Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

4 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (4)

All (4) ((4 results))

  • Articles and reports: 12-001-X202100200003
    Description:

    Calibration weighting is a statistically efficient way for handling unit nonresponse. Assuming the response (or output) model justifying the calibration-weight adjustment is correct, it is often possible to measure the variance of estimates in an asymptotically unbiased manner. One approach to variance estimation is to create jackknife replicate weights. Sometimes, however, the conventional method for computing jackknife replicate weights for calibrated analysis weights fails. In that case, an alternative method for computing jackknife replicate weights is usually available. That method is described here and then applied to a simple example.

    Release date: 2022-01-06

  • Articles and reports: 12-001-X201800154928
    Description:

    A two-phase process was used by the Substance Abuse and Mental Health Services Administration to estimate the proportion of US adults with serious mental illness (SMI). The first phase was the annual National Survey on Drug Use and Health (NSDUH), while the second phase was a random subsample of adult respondents to the NSDUH. Respondents to the second phase of sampling were clinically evaluated for serious mental illness. A logistic prediction model was fit to this subsample with the SMI status (yes or no) determined by the second-phase instrument treated as the dependent variable and related variables collected on the NSDUH from all adults as the model’s explanatory variables. Estimates were then computed for SMI prevalence among all adults and within adult subpopulations by assigning an SMI status to each NSDUH respondent based on comparing his (her) estimated probability of having SMI to a chosen cut point on the distribution of the predicted probabilities. We investigate alternatives to this standard cut point estimator such as the probability estimator. The latter assigns an estimated probability of having SMI to each NSDUH respondent. The estimated prevalence of SMI is the weighted mean of those estimated probabilities. Using data from NSDUH and its subsample, we show that, although the probability estimator has a smaller mean squared error when estimating SMI prevalence among all adults, it has a greater tendency to be biased at the subpopulation level than the standard cut point estimator.

    Release date: 2018-06-21

  • Articles and reports: 12-001-X201500114172
    Description:

    When a random sample drawn from a complete list frame suffers from unit nonresponse, calibration weighting to population totals can be used to remove nonresponse bias under either an assumed response (selection) or an assumed prediction (outcome) model. Calibration weighting in this way can not only provide double protection against nonresponse bias, it can also decrease variance. By employing a simple trick one can estimate the variance under the assumed prediction model and the mean squared error under the combination of an assumed response model and the probability-sampling mechanism simultaneously. Unfortunately, there is a practical limitation on what response model can be assumed when design weights are calibrated to population totals in a single step. In particular, the choice for the response function cannot always be logistic. That limitation does not hinder calibration weighting when performed in two steps: from the respondent sample to the full sample to remove the response bias and then from the full sample to the population to decrease variance. There are potential efficiency advantages from using the two-step approach as well even when the calibration variables employed in each step is a subset of the calibration variables in the single step. Simultaneous mean-squared-error estimation using linearization is possible, but more complicated than when calibrating in a single step.

    Release date: 2015-06-29

  • Articles and reports: 12-001-X201200211757
    Description:

    Collinearities among explanatory variables in linear regression models affect estimates from survey data just as they do in non-survey data. Undesirable effects are unnecessarily inflated standard errors, spuriously low or high t-statistics, and parameter estimates with illogical signs. The available collinearity diagnostics are not generally appropriate for survey data because the variance estimators they incorporate do not properly account for stratification, clustering, and survey weights. In this article, we derive condition indexes and variance decompositions to diagnose collinearity problems in complex survey data. The adapted diagnostics are illustrated with data based on a survey of health characteristics.

    Release date: 2012-12-19
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (4)

Articles and reports (4) ((4 results))

  • Articles and reports: 12-001-X202100200003
    Description:

    Calibration weighting is a statistically efficient way for handling unit nonresponse. Assuming the response (or output) model justifying the calibration-weight adjustment is correct, it is often possible to measure the variance of estimates in an asymptotically unbiased manner. One approach to variance estimation is to create jackknife replicate weights. Sometimes, however, the conventional method for computing jackknife replicate weights for calibrated analysis weights fails. In that case, an alternative method for computing jackknife replicate weights is usually available. That method is described here and then applied to a simple example.

    Release date: 2022-01-06

  • Articles and reports: 12-001-X201800154928
    Description:

    A two-phase process was used by the Substance Abuse and Mental Health Services Administration to estimate the proportion of US adults with serious mental illness (SMI). The first phase was the annual National Survey on Drug Use and Health (NSDUH), while the second phase was a random subsample of adult respondents to the NSDUH. Respondents to the second phase of sampling were clinically evaluated for serious mental illness. A logistic prediction model was fit to this subsample with the SMI status (yes or no) determined by the second-phase instrument treated as the dependent variable and related variables collected on the NSDUH from all adults as the model’s explanatory variables. Estimates were then computed for SMI prevalence among all adults and within adult subpopulations by assigning an SMI status to each NSDUH respondent based on comparing his (her) estimated probability of having SMI to a chosen cut point on the distribution of the predicted probabilities. We investigate alternatives to this standard cut point estimator such as the probability estimator. The latter assigns an estimated probability of having SMI to each NSDUH respondent. The estimated prevalence of SMI is the weighted mean of those estimated probabilities. Using data from NSDUH and its subsample, we show that, although the probability estimator has a smaller mean squared error when estimating SMI prevalence among all adults, it has a greater tendency to be biased at the subpopulation level than the standard cut point estimator.

    Release date: 2018-06-21

  • Articles and reports: 12-001-X201500114172
    Description:

    When a random sample drawn from a complete list frame suffers from unit nonresponse, calibration weighting to population totals can be used to remove nonresponse bias under either an assumed response (selection) or an assumed prediction (outcome) model. Calibration weighting in this way can not only provide double protection against nonresponse bias, it can also decrease variance. By employing a simple trick one can estimate the variance under the assumed prediction model and the mean squared error under the combination of an assumed response model and the probability-sampling mechanism simultaneously. Unfortunately, there is a practical limitation on what response model can be assumed when design weights are calibrated to population totals in a single step. In particular, the choice for the response function cannot always be logistic. That limitation does not hinder calibration weighting when performed in two steps: from the respondent sample to the full sample to remove the response bias and then from the full sample to the population to decrease variance. There are potential efficiency advantages from using the two-step approach as well even when the calibration variables employed in each step is a subset of the calibration variables in the single step. Simultaneous mean-squared-error estimation using linearization is possible, but more complicated than when calibrating in a single step.

    Release date: 2015-06-29

  • Articles and reports: 12-001-X201200211757
    Description:

    Collinearities among explanatory variables in linear regression models affect estimates from survey data just as they do in non-survey data. Undesirable effects are unnecessarily inflated standard errors, spuriously low or high t-statistics, and parameter estimates with illogical signs. The available collinearity diagnostics are not generally appropriate for survey data because the variance estimators they incorporate do not properly account for stratification, clustering, and survey weights. In this article, we derive condition indexes and variance decompositions to diagnose collinearity problems in complex survey data. The adapted diagnostics are illustrated with data based on a survey of health characteristics.

    Release date: 2012-12-19
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: