Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (2)

All (2) ((2 results))

  • Articles and reports: 12-001-X202000100004
    Description:

    Cut-off sampling is applied when there is a subset of units from the population from which getting the required information is too expensive or difficult and, therefore, those units are deliberately excluded from sample selection. If those excluded units are different from the sampled ones in the characteristics of interest, naïve estimators may be severely biased. Calibration estimators have been proposed to reduce the design-bias. However, when estimating in small domains, they can be inefficient even in the absence of cut-off sampling. Model-based small area estimation methods may prove useful for reducing the bias due to cut-off sampling if the assumed model holds for the whole population. At the same time, for small domains, these methods provide more efficient estimators than calibration methods. Since model-based properties are obtained assuming that the model holds but no model is exactly true, here we analyze the design properties of calibration and model-based procedures for estimation of small domain characteristics under cut-off sampling. Our results confirm that model-based estimators reduce the bias due to cut-off sampling and perform significantly better in terms of design mean squared error.

    Release date: 2020-06-30

  • Articles and reports: 12-001-X201500114161
    Description:

    A popular area level model used for the estimation of small area means is the Fay-Herriot model. This model involves unobservable random effects for the areas apart from the (fixed) linear regression based on area level covariates. Empirical best linear unbiased predictors of small area means are obtained by estimating the area random effects, and they can be expressed as a weighted average of area-specific direct estimators and regression-synthetic estimators. In some cases the observed data do not support the inclusion of the area random effects in the model. Excluding these area effects leads to the regression-synthetic estimator, that is, a zero weight is attached to the direct estimator. A preliminary test estimator of a small area mean obtained after testing for the presence of area random effects is studied. On the other hand, empirical best linear unbiased predictors of small area means that always give non-zero weights to the direct estimators in all areas together with alternative estimators based on the preliminary test are also studied. The preliminary testing procedure is also used to define new mean squared error estimators of the point estimators of small area means. Results of a limited simulation study show that, for small number of areas, the preliminary testing procedure leads to mean squared error estimators with considerably smaller average absolute relative bias than the usual mean squared error estimators, especially when the variance of the area effects is small relative to the sampling variances.

    Release date: 2015-06-29
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (2)

Articles and reports (2) ((2 results))

  • Articles and reports: 12-001-X202000100004
    Description:

    Cut-off sampling is applied when there is a subset of units from the population from which getting the required information is too expensive or difficult and, therefore, those units are deliberately excluded from sample selection. If those excluded units are different from the sampled ones in the characteristics of interest, naïve estimators may be severely biased. Calibration estimators have been proposed to reduce the design-bias. However, when estimating in small domains, they can be inefficient even in the absence of cut-off sampling. Model-based small area estimation methods may prove useful for reducing the bias due to cut-off sampling if the assumed model holds for the whole population. At the same time, for small domains, these methods provide more efficient estimators than calibration methods. Since model-based properties are obtained assuming that the model holds but no model is exactly true, here we analyze the design properties of calibration and model-based procedures for estimation of small domain characteristics under cut-off sampling. Our results confirm that model-based estimators reduce the bias due to cut-off sampling and perform significantly better in terms of design mean squared error.

    Release date: 2020-06-30

  • Articles and reports: 12-001-X201500114161
    Description:

    A popular area level model used for the estimation of small area means is the Fay-Herriot model. This model involves unobservable random effects for the areas apart from the (fixed) linear regression based on area level covariates. Empirical best linear unbiased predictors of small area means are obtained by estimating the area random effects, and they can be expressed as a weighted average of area-specific direct estimators and regression-synthetic estimators. In some cases the observed data do not support the inclusion of the area random effects in the model. Excluding these area effects leads to the regression-synthetic estimator, that is, a zero weight is attached to the direct estimator. A preliminary test estimator of a small area mean obtained after testing for the presence of area random effects is studied. On the other hand, empirical best linear unbiased predictors of small area means that always give non-zero weights to the direct estimators in all areas together with alternative estimators based on the preliminary test are also studied. The preliminary testing procedure is also used to define new mean squared error estimators of the point estimators of small area means. Results of a limited simulation study show that, for small number of areas, the preliminary testing procedure leads to mean squared error estimators with considerably smaller average absolute relative bias than the usual mean squared error estimators, especially when the variance of the area effects is small relative to the sampling variances.

    Release date: 2015-06-29
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: