Une généralisation de la pondération de probabilité inverse
La probabilité inverse, aussi connue en tant que l’estimateur de Horvitz-Thompson, est un outil de base de l’estimation pour une population finie. Même lorsque de l’information auxiliaire est disponible pour modéliser la variable d’intérêt, elle est utilisée pour estimer l’erreur du modèle. Dans la présente étude, l’estimateur de probabilité inverse est généralisé par l’introduction d’une matrice définie positive. L’estimateur de probabilité inverse habituel est un cas spécial de l’estimateur généralisé, dans lequel la matrice définie positive est la matrice identité. Étant donné que l’estimation par calage permet de chercher des poids qui sont proches des poids de probabilité inverse, elle peut également être généralisée pour permettre de chercher des poids qui sont proches de ceux de l’estimateur de probabilité inverse généralisé. Nous savons que le calage est optimal, car il atteint asymptotiquement la borne inférieure de Godambe-Joshi, et celle-ci a été obtenue à partir d’un modèle dépourvu de corrélation. Cette borne inférieure peut également être généralisée en vue de permettre des corrélations. En choisissant judicieusement la matrice définie positive qui généralise les estimateurs par calage, cette borne inférieure généralisée peut être atteinte de façon asymptotique. Bien souvent, il n’existe pas de formule analytique pour calculer les estimateurs généralisés. Toutefois, des exemples simples et clairs sont fournis dans la présente étude pour illustrer la façon dont les estimateurs généralisés tirent parti des corrélations. Cette simplicité s’obtient en supposant une corrélation de 1 entre certaines unités de la population. Ces estimateurs simples peuvent être utiles, même si cette corrélation est inférieure à 1. Des résultats de simulation sont utilisés pour comparer les estimateurs généralisés aux estimateurs ordinaires.