Inférence et fondements

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Type

1 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 1 facets selected.
Aide à l'ordre

Résultats

Tout (6)

Tout (6) ((6 résultats))

  • Articles et rapports : 12-001-X201800154928
    Description :

    Un processus à deux phases a été utilisé par la Substance Abuse and Mental Health Services Administration pour estimer la proportion d’Américains adultes atteints d’une maladie mentale grave (MMG). La première phase correspondait à la National Survey on Drug Use and Health (NSDUH) réalisée annuellement, tandis que la seconde phase consistait en un sous-échantillon aléatoire d’adultes ayant répondu à la NSDUH. Les personnes qui ont répondu à la deuxième phase d’échantillonnage ont été soumises à une évaluation clinique visant à déceler les maladies mentales graves. Un modèle de prédiction logistique a été ajusté à ce sous-échantillon en prenant la situation de MMG (oui ou non) déterminée au moyen de l’instrument de deuxième phase comme variable dépendante, et les variables connexes recueillies dans la NSDUH auprès de tous les adultes comme variables explicatives du modèle. Des estimations de la prévalence de la MMG chez l’ensemble des adultes et au sein de sous-populations d’adultes ont ensuite été calculées en attribuant à chaque participant à la NSDUH une situation de MMG établie en comparant sa probabilité estimée d’avoir une MMG avec un seuil diagnostique choisi sur la distribution des probabilités prédites. Nous étudions d’autres options que cet estimateur par seuil diagnostique classique, dont l’estimateur par probabilité. Ce dernier attribue une probabilité estimée d’avoir une MMG à chaque participant à la NSDUH. La prévalence estimée de la MMG est la moyenne pondérée de ces probabilités estimées. Au moyen des données de la NSDUH et de son sous-échantillon, nous montrons que, même si l’estimateur par probabilité donne une plus petite erreur quadratique moyenne quand on estime la prévalence de la MMG parmi l’ensemble des adultes, il a une plus grande tendance que l’estimateur par seuil diagnostique classique à présenter un biais au niveau de la sous-population.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201700254872
    Description :

    La présente note expose les fondements théoriques de l’extension de l’intervalle de couverture bilatéral de Wilson à une proportion estimée à partir de données d’enquêtes complexes. Il est démontré que l’intervalle est asymptotiquement équivalent à un intervalle calculé en partant d’une transformation logistique. Une légèrement meilleure version est examinée, mais les utilisateurs pourraient préférer construire un intervalle unilatéral déjà décrit dans la littérature.

    Date de diffusion : 2017-12-21

  • Articles et rapports : 12-001-X201700114822
    Description :

    Nous utilisons une méthode bayésienne pour inférer sur une proportion dans une population finie quand des données binaires sont recueillies selon un plan d’échantillonnage double sur des petits domaines. Le plan d’échantillonnage double correspond à un plan d’échantillonnage en grappes à deux degrés dans chaque domaine. Un modèle bayésien hiérarchique établi antérieurement suppose que, pour chaque domaine, les réponses binaires de premier degré suivent des lois de Bernoulli indépendantes et que les probabilités suivent des lois bêta paramétrisées par une moyenne et un coefficient de corrélation. La moyenne varie selon le domaine, tandis que la corrélation est la même dans tous les domaines. En vue d’accroître la flexibilité de ce modèle, nous l’avons étendu afin de permettre aux corrélations de varier. Les moyennes et les corrélations suivent des lois bêta indépendantes. Nous donnons à l’ancien modèle le nom de modèle homogène et au nouveau, celui de modèle hétérogène. Tous les hyperparamètres possèdent des distributions a priori non informatives appropriées. Une complication supplémentaire tient au fait que certains paramètres sont faiblement identifiés, ce qui rend difficile l’utilisation d’un échantillonneur de Gibbs classique pour les calculs. Donc, nous avons imposé des contraintes unimodales sur les distributions bêta a priori et utilisé un échantillonneur de Gibbs par blocs pour effectuer les calculs. Nous avons comparé les modèles hétérogène et homogène au moyen d’un exemple et d’une étude en simulation. Comme il fallait s’y attendre, le modèle double avec corrélations hétérogènes est celui qui est privilégié.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214662
    Description :

    Les plans d’échantillonnage à deux phases sont souvent utilisés dans les enquêtes lorsque la base de sondage ne contient que peu d’information auxiliaire, voire aucune. Dans la présente note, nous apportons certains éclaircissements sur le concept d’invariance souvent mentionné dans le contexte des plans d’échantillonnage à deux phases. Nous définissons deux types de plans d’échantillonnage à deux phases invariants, à savoir les plans fortement invariants et les plans faiblement invariants, et donnons des exemples. Enfin, nous décrivons les implications d’une forte ou d’une faible invariance du point de vue de l’inférence.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600114545
    Description :

    L’estimation des quantiles est une question d’intérêt dans le contexte non seulement de la régression, mais aussi de la théorie de l’échantillonnage. Les expectiles constituent une solution de rechange naturelle ou un complément aux quantiles. En tant que généralisation de la moyenne, les expectiles ont gagné en popularité ces dernières années parce qu’en plus d’offrir un portrait plus détaillé des données que la moyenne ordinaire, ils peuvent servir à calculer les quantiles grâce aux liens étroits qui les associent à ceux-ci. Nous expliquons comment estimer les expectiles en vertu d’un échantillonnage à probabilités inégales et comment les utiliser pour estimer la fonction de répartition. L’estimateur ajusté de la fonction de répartition obtenu peut être inversé pour établir les estimations des quantiles. Nous réalisons une étude par simulations pour examiner et comparer l’efficacité de l’estimateur fondé sur des expectiles.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201400114004
    Description :

    En 2009, deux enquêtes importantes réalisées par la division des administrations publiques du U.S. Census Bureau ont été remaniées afin de réduire la taille de l’échantillon, d’économiser des ressources et d’améliorer la précision des estimations (Cheng, Corcoran, Barth et Hogue 2009). Sous le nouveau plan de sondage, chaque strate habituelle, définie par l’État et le type d’administration publique, qui contient un nombre suffisant d’unités (administrations publiques) est divisée en deux sous strates en fonction de la masse salariale totale de chaque unité afin de tirer un plus petit échantillon de la sous strate des unités de petite taille. L’approche assistée par modèle est adoptée pour estimer les totaux de population. Des estimateurs par la régression utilisant des variables auxiliaires sont obtenus soit pour chaque sous strate ainsi créée soit pour la strate originale en regroupant des deux sous strates. Cheng, Slud et Hogue (2010) ont proposé une méthode fondée sur un test de décision qui consiste à appliquer un test d’hypothèse pour décider quel estimateur par la régression sera utilisé pour chaque strate originale. La convergence et la normalité asymptotique de ces estimateurs assistés par modèle sont établies ici sous un cadre asymptotique fondé sur le plan de sondage ou assisté par modèle. Nos résultats asymptotiques suggèrent aussi deux types d’estimateurs de variance convergents, l’un obtenu par substitution des quantités inconnues dans les variances asymptotiques et l’autre en appliquant la méthode du bootstrap. La performance de tous les estimateurs des totaux et des estimateurs de leur variance est examinée au moyen d’études empiriques. L’Annual Survey of Public Employment and Payroll (ASPEP) des États Unis est utilisé pour motiver et illustrer notre étude.

    Date de diffusion : 2014-06-27
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (6)

Analyses (6) ((6 résultats))

  • Articles et rapports : 12-001-X201800154928
    Description :

    Un processus à deux phases a été utilisé par la Substance Abuse and Mental Health Services Administration pour estimer la proportion d’Américains adultes atteints d’une maladie mentale grave (MMG). La première phase correspondait à la National Survey on Drug Use and Health (NSDUH) réalisée annuellement, tandis que la seconde phase consistait en un sous-échantillon aléatoire d’adultes ayant répondu à la NSDUH. Les personnes qui ont répondu à la deuxième phase d’échantillonnage ont été soumises à une évaluation clinique visant à déceler les maladies mentales graves. Un modèle de prédiction logistique a été ajusté à ce sous-échantillon en prenant la situation de MMG (oui ou non) déterminée au moyen de l’instrument de deuxième phase comme variable dépendante, et les variables connexes recueillies dans la NSDUH auprès de tous les adultes comme variables explicatives du modèle. Des estimations de la prévalence de la MMG chez l’ensemble des adultes et au sein de sous-populations d’adultes ont ensuite été calculées en attribuant à chaque participant à la NSDUH une situation de MMG établie en comparant sa probabilité estimée d’avoir une MMG avec un seuil diagnostique choisi sur la distribution des probabilités prédites. Nous étudions d’autres options que cet estimateur par seuil diagnostique classique, dont l’estimateur par probabilité. Ce dernier attribue une probabilité estimée d’avoir une MMG à chaque participant à la NSDUH. La prévalence estimée de la MMG est la moyenne pondérée de ces probabilités estimées. Au moyen des données de la NSDUH et de son sous-échantillon, nous montrons que, même si l’estimateur par probabilité donne une plus petite erreur quadratique moyenne quand on estime la prévalence de la MMG parmi l’ensemble des adultes, il a une plus grande tendance que l’estimateur par seuil diagnostique classique à présenter un biais au niveau de la sous-population.

    Date de diffusion : 2018-06-21

  • Articles et rapports : 12-001-X201700254872
    Description :

    La présente note expose les fondements théoriques de l’extension de l’intervalle de couverture bilatéral de Wilson à une proportion estimée à partir de données d’enquêtes complexes. Il est démontré que l’intervalle est asymptotiquement équivalent à un intervalle calculé en partant d’une transformation logistique. Une légèrement meilleure version est examinée, mais les utilisateurs pourraient préférer construire un intervalle unilatéral déjà décrit dans la littérature.

    Date de diffusion : 2017-12-21

  • Articles et rapports : 12-001-X201700114822
    Description :

    Nous utilisons une méthode bayésienne pour inférer sur une proportion dans une population finie quand des données binaires sont recueillies selon un plan d’échantillonnage double sur des petits domaines. Le plan d’échantillonnage double correspond à un plan d’échantillonnage en grappes à deux degrés dans chaque domaine. Un modèle bayésien hiérarchique établi antérieurement suppose que, pour chaque domaine, les réponses binaires de premier degré suivent des lois de Bernoulli indépendantes et que les probabilités suivent des lois bêta paramétrisées par une moyenne et un coefficient de corrélation. La moyenne varie selon le domaine, tandis que la corrélation est la même dans tous les domaines. En vue d’accroître la flexibilité de ce modèle, nous l’avons étendu afin de permettre aux corrélations de varier. Les moyennes et les corrélations suivent des lois bêta indépendantes. Nous donnons à l’ancien modèle le nom de modèle homogène et au nouveau, celui de modèle hétérogène. Tous les hyperparamètres possèdent des distributions a priori non informatives appropriées. Une complication supplémentaire tient au fait que certains paramètres sont faiblement identifiés, ce qui rend difficile l’utilisation d’un échantillonneur de Gibbs classique pour les calculs. Donc, nous avons imposé des contraintes unimodales sur les distributions bêta a priori et utilisé un échantillonneur de Gibbs par blocs pour effectuer les calculs. Nous avons comparé les modèles hétérogène et homogène au moyen d’un exemple et d’une étude en simulation. Comme il fallait s’y attendre, le modèle double avec corrélations hétérogènes est celui qui est privilégié.

    Date de diffusion : 2017-06-22

  • Articles et rapports : 12-001-X201600214662
    Description :

    Les plans d’échantillonnage à deux phases sont souvent utilisés dans les enquêtes lorsque la base de sondage ne contient que peu d’information auxiliaire, voire aucune. Dans la présente note, nous apportons certains éclaircissements sur le concept d’invariance souvent mentionné dans le contexte des plans d’échantillonnage à deux phases. Nous définissons deux types de plans d’échantillonnage à deux phases invariants, à savoir les plans fortement invariants et les plans faiblement invariants, et donnons des exemples. Enfin, nous décrivons les implications d’une forte ou d’une faible invariance du point de vue de l’inférence.

    Date de diffusion : 2016-12-20

  • Articles et rapports : 12-001-X201600114545
    Description :

    L’estimation des quantiles est une question d’intérêt dans le contexte non seulement de la régression, mais aussi de la théorie de l’échantillonnage. Les expectiles constituent une solution de rechange naturelle ou un complément aux quantiles. En tant que généralisation de la moyenne, les expectiles ont gagné en popularité ces dernières années parce qu’en plus d’offrir un portrait plus détaillé des données que la moyenne ordinaire, ils peuvent servir à calculer les quantiles grâce aux liens étroits qui les associent à ceux-ci. Nous expliquons comment estimer les expectiles en vertu d’un échantillonnage à probabilités inégales et comment les utiliser pour estimer la fonction de répartition. L’estimateur ajusté de la fonction de répartition obtenu peut être inversé pour établir les estimations des quantiles. Nous réalisons une étude par simulations pour examiner et comparer l’efficacité de l’estimateur fondé sur des expectiles.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201400114004
    Description :

    En 2009, deux enquêtes importantes réalisées par la division des administrations publiques du U.S. Census Bureau ont été remaniées afin de réduire la taille de l’échantillon, d’économiser des ressources et d’améliorer la précision des estimations (Cheng, Corcoran, Barth et Hogue 2009). Sous le nouveau plan de sondage, chaque strate habituelle, définie par l’État et le type d’administration publique, qui contient un nombre suffisant d’unités (administrations publiques) est divisée en deux sous strates en fonction de la masse salariale totale de chaque unité afin de tirer un plus petit échantillon de la sous strate des unités de petite taille. L’approche assistée par modèle est adoptée pour estimer les totaux de population. Des estimateurs par la régression utilisant des variables auxiliaires sont obtenus soit pour chaque sous strate ainsi créée soit pour la strate originale en regroupant des deux sous strates. Cheng, Slud et Hogue (2010) ont proposé une méthode fondée sur un test de décision qui consiste à appliquer un test d’hypothèse pour décider quel estimateur par la régression sera utilisé pour chaque strate originale. La convergence et la normalité asymptotique de ces estimateurs assistés par modèle sont établies ici sous un cadre asymptotique fondé sur le plan de sondage ou assisté par modèle. Nos résultats asymptotiques suggèrent aussi deux types d’estimateurs de variance convergents, l’un obtenu par substitution des quantités inconnues dans les variances asymptotiques et l’autre en appliquant la méthode du bootstrap. La performance de tous les estimateurs des totaux et des estimateurs de leur variance est examinée au moyen d’études empiriques. L’Annual Survey of Public Employment and Payroll (ASPEP) des États Unis est utilisé pour motiver et illustrer notre étude.

    Date de diffusion : 2014-06-27
Références (0)

Références (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :