Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

2 facets displayed. 0 facets selected.

Author(s)

2 facets displayed. 1 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (2)

All (2) ((2 results))

  • Articles and reports: 12-001-X202200100003
    Description:

    Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted survey regression estimation has received considerable attention in recent years. Generalized regression (GREG) estimators, based on a working linear regression model, are currently used in establishment surveys at Statistics Canada and several other statistical agencies. GREG estimators use common survey weights for all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights when all the available auxiliary variables, including interactions among categorical variables, are used in the working linear regression model. On the other hand, new machine learning methods, such as regression trees and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and possible efficiency gains over GREG. In this paper, a simulation study, based on a real business survey sample data set treated as the target population, is conducted to study the relative performance of GREG, regression trees and lasso in terms of efficiency of the estimators and properties of associated regression weights. Both probability sampling and non-probability sampling scenarios are studied.

    Release date: 2022-06-21

  • Articles and reports: 11-522-X202100100009
    Description:

    Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted survey regression estimation has received considerable attention in recent years. Generalized regression (GREG) estimators, based on a working linear regression model, are currently used in establishment surveys at Statistics Canada and several other statistical agencies.  GREG estimators use common survey weights for all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights when all the available auxiliary variables, including interactions among categorical variables, are used in the working linear regression model. On the other hand, new machine learning methods, such as regression trees and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and possible efficiency gains over GREG.  In this paper, a simulation study, based on a real business survey sample data set treated as the target population, is conducted to study the relative performance of GREG, regression trees and lasso in terms of efficiency of the estimators.

    Key Words: Model assisted inference; calibration estimation; model selection; generalized regression estimator.

    Release date: 2021-10-29
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (2)

Articles and reports (2) ((2 results))

  • Articles and reports: 12-001-X202200100003
    Description:

    Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted survey regression estimation has received considerable attention in recent years. Generalized regression (GREG) estimators, based on a working linear regression model, are currently used in establishment surveys at Statistics Canada and several other statistical agencies. GREG estimators use common survey weights for all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights when all the available auxiliary variables, including interactions among categorical variables, are used in the working linear regression model. On the other hand, new machine learning methods, such as regression trees and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and possible efficiency gains over GREG. In this paper, a simulation study, based on a real business survey sample data set treated as the target population, is conducted to study the relative performance of GREG, regression trees and lasso in terms of efficiency of the estimators and properties of associated regression weights. Both probability sampling and non-probability sampling scenarios are studied.

    Release date: 2022-06-21

  • Articles and reports: 11-522-X202100100009
    Description:

    Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted survey regression estimation has received considerable attention in recent years. Generalized regression (GREG) estimators, based on a working linear regression model, are currently used in establishment surveys at Statistics Canada and several other statistical agencies.  GREG estimators use common survey weights for all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights when all the available auxiliary variables, including interactions among categorical variables, are used in the working linear regression model. On the other hand, new machine learning methods, such as regression trees and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and possible efficiency gains over GREG.  In this paper, a simulation study, based on a real business survey sample data set treated as the target population, is conducted to study the relative performance of GREG, regression trees and lasso in terms of efficiency of the estimators.

    Key Words: Model assisted inference; calibration estimation; model selection; generalized regression estimator.

    Release date: 2021-10-29
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: