Analysis

COVID-19 A data perspective

COVID-19: A data perspective: Explore key economic trends and social challenges that arise as the COVID-19 situation evolves.

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (1)

All (1) ((1 result))

  • Articles and reports: 12-001-X201100211604
    Description:

    We propose a method of mean squared error (MSE) estimation for estimators of finite population domain means that can be expressed in pseudo-linear form, i.e., as weighted sums of sample values. In particular, it can be used for estimating the MSE of the empirical best linear unbiased predictor, the model-based direct estimator and the M-quantile predictor. The proposed method represents an extension of the ideas in Royall and Cumberland (1978) and leads to MSE estimators that are simpler to implement, and potentially more bias-robust, than those suggested in the small area literature. However, it should be noted that the MSE estimators defined using this method can also exhibit large variability when the area-specific sample sizes are very small. We illustrate the performance of the method through extensive model-based and design-based simulation, with the latter based on two realistic survey data sets containing small area information.

    Release date: 2011-12-21
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (1)

Articles and reports (1) ((1 result))

  • Articles and reports: 12-001-X201100211604
    Description:

    We propose a method of mean squared error (MSE) estimation for estimators of finite population domain means that can be expressed in pseudo-linear form, i.e., as weighted sums of sample values. In particular, it can be used for estimating the MSE of the empirical best linear unbiased predictor, the model-based direct estimator and the M-quantile predictor. The proposed method represents an extension of the ideas in Royall and Cumberland (1978) and leads to MSE estimators that are simpler to implement, and potentially more bias-robust, than those suggested in the small area literature. However, it should be noted that the MSE estimators defined using this method can also exhibit large variability when the area-specific sample sizes are very small. We illustrate the performance of the method through extensive model-based and design-based simulation, with the latter based on two realistic survey data sets containing small area information.

    Release date: 2011-12-21
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: