Recherche par mot-clé
Filtrer les résultats par
Aide à la rechercheMot(s)-clé(s)
Résultats
Tout (1)
Tout (1) ((1 résultat))
- Articles et rapports : 11-522-X202100100008Description :
Les organismes nationaux de statistique étudient de plus en plus la possibilité d'utiliser des échantillons non probabilistes en complément des échantillons probabilistes. Nous examinons le scénario où la variable d’intérêt et les variables auxiliaires sont observées à la fois dans un échantillon probabiliste et un échantillon non probabiliste. Nous cherchons à utiliser les données de l’échantillon non probabiliste pour améliorer l’efficacité des estimations pondérées par les poids d’enquête obtenues à partir de l’échantillon probabiliste. Récemment, Sakshaug, Wisniowski, Ruiz et Blom (2019) et Wisniowski, Sakshaug, Ruiz et Blom (2020) ont proposé une approche bayésienne visant à intégrer les données des deux échantillons aux fins de l’estimation des paramètres du modèle. Dans leur méthode, on utilise les données de l’échantillon non probabiliste pour déterminer la distribution a priori des paramètres du modèle et on obtient la distribution a posteriori en supposant que le plan de sondage probabiliste est ignorable (ou non informatif). Nous étendons cette approche bayésienne à la prédiction de paramètres d’une population finie dans le cadre d’un échantillonnage non ignorable (ou informatif) en nous appuyant sur des statistiques pondérées par des poids d’enquête appropriées. Nous illustrons les propriétés de notre prédicteur au moyen d’une étude par simulations.
Mots clés : prédiction bayésienne; échantillonnage de Gibbs; échantillonnage non ignorable; intégration des données statistiques.
Date de diffusion : 2021-10-29
Données (0)
Données (0) (0 résultat)
Aucun contenu disponible actuellement
Analyses (1)
Analyses (1) ((1 résultat))
- Articles et rapports : 11-522-X202100100008Description :
Les organismes nationaux de statistique étudient de plus en plus la possibilité d'utiliser des échantillons non probabilistes en complément des échantillons probabilistes. Nous examinons le scénario où la variable d’intérêt et les variables auxiliaires sont observées à la fois dans un échantillon probabiliste et un échantillon non probabiliste. Nous cherchons à utiliser les données de l’échantillon non probabiliste pour améliorer l’efficacité des estimations pondérées par les poids d’enquête obtenues à partir de l’échantillon probabiliste. Récemment, Sakshaug, Wisniowski, Ruiz et Blom (2019) et Wisniowski, Sakshaug, Ruiz et Blom (2020) ont proposé une approche bayésienne visant à intégrer les données des deux échantillons aux fins de l’estimation des paramètres du modèle. Dans leur méthode, on utilise les données de l’échantillon non probabiliste pour déterminer la distribution a priori des paramètres du modèle et on obtient la distribution a posteriori en supposant que le plan de sondage probabiliste est ignorable (ou non informatif). Nous étendons cette approche bayésienne à la prédiction de paramètres d’une population finie dans le cadre d’un échantillonnage non ignorable (ou informatif) en nous appuyant sur des statistiques pondérées par des poids d’enquête appropriées. Nous illustrons les propriétés de notre prédicteur au moyen d’une étude par simulations.
Mots clés : prédiction bayésienne; échantillonnage de Gibbs; échantillonnage non ignorable; intégration des données statistiques.
Date de diffusion : 2021-10-29
Références (0)
Références (0) (0 résultat)
Aucun contenu disponible actuellement
- Date de modification :