Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

1 facets displayed. 1 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (30)

All (30) (0 to 10 of 30 results)

  • Articles and reports: 12-001-X202200200001
    Description:

    Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of the complex design can yield inferences that are relevant for the specific data set obtained, but also have good repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to survey inference.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200002
    Description:

    We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200003
    Description:

    Non-probability surveys play an increasing role in survey research. Wu’s essay ably brings together the many tools available when assuming the non-response is conditionally independent of the study variable. In this commentary, I explore how to integrate Wu’s insights in a broader framework that encompasses the case in which non-response depends on the study variable, a case that is particularly dangerous in non-probabilistic polling.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200004
    Description:

    This discussion attempts to add to Wu’s review of inference from non-probability samples, as well as to highlighting aspects that are likely avenues for useful additional work. It concludes with a call for an organized stable of high-quality probability surveys that will be focused on providing adjustment information for non-probability surveys.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200005
    Description:

    Strong assumptions are required to make inferences about a finite population from a nonprobability sample. Statistics from a nonprobability sample should be accompanied by evidence that the assumptions are met and that point estimates and confidence intervals are fit for use. I describe some diagnostics that can be used to assess the model assumptions, and discuss issues to consider when deciding whether to use data from a nonprobability sample.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200006
    Description:

    Non-probability samples are deprived of the powerful design probability for randomization-based inference. This deprivation, however, encourages us to take advantage of a natural divine probability that comes with any finite population. A key metric from this perspective is the data defect correlation (ddc), which is the model-free finite-population correlation between the individual’s sample inclusion indicator and the individual’s attribute being sampled. A data generating mechanism is equivalent to a probability sampling, in terms of design effect, if and only if its corresponding ddc is of N-1/2 (stochastic) order, where N is the population size (Meng, 2018). Consequently, existing valid linear estimation methods for non-probability samples can be recast as various strategies to miniaturize the ddc down to the N-1/2 order. The quasi design-based methods accomplish this task by diminishing the variability among the N inclusion propensities via weighting. The super-population model-based approach achieves the same goal through reducing the variability of the N individual attributes by replacing them with their residuals from a regression model. The doubly robust estimators enjoy their celebrated property because a correlation is zero whenever one of the variables being correlated is constant, regardless of which one. Understanding the commonality of these methods through ddc also helps us see clearly the possibility of “double-plus robustness”: a valid estimation without relying on the full validity of either the regression model or the estimated inclusion propensity, neither of which is guaranteed because both rely on device probability. The insight generated by ddc also suggests counterbalancing sub-sampling, a strategy aimed at creating a miniature of the population out of a non-probability sample, and with favorable quality-quantity trade-off because mean-squared errors are much more sensitive to ddc than to the sample size, especially for large populations.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200007
    Description:

    Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We introduce two new methods of nonparametric propensity score technique for weighting in the non-probability samples. One is the information projection approach and the other is the uniform calibration in the reproducing kernel Hilbert space.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200008
    Description:

    This response contains additional remarks on a few selected issues raised by the discussants.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200009
    Description:

    Multiple imputation (MI) is a popular approach for dealing with missing data arising from non-response in sample surveys. Multiple imputation by chained equations (MICE) is one of the most widely used MI algorithms for multivariate data, but it lacks theoretical foundation and is computationally intensive. Recently, missing data imputation methods based on deep learning models have been developed with encouraging results in small studies. However, there has been limited research on evaluating their performance in realistic settings compared to MICE, particularly in big surveys. We conduct extensive simulation studies based on a subsample of the American Community Survey to compare the repeated sampling properties of four machine learning based MI methods: MICE with classification trees, MICE with random forests, generative adversarial imputation networks, and multiple imputation using denoising autoencoders. We find the deep learning imputation methods are superior to MICE in terms of computational time. However, with the default choice of hyperparameters in the common software packages, MICE with classification trees consistently outperforms, often by a large margin, the deep learning imputation methods in terms of bias, mean squared error, and coverage under a range of realistic settings.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200010
    Description:

    Multilevel time series (MTS) models are applied to estimate trends in time series of antenatal care coverage at several administrative levels in Bangladesh, based on repeated editions of the Bangladesh Demographic and Health Survey (BDHS) within the period 1994-2014. MTS models are expressed in an hierarchical Bayesian framework and fitted using Markov Chain Monte Carlo simulations. The models account for varying time lags of three or four years between the editions of the BDHS and provide predictions for the intervening years as well. It is proposed to apply cross-sectional Fay-Herriot models to the survey years separately at district level, which is the most detailed regional level. Time series of these small domain predictions at the district level and their variance-covariance matrices are used as input series for the MTS models. Spatial correlations among districts, random intercept and slope at the district level, and different trend models at district level and higher regional levels are examined in the MTS models to borrow strength over time and space. Trend estimates at district level are obtained directly from the model outputs, while trend estimates at higher regional and national levels are obtained by aggregation of the district level predictions, resulting in a numerically consistent set of trend estimates.

    Release date: 2022-12-15
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (30)

Articles and reports (30) (0 to 10 of 30 results)

  • Articles and reports: 12-001-X202200200001
    Description:

    Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of the complex design can yield inferences that are relevant for the specific data set obtained, but also have good repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to survey inference.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200002
    Description:

    We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200003
    Description:

    Non-probability surveys play an increasing role in survey research. Wu’s essay ably brings together the many tools available when assuming the non-response is conditionally independent of the study variable. In this commentary, I explore how to integrate Wu’s insights in a broader framework that encompasses the case in which non-response depends on the study variable, a case that is particularly dangerous in non-probabilistic polling.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200004
    Description:

    This discussion attempts to add to Wu’s review of inference from non-probability samples, as well as to highlighting aspects that are likely avenues for useful additional work. It concludes with a call for an organized stable of high-quality probability surveys that will be focused on providing adjustment information for non-probability surveys.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200005
    Description:

    Strong assumptions are required to make inferences about a finite population from a nonprobability sample. Statistics from a nonprobability sample should be accompanied by evidence that the assumptions are met and that point estimates and confidence intervals are fit for use. I describe some diagnostics that can be used to assess the model assumptions, and discuss issues to consider when deciding whether to use data from a nonprobability sample.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200006
    Description:

    Non-probability samples are deprived of the powerful design probability for randomization-based inference. This deprivation, however, encourages us to take advantage of a natural divine probability that comes with any finite population. A key metric from this perspective is the data defect correlation (ddc), which is the model-free finite-population correlation between the individual’s sample inclusion indicator and the individual’s attribute being sampled. A data generating mechanism is equivalent to a probability sampling, in terms of design effect, if and only if its corresponding ddc is of N-1/2 (stochastic) order, where N is the population size (Meng, 2018). Consequently, existing valid linear estimation methods for non-probability samples can be recast as various strategies to miniaturize the ddc down to the N-1/2 order. The quasi design-based methods accomplish this task by diminishing the variability among the N inclusion propensities via weighting. The super-population model-based approach achieves the same goal through reducing the variability of the N individual attributes by replacing them with their residuals from a regression model. The doubly robust estimators enjoy their celebrated property because a correlation is zero whenever one of the variables being correlated is constant, regardless of which one. Understanding the commonality of these methods through ddc also helps us see clearly the possibility of “double-plus robustness”: a valid estimation without relying on the full validity of either the regression model or the estimated inclusion propensity, neither of which is guaranteed because both rely on device probability. The insight generated by ddc also suggests counterbalancing sub-sampling, a strategy aimed at creating a miniature of the population out of a non-probability sample, and with favorable quality-quantity trade-off because mean-squared errors are much more sensitive to ddc than to the sample size, especially for large populations.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200007
    Description:

    Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We introduce two new methods of nonparametric propensity score technique for weighting in the non-probability samples. One is the information projection approach and the other is the uniform calibration in the reproducing kernel Hilbert space.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200008
    Description:

    This response contains additional remarks on a few selected issues raised by the discussants.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200009
    Description:

    Multiple imputation (MI) is a popular approach for dealing with missing data arising from non-response in sample surveys. Multiple imputation by chained equations (MICE) is one of the most widely used MI algorithms for multivariate data, but it lacks theoretical foundation and is computationally intensive. Recently, missing data imputation methods based on deep learning models have been developed with encouraging results in small studies. However, there has been limited research on evaluating their performance in realistic settings compared to MICE, particularly in big surveys. We conduct extensive simulation studies based on a subsample of the American Community Survey to compare the repeated sampling properties of four machine learning based MI methods: MICE with classification trees, MICE with random forests, generative adversarial imputation networks, and multiple imputation using denoising autoencoders. We find the deep learning imputation methods are superior to MICE in terms of computational time. However, with the default choice of hyperparameters in the common software packages, MICE with classification trees consistently outperforms, often by a large margin, the deep learning imputation methods in terms of bias, mean squared error, and coverage under a range of realistic settings.

    Release date: 2022-12-15

  • Articles and reports: 12-001-X202200200010
    Description:

    Multilevel time series (MTS) models are applied to estimate trends in time series of antenatal care coverage at several administrative levels in Bangladesh, based on repeated editions of the Bangladesh Demographic and Health Survey (BDHS) within the period 1994-2014. MTS models are expressed in an hierarchical Bayesian framework and fitted using Markov Chain Monte Carlo simulations. The models account for varying time lags of three or four years between the editions of the BDHS and provide predictions for the intervening years as well. It is proposed to apply cross-sectional Fay-Herriot models to the survey years separately at district level, which is the most detailed regional level. Time series of these small domain predictions at the district level and their variance-covariance matrices are used as input series for the MTS models. Spatial correlations among districts, random intercept and slope at the district level, and different trend models at district level and higher regional levels are examined in the MTS models to borrow strength over time and space. Trend estimates at district level are obtained directly from the model outputs, while trend estimates at higher regional and national levels are obtained by aggregation of the district level predictions, resulting in a numerically consistent set of trend estimates.

    Release date: 2022-12-15
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: