Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (2)

All (2) ((2 results))

  • Articles and reports: 12-001-X202300200009
    Description: In this paper, we investigate how a big non-probability database can be used to improve estimates of finite population totals from a small probability sample through data integration techniques. In the situation where the study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database contains no study variable but auxiliary variables. We also require that the non-probability database is large and can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance estimator. We compare the design properties of different predictors, in the class of QR predictors, through a simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample.
    Release date: 2024-01-03

  • Articles and reports: 12-001-X201300211888
    Description:

    When the study variables are functional and storage capacities are limited or transmission costs are high, using survey techniques to select a portion of the observations of the population is an interesting alternative to using signal compression techniques. In this context of functional data, our focus in this study is on estimating the mean electricity consumption curve over a one-week period. We compare different estimation strategies that take account of a piece of auxiliary information such as the mean consumption for the previous period. The first strategy consists in using a simple random sampling design without replacement, then incorporating the auxiliary information into the estimator by introducing a functional linear model. The second approach consists in incorporating the auxiliary information into the sampling designs by considering unequal probability designs, such as stratified and pi designs. We then address the issue of constructing confidence bands for these estimators of the mean. When effective estimators of the covariance function are available and the mean estimator satisfies a functional central limit theorem, it is possible to use a fast technique for constructing confidence bands, based on the simulation of Gaussian processes. This approach is compared with bootstrap techniques that have been adapted to take account of the functional nature of the data.

    Release date: 2014-01-15
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (2)

Articles and reports (2) ((2 results))

  • Articles and reports: 12-001-X202300200009
    Description: In this paper, we investigate how a big non-probability database can be used to improve estimates of finite population totals from a small probability sample through data integration techniques. In the situation where the study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database contains no study variable but auxiliary variables. We also require that the non-probability database is large and can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance estimator. We compare the design properties of different predictors, in the class of QR predictors, through a simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample.
    Release date: 2024-01-03

  • Articles and reports: 12-001-X201300211888
    Description:

    When the study variables are functional and storage capacities are limited or transmission costs are high, using survey techniques to select a portion of the observations of the population is an interesting alternative to using signal compression techniques. In this context of functional data, our focus in this study is on estimating the mean electricity consumption curve over a one-week period. We compare different estimation strategies that take account of a piece of auxiliary information such as the mean consumption for the previous period. The first strategy consists in using a simple random sampling design without replacement, then incorporating the auxiliary information into the estimator by introducing a functional linear model. The second approach consists in incorporating the auxiliary information into the sampling designs by considering unequal probability designs, such as stratified and pi designs. We then address the issue of constructing confidence bands for these estimators of the mean. When effective estimators of the covariance function are available and the mean estimator satisfies a functional central limit theorem, it is possible to use a fast technique for constructing confidence bands, based on the simulation of Gaussian processes. This approach is compared with bootstrap techniques that have been adapted to take account of the functional nature of the data.

    Release date: 2014-01-15
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: