Recherche par mot-clé

Aide à l'ordre
entrées

Résultats

Tout (75)

Tout (75) (0 à 10 de 75 résultats)

  • Enquêtes et programmes statistiques — Documentation : 12-585-X
    Description : Ce produit est le dictionnaire de la Banque de données administratives longitudinales (DAL). Le dictionnaire comprend une description complète de chaque variable de revenu et de la démographie comprise dans la banque DAL : le nom, l'acronyme, la définition, la source, l'existence de données historiques et la continuité chronologique.

    Voici une liste partielle des variables de la banque DAL : l'âge, le sexe, l'état matrimonial, le type de famille, le nombre d'enfants et leur âge, le revenu total, les salaires et traitements, l'emploi autonome, l'assurance-emploi, les prestations de la sécurité de la vieillesse, les régimes de pensions du Canada et de rentes du Québec, l'aide sociale, le revenu de placements, le revenu de location, le revenu de pension alimentaire, le revenu d'un régime enregistré d'épargne-retraite et les cotisations à ce régime, le statut de faible revenu, la déduction pour études à temps plein, les crédits d'impôt provinciaux remboursables, les crédits de la taxe sur les produits et services, les prestations fiscales canadiennes pour enfants, variables d’immigration sélectionnées, l'information des Comptes d'épargne libre d'impôt (CELI) et l’information des sociétés privées sous contrôle canadien (SPCC).

    Date de diffusion : 2023-11-10

  • Visualisation des données : 71-607-X2022004
    Description :

    Ce tableau de bord interactif présente des données financières, économiques et socio-économiques clés pour les municipalités individuelles et autres administrations publiques locales.

    Date de diffusion : 2022-07-26

  • Articles et rapports : 12-001-X202100200007
    Description :

    Nous considérons ici le modèle d’estimation sur petits domaines de Fay-Herriot. Nous nous intéressons en particulier à l’incidence du lissage et de la modélisation de la variance d’échantillonnage sur les estimations par modèle. Nous présentons des méthodes permettant de lisser et de modéliser les variances d’échantillonnage et appliquons les modèles proposés à une analyse de données réelles. Nos résultats font voir qu’un lissage de variance d’échantillonnage est de nature à accroître l’efficacité et la précision de l’estimateur par modèle. Dans une modélisation de variance d’échantillonnage, les modèles hiérarchiques bayésiens de You (2016) et de Sugasawa, Tamae et Kubokawa (2017) améliorent tous aussi bien les estimations d’enquête directes.

    Date de diffusion : 2022-01-06

  • Articles et rapports : 12-001-X201800254958
    Description :

    Les domaines (ou sous-populations) pour lesquels les échantillons sont de petite taille sont appelés petits domaines. Les estimateurs directs classiques ne sont pas suffisamment précis pour ces petits domaines, en raison de la petite taille des échantillons. Or, la demande de statistiques fiables pour les petits domaines a augmenté considérablement. On utilise à l’heure actuelle des estimateurs indirects des moyennes ou des totaux de petits domaines basés sur un modèle pour résoudre les difficultés que pose l’estimation directe. Ces estimateurs reposent sur des modèles de liaison qui empruntent de l’information aux divers domaines pour accroître l’efficacité. En particulier, beaucoup d’attention a été accordée dans la littérature aux meilleurs estimateurs empiriques ou estimateurs EB (pour Empirical Best) sous des modèles de régression linéaires au niveau du domaine et au niveau de l’unité contenant des effets aléatoires de petit domaine. L’erreur quadratique moyenne (EQM) des estimateurs EB sous le modèle sert fréquemment à mesurer la variabilité des estimateurs. Les estimateurs par linéarisation, ainsi que les estimateurs jackknife et bootstrap de l’EQM sous le modèle sont d’usage très répandu. Toutefois, les organismes statistiques nationaux s’intéressent souvent à l’estimation de l’EQM des estimateurs EB sous le plan de sondage, pour cadrer avec les estimateurs classiques de l’EQM sous le plan associés aux estimateurs directs pour les grands domaines dont les tailles d’échantillon sont adéquates. Les estimateurs de l’EQM sous le plan des estimateurs EB peuvent être obtenus pour les modèles au niveau du domaine, mais ils ont tendance à être instables quand la taille de l’échantillon du domaine est petite. Des estimateurs composites de l’EQM, obtenus en prenant une somme pondérée de l’estimateur de l’EQM sous le plan et de l’estimateur de l’EQM sous le modèle, sont proposés dans le présent article. Les propriétés des estimateurs de l’EQM sous le modèle au niveau du domaine sont étudiées en examinant le biais, la racine carrée de l’erreur quadratique moyenne relative et le taux de couverture des intervalles de confiance sous le plan de sondage. Le cas d’un modèle au niveau de l’unité est également examiné sous échantillonnage aléatoire simple dans chaque domaine. Les résultats d’une étude en simulation montrent que les estimateurs composites proposés de l’EQM offrent un bon compromis pour l’estimation de l’EQM sous le plan.

    Date de diffusion : 2018-12-20

  • Enquêtes et programmes statistiques — Documentation : 71-526-X
    Description :

    L'Enquête sur la population active du Canada (EPA) est la source officielle d'estimations mensuelles de l'emploi total et du chômage. Suite au recensement de 2011, l'EPA a connu un remaniement pour tenir compte de l’évolution des caractéristiques de la population et du marché du travail, pour s’adapter aux besoins actuels et prévus des utilisateurs de données et pour mettre à jour l’information géographique requise pour mener l’enquête. Le programme de remaniement qui a suivi le recensement de 2011 a mené à l'introduction d'un nouvel échantillon au début de l'année 2015. Cette publication est un ouvrage de référence sur les aspects méthodologiques de l'EPA, y compris la stratification, l'échantillonnage, la collecte, le traitement, la pondération, l'estimation, l'estimation de la variance et la qualité des données.

    Date de diffusion : 2017-12-21

  • 61C9956
    Description :

    La Division de statistique du revenu offre des tableaux personnalisés conçus pour combler les besoins particuliers d'un client. À partir des déclarations de revenus soumises chaque année par les Canadiens, une mine des renseignements socio-économiques est disponible, selon les règles de confidentialité. Les statistiques sont tirées principalement du fichier d'impôt annuel fourni par l'Agence du revenu du Canada.

    Les données peuvent être obtenues à partir de 1982 au niveau de certaines régions postales, de certaines régions de recensement et de régions définies par les utilisateurs selon un fichier de conversion de codes postaux. Les données les plus récentes sont pour l'année d'imposition de 2019.

    Date de diffusion : 2017-07-12

  • Articles et rapports : 12-001-X201600114540
    Description :

    Les auteurs comparent les estimateurs EBLUP et pseudo EBLUP pour l’estimation sur petits domaines en vertu d’un modèle de régression à erreur emboîtée, ainsi que trois autres estimateurs fondés sur un modèle au niveau du domaine à l’aide du modèle de Fay Herriot. Ils réalisent une étude par simulations fondée sur un plan de sondage pour comparer les estimateurs fondés sur un modèle pour des modèles au niveau de l’unité et au niveau du domaine sous un échantillonnage informatif et non informatif. Ils s’intéressent particulièrement aux taux de couverture des intervalles de confiance des estimateurs au niveau de l’unité et au niveau du domaine. Les auteurs comparent aussi les estimateurs sous un modèle dont la spécification est inexacte. Les résultats de la simulation montrent que les estimateurs au niveau de l’unité sont plus efficaces que les estimateurs au niveau du domaine. L’estimateur pseudo EBLUP donne les meilleurs résultats à la fois au niveau de l’unité et au niveau du domaine.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201500214230
    Description :

    Le présent article décrit l’élaboration de méthodes de répartition pour des enquêtes par sondage avec stratification quand l’utilisation d’estimateurs sur petits domaines composites est une priorité et que les domaines servent de strates. Longford (2006) a proposé pour cette situation un critère objectif fondé sur une combinaison pondérée des erreurs quadratiques moyennes des moyennes de petit domaine et d’une moyenne globale. Ici, nous redéfinissons cette approche dans un cadre assisté par modèle, ce qui permet l’utilisation de variables explicatives et une interprétation plus naturelle des résultats en utilisant un paramètre de corrélation intraclasse. Nous considérons aussi plusieurs utilisations de la répartition exponentielle et permettons l’application d’autres contraintes, telle une valeur maximale de la racine carrée relative de l’erreur quadratique moyenne, aux estimateurs de strate. Nous constatons qu’une répartition exponentielle simple peut donner des résultats très près d’être aussi bons que le plan optimal, même quand l’objectif est de minimiser le critère de Longford (2006).

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214231
    Description :

    Les instituts nationaux de statistique font une grande utilisation des panels rotatifs, par exemple pour produire des statistiques officielles sur la population active. Les procédures d’estimation se fondent généralement sur les approches traditionnelles fondées sur le plan de sondage conformes à la théorie classique de l’échantillonnage. Un inconvénient important des estimateurs de cette classe est que les petites tailles d’échantillon entraînent de grandes erreurs-types et qu’ils ne sont pas robustes au biais de mesure. Deux exemples où les effets de biais de mesure deviennent apparents sont le biais de groupe de renouvellement dans les panels rotatifs et les différences systématiques dans les résultats d’une enquête dues à un remaniement important du processus sous-jacent. Dans cet article, nous appliquons un modèle de séries chronologiques structurel multivarié à l’enquête sur la population active des Pays-Bas pour produire des données mensuelles sur la population active qui se fondent sur un modèle. Le modèle réduit les erreurs-types des estimations en tirant parti des renseignements sur l’échantillon recueillis au cours des périodes précédentes, tient compte du biais de groupe de renouvellement et de l’autocorrélation induite par le panel rotatif, et modélise les discontinuités dues au remaniement de l’enquête. Nous examinons également l’utilisation des séries auxiliaires corrélées du modèle, qui vise à améliorer davantage l’exactitude des estimations du modèle. Statistics Netherlands utilise cette méthode pour produire des statistiques mensuelles officielles exactes sur la population active qui sont convergentes dans le temps, malgré le remaniement du processus d’enquête.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214248
    Description :

    L’utilisation de modèles de population au niveau de l’unité pour estimer des totaux et des moyennes de petit domaine en se fondant sur un modèle est fréquente, mais il se peut que le modèle ne soit pas vérifié pour l’échantillon si le plan d’échantillonnage est informatif pour le modèle. Par conséquent, les méthodes d’estimation classiques, qui supposent que le modèle est vérifié pour l’échantillon, peuvent donner des estimateurs biaisés. Nous étudions d’autres méthodes comprenant l’utilisation d’une fonction appropriée de la probabilité de sélection des unités en tant que variable auxiliaire supplémentaire dans le modèle de l’échantillon. Nous présentons les résultats d’une étude en simulation du biais et de l’erreur quadratique moyenne (EQM) des estimateurs proposés des moyennes de petit domaine et du biais relatif des estimateurs de l’EQM connexes, en utilisant des plans d’échantillonnage informatifs pour générer les échantillons. D’autres méthodes, fondées sur la modélisation de l’espérance conditionnelle du poids de sondage sous forme d’une fonction des covariables du modèle et de la réponse, sont également incluses dans l’étude en simulation.

    Date de diffusion : 2015-12-17
Données (1)

Données (1) ((1 résultat))

Analyses (69)

Analyses (69) (0 à 10 de 69 résultats)

  • Articles et rapports : 12-001-X202100200007
    Description :

    Nous considérons ici le modèle d’estimation sur petits domaines de Fay-Herriot. Nous nous intéressons en particulier à l’incidence du lissage et de la modélisation de la variance d’échantillonnage sur les estimations par modèle. Nous présentons des méthodes permettant de lisser et de modéliser les variances d’échantillonnage et appliquons les modèles proposés à une analyse de données réelles. Nos résultats font voir qu’un lissage de variance d’échantillonnage est de nature à accroître l’efficacité et la précision de l’estimateur par modèle. Dans une modélisation de variance d’échantillonnage, les modèles hiérarchiques bayésiens de You (2016) et de Sugasawa, Tamae et Kubokawa (2017) améliorent tous aussi bien les estimations d’enquête directes.

    Date de diffusion : 2022-01-06

  • Articles et rapports : 12-001-X201800254958
    Description :

    Les domaines (ou sous-populations) pour lesquels les échantillons sont de petite taille sont appelés petits domaines. Les estimateurs directs classiques ne sont pas suffisamment précis pour ces petits domaines, en raison de la petite taille des échantillons. Or, la demande de statistiques fiables pour les petits domaines a augmenté considérablement. On utilise à l’heure actuelle des estimateurs indirects des moyennes ou des totaux de petits domaines basés sur un modèle pour résoudre les difficultés que pose l’estimation directe. Ces estimateurs reposent sur des modèles de liaison qui empruntent de l’information aux divers domaines pour accroître l’efficacité. En particulier, beaucoup d’attention a été accordée dans la littérature aux meilleurs estimateurs empiriques ou estimateurs EB (pour Empirical Best) sous des modèles de régression linéaires au niveau du domaine et au niveau de l’unité contenant des effets aléatoires de petit domaine. L’erreur quadratique moyenne (EQM) des estimateurs EB sous le modèle sert fréquemment à mesurer la variabilité des estimateurs. Les estimateurs par linéarisation, ainsi que les estimateurs jackknife et bootstrap de l’EQM sous le modèle sont d’usage très répandu. Toutefois, les organismes statistiques nationaux s’intéressent souvent à l’estimation de l’EQM des estimateurs EB sous le plan de sondage, pour cadrer avec les estimateurs classiques de l’EQM sous le plan associés aux estimateurs directs pour les grands domaines dont les tailles d’échantillon sont adéquates. Les estimateurs de l’EQM sous le plan des estimateurs EB peuvent être obtenus pour les modèles au niveau du domaine, mais ils ont tendance à être instables quand la taille de l’échantillon du domaine est petite. Des estimateurs composites de l’EQM, obtenus en prenant une somme pondérée de l’estimateur de l’EQM sous le plan et de l’estimateur de l’EQM sous le modèle, sont proposés dans le présent article. Les propriétés des estimateurs de l’EQM sous le modèle au niveau du domaine sont étudiées en examinant le biais, la racine carrée de l’erreur quadratique moyenne relative et le taux de couverture des intervalles de confiance sous le plan de sondage. Le cas d’un modèle au niveau de l’unité est également examiné sous échantillonnage aléatoire simple dans chaque domaine. Les résultats d’une étude en simulation montrent que les estimateurs composites proposés de l’EQM offrent un bon compromis pour l’estimation de l’EQM sous le plan.

    Date de diffusion : 2018-12-20

  • Articles et rapports : 12-001-X201600114540
    Description :

    Les auteurs comparent les estimateurs EBLUP et pseudo EBLUP pour l’estimation sur petits domaines en vertu d’un modèle de régression à erreur emboîtée, ainsi que trois autres estimateurs fondés sur un modèle au niveau du domaine à l’aide du modèle de Fay Herriot. Ils réalisent une étude par simulations fondée sur un plan de sondage pour comparer les estimateurs fondés sur un modèle pour des modèles au niveau de l’unité et au niveau du domaine sous un échantillonnage informatif et non informatif. Ils s’intéressent particulièrement aux taux de couverture des intervalles de confiance des estimateurs au niveau de l’unité et au niveau du domaine. Les auteurs comparent aussi les estimateurs sous un modèle dont la spécification est inexacte. Les résultats de la simulation montrent que les estimateurs au niveau de l’unité sont plus efficaces que les estimateurs au niveau du domaine. L’estimateur pseudo EBLUP donne les meilleurs résultats à la fois au niveau de l’unité et au niveau du domaine.

    Date de diffusion : 2016-06-22

  • Articles et rapports : 12-001-X201500214230
    Description :

    Le présent article décrit l’élaboration de méthodes de répartition pour des enquêtes par sondage avec stratification quand l’utilisation d’estimateurs sur petits domaines composites est une priorité et que les domaines servent de strates. Longford (2006) a proposé pour cette situation un critère objectif fondé sur une combinaison pondérée des erreurs quadratiques moyennes des moyennes de petit domaine et d’une moyenne globale. Ici, nous redéfinissons cette approche dans un cadre assisté par modèle, ce qui permet l’utilisation de variables explicatives et une interprétation plus naturelle des résultats en utilisant un paramètre de corrélation intraclasse. Nous considérons aussi plusieurs utilisations de la répartition exponentielle et permettons l’application d’autres contraintes, telle une valeur maximale de la racine carrée relative de l’erreur quadratique moyenne, aux estimateurs de strate. Nous constatons qu’une répartition exponentielle simple peut donner des résultats très près d’être aussi bons que le plan optimal, même quand l’objectif est de minimiser le critère de Longford (2006).

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214231
    Description :

    Les instituts nationaux de statistique font une grande utilisation des panels rotatifs, par exemple pour produire des statistiques officielles sur la population active. Les procédures d’estimation se fondent généralement sur les approches traditionnelles fondées sur le plan de sondage conformes à la théorie classique de l’échantillonnage. Un inconvénient important des estimateurs de cette classe est que les petites tailles d’échantillon entraînent de grandes erreurs-types et qu’ils ne sont pas robustes au biais de mesure. Deux exemples où les effets de biais de mesure deviennent apparents sont le biais de groupe de renouvellement dans les panels rotatifs et les différences systématiques dans les résultats d’une enquête dues à un remaniement important du processus sous-jacent. Dans cet article, nous appliquons un modèle de séries chronologiques structurel multivarié à l’enquête sur la population active des Pays-Bas pour produire des données mensuelles sur la population active qui se fondent sur un modèle. Le modèle réduit les erreurs-types des estimations en tirant parti des renseignements sur l’échantillon recueillis au cours des périodes précédentes, tient compte du biais de groupe de renouvellement et de l’autocorrélation induite par le panel rotatif, et modélise les discontinuités dues au remaniement de l’enquête. Nous examinons également l’utilisation des séries auxiliaires corrélées du modèle, qui vise à améliorer davantage l’exactitude des estimations du modèle. Statistics Netherlands utilise cette méthode pour produire des statistiques mensuelles officielles exactes sur la population active qui sont convergentes dans le temps, malgré le remaniement du processus d’enquête.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500214248
    Description :

    L’utilisation de modèles de population au niveau de l’unité pour estimer des totaux et des moyennes de petit domaine en se fondant sur un modèle est fréquente, mais il se peut que le modèle ne soit pas vérifié pour l’échantillon si le plan d’échantillonnage est informatif pour le modèle. Par conséquent, les méthodes d’estimation classiques, qui supposent que le modèle est vérifié pour l’échantillon, peuvent donner des estimateurs biaisés. Nous étudions d’autres méthodes comprenant l’utilisation d’une fonction appropriée de la probabilité de sélection des unités en tant que variable auxiliaire supplémentaire dans le modèle de l’échantillon. Nous présentons les résultats d’une étude en simulation du biais et de l’erreur quadratique moyenne (EQM) des estimateurs proposés des moyennes de petit domaine et du biais relatif des estimateurs de l’EQM connexes, en utilisant des plans d’échantillonnage informatifs pour générer les échantillons. D’autres méthodes, fondées sur la modélisation de l’espérance conditionnelle du poids de sondage sous forme d’une fonction des covariables du modèle et de la réponse, sont également incluses dans l’étude en simulation.

    Date de diffusion : 2015-12-17

  • Articles et rapports : 12-001-X201500114150
    Description :

    Une approche basée sur un modèle au niveau du domaine pour combiner des données provenant de plusieurs sources est examinée dans le contexte de l’estimation sur petits domaines. Pour chaque petit domaine, plusieurs estimations sont calculées et reliées au moyen d’un système de modèles d’erreur structurels. Le meilleur prédicteur linéaire sans biais du paramètre de petit domaine peut être calculé par la méthode des moindres carrés généralisés. Les paramètres des modèles d’erreur structurels sont estimés en s’appuyant sur la théorie des modèles d’erreur de mesure. L’estimation des erreurs quadratiques moyennes est également discutée. La méthode proposée est appliquée au problème réel des enquêtes sur la population active en Corée.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114161
    Description :

    Le modèle de Fay Herriot est un modèle au niveau du domaine d’usage très répandu pour l’estimation des moyennes de petit domaine. Ce modèle contient des effets aléatoires en dehors de la régression linéaire (fixe) basée sur les covariables au niveau du domaine. Les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine s’obtiennent en estimant les effets aléatoires de domaine, et ils peuvent être exprimés sous forme d’une moyenne pondérée des estimateurs directs propres aux domaines et d’estimateurs synthétiques de type régression. Dans certains cas, les données observées n’appuient pas l’inclusion des effets aléatoires de domaine dans le modèle. L’exclusion de ces effets de domaine aboutit à l’estimateur synthétique de type régression, autrement dit un poids nul est appliqué à l’estimateur direct. L’étude porte sur un estimateur à test préliminaire d’une moyenne de petit domaine obtenu après l’exécution d’un test pour déceler la présence d’effets aléatoires de domaine. Parallèlement, elle porte sur les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine qui donnent toujours des poids non nuls aux estimateurs directs dans tous les domaines, ainsi que certains estimateurs de rechange basés sur le test préliminaire. La procédure de test préliminaire est également utilisée pour définir de nouveaux estimateurs de l’erreur quadratique moyenne des estimateurs ponctuels des moyennes de petit domaine. Les résultats d’une étude par simulation limitée montrent que, si le nombre de domaines est petit, la procédure d’essai préliminaire mène à des estimateurs de l’erreur quadratique moyenne présentant un biais relatif absolu moyen considérablement plus faible que les estimateurs de l’erreur quadratique moyenne usuels, surtout quand la variance des effets aléatoires est faible comparativement aux variances d’échantillonnage.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201500114200
    Description :

    Nous considérons la méthode de la meilleure prédiction observée (MPO; Jiang, Nguyen et Rao 2011) pour l’estimation sur petits domaines sous le modèle de régression à erreurs emboîtées, où les fonctions moyenne et variance peuvent toutes deux être spécifiées inexactement. Nous montrons au moyen d’une étude par simulation que la MPO peut donner de nettement meilleurs résultats que la méthode du meilleur prédicteur linéaire sans biais empirique (MPLSBE) non seulement en ce qui concerne l’erreur quadratique moyenne de prédiction (EQMP) globale, mais aussi l’EQMP au niveau du domaine pour chacun des petits domaines. Nous proposons, pour estimer l’EQMP au niveau du domaine basée sur le plan de sondage, une méthode du bootstrap simple qui produit toujours des estimations positives de l’EQMP. Nous évaluons les propriétés de l’estimateur de l’EQMP proposé au moyen d’une étude par simulation. Nous examinons une application à la Television School and Family Smoking Prevention and Cessation study.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X201400114030
    Description :

    L’article décrit les résultats d’une étude par simulation Monte Carlo réalisée en vue de comparer l’efficacité de quatre modèles hiérarchiques bayésiens d’estimation sur petits domaines pour estimer des proportions au niveau de l’État au moyen de données provenant d’échantillons aléatoires simples stratifiés tirés d’une population finie fixe. Deux des modèles reposent sur les hypothèses fréquentes selon lesquelles, pour chaque petit domaine échantillonné, la proportion pondérée par les poids de sondage estimée suit une loi normale et sa variance d’échantillonnage est connue. L’un de ces modèles comprend un modèle de lien linéaire et l’autre, un modèle de lien logistique. Les deux autres modèles utilisent tous deux un modèle de lien logistique et reposent sur l’hypothèse que la variance d’échantillonnage est inconnue. L’un de ces deux modèles suppose que le modèle d’échantillonnage obéit à une loi normale et l’autre, qu’il obéit à une loi bêta. L’étude montre que, pour chacun des quatre modèles, la couverture sous le plan de sondage de l’intervalle de crédibilité des proportions au niveau de l’État en population finie s’écarte considérablement du niveau nominal de 95 % utilisé pour construire les intervalles.

    Date de diffusion : 2014-06-27
Références (4)

Références (4) ((4 résultats))

  • Enquêtes et programmes statistiques — Documentation : 12-585-X
    Description : Ce produit est le dictionnaire de la Banque de données administratives longitudinales (DAL). Le dictionnaire comprend une description complète de chaque variable de revenu et de la démographie comprise dans la banque DAL : le nom, l'acronyme, la définition, la source, l'existence de données historiques et la continuité chronologique.

    Voici une liste partielle des variables de la banque DAL : l'âge, le sexe, l'état matrimonial, le type de famille, le nombre d'enfants et leur âge, le revenu total, les salaires et traitements, l'emploi autonome, l'assurance-emploi, les prestations de la sécurité de la vieillesse, les régimes de pensions du Canada et de rentes du Québec, l'aide sociale, le revenu de placements, le revenu de location, le revenu de pension alimentaire, le revenu d'un régime enregistré d'épargne-retraite et les cotisations à ce régime, le statut de faible revenu, la déduction pour études à temps plein, les crédits d'impôt provinciaux remboursables, les crédits de la taxe sur les produits et services, les prestations fiscales canadiennes pour enfants, variables d’immigration sélectionnées, l'information des Comptes d'épargne libre d'impôt (CELI) et l’information des sociétés privées sous contrôle canadien (SPCC).

    Date de diffusion : 2023-11-10

  • Enquêtes et programmes statistiques — Documentation : 71-526-X
    Description :

    L'Enquête sur la population active du Canada (EPA) est la source officielle d'estimations mensuelles de l'emploi total et du chômage. Suite au recensement de 2011, l'EPA a connu un remaniement pour tenir compte de l’évolution des caractéristiques de la population et du marché du travail, pour s’adapter aux besoins actuels et prévus des utilisateurs de données et pour mettre à jour l’information géographique requise pour mener l’enquête. Le programme de remaniement qui a suivi le recensement de 2011 a mené à l'introduction d'un nouvel échantillon au début de l'année 2015. Cette publication est un ouvrage de référence sur les aspects méthodologiques de l'EPA, y compris la stratification, l'échantillonnage, la collecte, le traitement, la pondération, l'estimation, l'estimation de la variance et la qualité des données.

    Date de diffusion : 2017-12-21

  • Enquêtes et programmes statistiques — Documentation : 17-507-X
    Description :

    L'«Aperçu des quartiers» est votre guide aux produits de renseignements statistiques offerts par la Division des données régionales et administratives. Le guide présente une description des banques de données, de la disponibilité géographique et de la tarification. Le guide comprend également les exemples des tableaux de données indiquant des statistiques au niveau national.

    Date de diffusion : 2006-05-04

  • Enquêtes et programmes statistiques — Documentation : 64F0004X
    Description :

    Ce guide, pratique et informatif, destiné aux entreprises dans le secteur de la construction, vous aidera à vous retrouver dans le grand nombre de produits et de services offerts par Statistique Canada.

    Date de diffusion : 2002-12-13
Date de modification :