Recherche par mot-clé
Filtrer les résultats par
Aide à la rechercheMot(s)-clé(s)
Résultats
Tout (1)
Tout (1) ((1 résultat))
- Articles et rapports : 11-522-X202100100009Description :
Le recours à des données auxiliaires pour améliorer l’efficacité d’estimateurs de totaux et de moyennes au moyen d’une procédure d’estimation d’enquête assistée par un modèle de régression a reçu une attention considérable ces dernières années. Des estimateurs par la régression généralisée (GREG), fondés sur un modèle de régression linéaire, sont actuellement utilisés dans le cadre d’enquêtes auprès d’établissements, à Statistique Canada et au sein de plusieurs autres organismes de statistiques. Les estimateurs GREG utilisent des poids d’enquête communs à toutes les variables d’étude et un calage aux totaux de population de variables auxiliaires. De plus en plus de variables auxiliaires sont disponibles et certaines peuvent être superflues. Cela mène à des poids GREG instables lorsque toutes les variables auxiliaires disponibles, y compris les interactions parmi les variables catégoriques, sont utilisées dans le modèle de régression linéaire. En revanche, de nouvelles méthodes d’apprentissage automatique, comme les arbres de régression et la méthode LASSO, sélectionnent automatiquement des variables auxiliaires significatives et mènent à des poids non négatifs stables et à d’éventuels gains d’efficacité par rapport à la méthode GREG. Dans cet article, une étude par simulations, fondée sur un ensemble de données-échantillon d’une enquête-entreprise réelle traité comme la population cible, est menée afin d’examiner le rendement relatif de la méthode GREG, d’arbres de régression et de la méthode LASSO sur le plan de l’efficacité des estimateurs.
Mots-clés : inférence assistée par modèle; estimation par calage; sélection du modèle; estimateur par la régression généralisée.
Date de diffusion : 2021-10-29
Données (0)
Données (0) (0 résultat)
Aucun contenu disponible actuellement
Analyses (1)
Analyses (1) ((1 résultat))
- Articles et rapports : 11-522-X202100100009Description :
Le recours à des données auxiliaires pour améliorer l’efficacité d’estimateurs de totaux et de moyennes au moyen d’une procédure d’estimation d’enquête assistée par un modèle de régression a reçu une attention considérable ces dernières années. Des estimateurs par la régression généralisée (GREG), fondés sur un modèle de régression linéaire, sont actuellement utilisés dans le cadre d’enquêtes auprès d’établissements, à Statistique Canada et au sein de plusieurs autres organismes de statistiques. Les estimateurs GREG utilisent des poids d’enquête communs à toutes les variables d’étude et un calage aux totaux de population de variables auxiliaires. De plus en plus de variables auxiliaires sont disponibles et certaines peuvent être superflues. Cela mène à des poids GREG instables lorsque toutes les variables auxiliaires disponibles, y compris les interactions parmi les variables catégoriques, sont utilisées dans le modèle de régression linéaire. En revanche, de nouvelles méthodes d’apprentissage automatique, comme les arbres de régression et la méthode LASSO, sélectionnent automatiquement des variables auxiliaires significatives et mènent à des poids non négatifs stables et à d’éventuels gains d’efficacité par rapport à la méthode GREG. Dans cet article, une étude par simulations, fondée sur un ensemble de données-échantillon d’une enquête-entreprise réelle traité comme la population cible, est menée afin d’examiner le rendement relatif de la méthode GREG, d’arbres de régression et de la méthode LASSO sur le plan de l’efficacité des estimateurs.
Mots-clés : inférence assistée par modèle; estimation par calage; sélection du modèle; estimateur par la régression généralisée.
Date de diffusion : 2021-10-29
Références (0)
Références (0) (0 résultat)
Aucun contenu disponible actuellement
- Date de modification :