Bases de sondage et couverture

Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Type

1 facets displayed. 1 facets selected.

Contenu

1 facets displayed. 1 facets selected.
Aide à l'ordre

Résultats

Tout (2)

Tout (2) ((2 résultats))

  • Articles et rapports : 12-001-X201500114149
    Description :

    L’article décrit un cadre généralisé de calcul des probabilités d’inclusion optimales dans divers contextes d’enquête dans lesquels il est requis de diffuser des estimations d’enquête d’une précision préétablie pour de multiples variables et domaines d’intérêt. Le cadre permet de définir des plans de sondage stratifiés classiques ou incomplets. Les probabilités d’inclusion optimales sont obtenues en minimisant les coûts au moyen d’un algorithme qui garantit l’établissement de bornes pour les erreurs d’échantillonnage au niveau du domaine, en supposant que les variables d’appartenance au domaine sont disponibles dans la base de sondage. Les variables cibles sont inconnues, mais peuvent être prédites au moyen de modèles de superpopulation appropriés. L’algorithme tient compte correctement de l’incertitude de ces modèles. Certaines expériences basées sur des données réelles montrent les propriétés empiriques de l’algorithme.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201400214128
    Description :

    Les utilisateurs et les fournisseurs de statistiques officielles, ainsi que ceux qui en assurent le financement, veulent des estimations « plus vastes, plus approfondies, plus rapides, de meilleure qualité et moins coûteuses » (selon Tim Holt, ancien chef de l’Office for National Statistics du Royaume-Uni), attributs auxquels j’ajouterais « plus pertinentes » et « moins fastidieuses ». Depuis la Deuxième Guerre mondiale, nous dépendons dans une large mesure des enquêtes sur échantillon probabiliste - celles-ci étant très bonnes dans les faits - pour atteindre ces objectifs pour les estimations dans de nombreux domaines, y compris le revenu des ménages et le chômage, l’état de santé autodéclaré, l’emploi du temps, les victimes d’actes criminels, l’activité des entreprises, les flux de produits, les dépenses des consommateurs et des entreprises, etc. Par suite des taux de plus en plus faibles de réponse totale et partielle et des preuves d’erreur de déclaration, nous avons réagi de nombreuses façons, y compris en utilisant des modes d’enquête multiples, des méthodes de pondération et d’imputation plus raffinées, l’échantillonnage adaptable, des essais cognitifs des questions d’enquête et d’autres méthodes pour maintenir la qualité des données. Dans le cas des statistiques sur le secteur des entreprises, afin de réduire le fardeau et les coûts, nous avons cessé depuis longtemps de recourir uniquement à des enquêtes pour produire les estimations nécessaires, mais jusqu’à présent, nous ne l’avons pas fait pour les enquêtes auprès des ménages, du moins pas aux États-Unis. Je soutiens que nous pouvons et que nous devons passer du paradigme de production des meilleures estimations possible à partir d’une enquête à la production des meilleures estimations possible pour répondre aux besoins des utilisateurs, à partir de sources de données multiples. Ces sources comprennent les dossiers administratifs et, de plus en plus, des données sur les transactions et des données en ligne. Je me sers de deux exemples - ceux du revenu des ménages et des installations de plomberie - pour illustrer ma thèse. Je propose des moyens d’inculquer une culture de la statistique officielle dont l’objectif est d’aboutir à des statistiques pertinentes, à jour, exactes et peu coûteuses, et qui traite les enquêtes, de même que les autres sources de données, comme des moyens d’atteindre cet objectif.

    Date de diffusion : 2014-12-19
Données (0)

Données (0) (0 résultat)

Aucun contenu disponible actuellement

Analyses (2)

Analyses (2) ((2 résultats))

  • Articles et rapports : 12-001-X201500114149
    Description :

    L’article décrit un cadre généralisé de calcul des probabilités d’inclusion optimales dans divers contextes d’enquête dans lesquels il est requis de diffuser des estimations d’enquête d’une précision préétablie pour de multiples variables et domaines d’intérêt. Le cadre permet de définir des plans de sondage stratifiés classiques ou incomplets. Les probabilités d’inclusion optimales sont obtenues en minimisant les coûts au moyen d’un algorithme qui garantit l’établissement de bornes pour les erreurs d’échantillonnage au niveau du domaine, en supposant que les variables d’appartenance au domaine sont disponibles dans la base de sondage. Les variables cibles sont inconnues, mais peuvent être prédites au moyen de modèles de superpopulation appropriés. L’algorithme tient compte correctement de l’incertitude de ces modèles. Certaines expériences basées sur des données réelles montrent les propriétés empiriques de l’algorithme.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201400214128
    Description :

    Les utilisateurs et les fournisseurs de statistiques officielles, ainsi que ceux qui en assurent le financement, veulent des estimations « plus vastes, plus approfondies, plus rapides, de meilleure qualité et moins coûteuses » (selon Tim Holt, ancien chef de l’Office for National Statistics du Royaume-Uni), attributs auxquels j’ajouterais « plus pertinentes » et « moins fastidieuses ». Depuis la Deuxième Guerre mondiale, nous dépendons dans une large mesure des enquêtes sur échantillon probabiliste - celles-ci étant très bonnes dans les faits - pour atteindre ces objectifs pour les estimations dans de nombreux domaines, y compris le revenu des ménages et le chômage, l’état de santé autodéclaré, l’emploi du temps, les victimes d’actes criminels, l’activité des entreprises, les flux de produits, les dépenses des consommateurs et des entreprises, etc. Par suite des taux de plus en plus faibles de réponse totale et partielle et des preuves d’erreur de déclaration, nous avons réagi de nombreuses façons, y compris en utilisant des modes d’enquête multiples, des méthodes de pondération et d’imputation plus raffinées, l’échantillonnage adaptable, des essais cognitifs des questions d’enquête et d’autres méthodes pour maintenir la qualité des données. Dans le cas des statistiques sur le secteur des entreprises, afin de réduire le fardeau et les coûts, nous avons cessé depuis longtemps de recourir uniquement à des enquêtes pour produire les estimations nécessaires, mais jusqu’à présent, nous ne l’avons pas fait pour les enquêtes auprès des ménages, du moins pas aux États-Unis. Je soutiens que nous pouvons et que nous devons passer du paradigme de production des meilleures estimations possible à partir d’une enquête à la production des meilleures estimations possible pour répondre aux besoins des utilisateurs, à partir de sources de données multiples. Ces sources comprennent les dossiers administratifs et, de plus en plus, des données sur les transactions et des données en ligne. Je me sers de deux exemples - ceux du revenu des ménages et des installations de plomberie - pour illustrer ma thèse. Je propose des moyens d’inculquer une culture de la statistique officielle dont l’objectif est d’aboutir à des statistiques pertinentes, à jour, exactes et peu coûteuses, et qui traite les enquêtes, de même que les autres sources de données, comme des moyens d’atteindre cet objectif.

    Date de diffusion : 2014-12-19
Références (0)

Références (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :