Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

3 facets displayed. 0 facets selected.

Author(s)

3 facets displayed. 1 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (3)

All (3) ((3 results))

  • Articles and reports: 12-001-X202300100002
    Description: We consider regression analysis in the context of data integration. To combine partial information from external sources, we employ the idea of model calibration which introduces a “working” reduced model based on the observed covariates. The working reduced model is not necessarily correctly specified but can be a useful device to incorporate the partial information from the external data. The actual implementation is based on a novel application of the information projection and model calibration weighting. The proposed method is particularly attractive for combining information from several sources with different missing patterns. The proposed method is applied to a real data example combining survey data from Korean National Health and Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea.
    Release date: 2023-06-30

  • Articles and reports: 12-001-X202200200007
    Description:

    Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We introduce two new methods of nonparametric propensity score technique for weighting in the non-probability samples. One is the information projection approach and the other is the uniform calibration in the reproducing kernel Hilbert space.

    Release date: 2022-12-15

  • Articles and reports: 11-522-X202100100001
    Description:

    We consider regression analysis in the context of data integration. To combine partial information from external sources, we employ the idea of model calibration which introduces a “working” reduced model based on the observed covariates. The working reduced model is not necessarily correctly specified but can be a useful device to incorporate the partial information from the external data. The actual implementation is based on a novel application of the empirical likelihood method. The proposed method is particularly attractive for combining information from several sources with different missing patterns. The proposed method is applied to a real data example combining survey data from Korean National Health and Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea.

    Key Words: Big data; Empirical likelihood; Measurement error models; Missing covariates.

    Release date: 2021-10-15
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (3)

Articles and reports (3) ((3 results))

  • Articles and reports: 12-001-X202300100002
    Description: We consider regression analysis in the context of data integration. To combine partial information from external sources, we employ the idea of model calibration which introduces a “working” reduced model based on the observed covariates. The working reduced model is not necessarily correctly specified but can be a useful device to incorporate the partial information from the external data. The actual implementation is based on a novel application of the information projection and model calibration weighting. The proposed method is particularly attractive for combining information from several sources with different missing patterns. The proposed method is applied to a real data example combining survey data from Korean National Health and Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea.
    Release date: 2023-06-30

  • Articles and reports: 12-001-X202200200007
    Description:

    Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We introduce two new methods of nonparametric propensity score technique for weighting in the non-probability samples. One is the information projection approach and the other is the uniform calibration in the reproducing kernel Hilbert space.

    Release date: 2022-12-15

  • Articles and reports: 11-522-X202100100001
    Description:

    We consider regression analysis in the context of data integration. To combine partial information from external sources, we employ the idea of model calibration which introduces a “working” reduced model based on the observed covariates. The working reduced model is not necessarily correctly specified but can be a useful device to incorporate the partial information from the external data. The actual implementation is based on a novel application of the empirical likelihood method. The proposed method is particularly attractive for combining information from several sources with different missing patterns. The proposed method is applied to a real data example combining survey data from Korean National Health and Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea.

    Key Words: Big data; Empirical likelihood; Measurement error models; Missing covariates.

    Release date: 2021-10-15
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: