeur actualisée des droits à pension pour les besoins de l'Enquête sur la sécurité financière; et recueillir des réactions à la méthodologie proposée. Le présent document propose une méthodologie pour estimer la valeur des droits constitués dans un régime d'employeur pour les groupes suivants : a) les personnes qui adhéraient à un RPA au moment de l'enquête (les «participants actuels»); b) les personnes qui ont déjà adhéré à un RPA et qui ont soit laissé leurs fonds dans le régime ou les ont transférés dans un nouveau régime; et c) les personnes qui touchent une rente prévue par un RPA.

    Date de diffusion : 2001-02-07

  • Enquêtes et programmes statistiques — Documentation : 11-522-X19990015642
    Description :

    La Base de données longitudinale sur l'immigration (BDIM) établit un lien entre les dossiers administratifs de l'immigration et de l'impôt en une source exhaustive de données sur le comportement sur le marché du travail de la population des immigrants ayant obtenu le droit d'établissement au Canada. Elle porte sur la période de 1980 à 1995 et sera mise à jour en 1999 pour l'année d'imposition 1996. Statistique Canada gère la base de données pour le compte d'un consortium fédéral-provincial dirigé par Citoyenneté et Immigration Canada. Le présent document examine les enjeux du développement d'une base de données longitudinale combinant des dossiers administratifs, à l'appui de la recherche et de l'analyse en matière de politiques. L'accent est plus particulièrement mis sur les questions de méthodologie, de concepts, d'analyse et de protection des renseignements personnels découlant de la création et du développement continu de cette base de données. Le présent document aborde en outre brièvement les résultats des recherches, qui illustrent les liens en matière de résultats des politiques que la BDIM permet aux décideurs d'examiner.

    Date de diffusion : 2000-03-02
Date de modification :