Analysis
Filter results by
Search HelpKeyword(s)
Subject
Author(s)
Results
All (4)
All (4) ((4 results))
- Articles and reports: 12-001-X202300200003Description: We investigate small area prediction of general parameters based on two models for unit-level counts. We construct predictors of parameters, such as quartiles, that may be nonlinear functions of the model response variable. We first develop a procedure to construct empirical best predictors and mean square error estimators of general parameters under a unit-level gamma-Poisson model. We then use a sampling importance resampling algorithm to develop predictors for a generalized linear mixed model (GLMM) with a Poisson response distribution. We compare the two models through simulation and an analysis of data from the Iowa Seat-Belt Use Survey.Release date: 2024-01-03
- Articles and reports: 12-001-X201900200001Description:
Development of imputation procedures appropriate for data with extreme values or nonlinear relationships to covariates is a significant challenge in large scale surveys. We develop an imputation procedure for complex surveys based on semiparametric quantile regression. We apply the method to the Conservation Effects Assessment Project (CEAP), a large-scale survey that collects data used in quantifying soil loss from crop fields. In the imputation procedure, we first generate imputed values from a semiparametric model for the quantiles of the conditional distribution of the response given a covariate. Then, we estimate the parameters of interest using the generalized method of moments (GMM). We derive the asymptotic distribution of the GMM estimators for a general class of complex survey designs. In simulations meant to represent the CEAP data, we evaluate variance estimators based on the asymptotic distribution and compare the semiparametric quantile regression imputation (QRI) method to fully parametric and nonparametric alternatives. The QRI procedure is more efficient than nonparametric and fully parametric alternatives, and empirical coverages of confidence intervals are within 1% of the nominal 95% level. An application to estimation of mean erosion indicates that QRI may be a viable option for CEAP.
Release date: 2019-06-27 - 3. A bivariate hierarchical Bayesian model for estimating cropland cash rental rates at the county level ArchivedArticles and reports: 12-001-X201900200002Description:
The National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is responsible for estimating average cash rental rates at the county level. A cash rental rate refers to the market value of land rented on a per acre basis for cash only. Estimates of cash rental rates are useful to farmers, economists, and policy makers. NASS collects data on cash rental rates using a Cash Rent Survey. Because realized sample sizes at the county level are often too small to support reliable direct estimators, predictors based on mixed models are investigated. We specify a bivariate model to obtain predictors of 2010 cash rental rates for non-irrigated cropland using data from the 2009 Cash Rent Survey and auxiliary variables from external sources such as the 2007 Census of Agriculture. We use Bayesian methods for inference and present results for Iowa, Kansas, and Texas. Incorporating the 2009 survey data through a bivariate model leads to predictors with smaller mean squared errors than predictors based on a univariate model.
Release date: 2019-06-27 - 4. Statistical matching using fractional imputation ArchivedArticles and reports: 12-001-X201600114539Description:
Statistical matching is a technique for integrating two or more data sets when information available for matching records for individual participants across data sets is incomplete. Statistical matching can be viewed as a missing data problem where a researcher wants to perform a joint analysis of variables that are never jointly observed. A conditional independence assumption is often used to create imputed data for statistical matching. We consider a general approach to statistical matching using parametric fractional imputation of Kim (2011) to create imputed data under the assumption that the specified model is fully identified. The proposed method does not have a convergent EM sequence if the model is not identified. We also present variance estimators appropriate for the imputation procedure. We explain how the method applies directly to the analysis of data from split questionnaire designs and measurement error models.
Release date: 2016-06-22
Articles and reports (4)
Articles and reports (4) ((4 results))
- Articles and reports: 12-001-X202300200003Description: We investigate small area prediction of general parameters based on two models for unit-level counts. We construct predictors of parameters, such as quartiles, that may be nonlinear functions of the model response variable. We first develop a procedure to construct empirical best predictors and mean square error estimators of general parameters under a unit-level gamma-Poisson model. We then use a sampling importance resampling algorithm to develop predictors for a generalized linear mixed model (GLMM) with a Poisson response distribution. We compare the two models through simulation and an analysis of data from the Iowa Seat-Belt Use Survey.Release date: 2024-01-03
- Articles and reports: 12-001-X201900200001Description:
Development of imputation procedures appropriate for data with extreme values or nonlinear relationships to covariates is a significant challenge in large scale surveys. We develop an imputation procedure for complex surveys based on semiparametric quantile regression. We apply the method to the Conservation Effects Assessment Project (CEAP), a large-scale survey that collects data used in quantifying soil loss from crop fields. In the imputation procedure, we first generate imputed values from a semiparametric model for the quantiles of the conditional distribution of the response given a covariate. Then, we estimate the parameters of interest using the generalized method of moments (GMM). We derive the asymptotic distribution of the GMM estimators for a general class of complex survey designs. In simulations meant to represent the CEAP data, we evaluate variance estimators based on the asymptotic distribution and compare the semiparametric quantile regression imputation (QRI) method to fully parametric and nonparametric alternatives. The QRI procedure is more efficient than nonparametric and fully parametric alternatives, and empirical coverages of confidence intervals are within 1% of the nominal 95% level. An application to estimation of mean erosion indicates that QRI may be a viable option for CEAP.
Release date: 2019-06-27 - 3. A bivariate hierarchical Bayesian model for estimating cropland cash rental rates at the county level ArchivedArticles and reports: 12-001-X201900200002Description:
The National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is responsible for estimating average cash rental rates at the county level. A cash rental rate refers to the market value of land rented on a per acre basis for cash only. Estimates of cash rental rates are useful to farmers, economists, and policy makers. NASS collects data on cash rental rates using a Cash Rent Survey. Because realized sample sizes at the county level are often too small to support reliable direct estimators, predictors based on mixed models are investigated. We specify a bivariate model to obtain predictors of 2010 cash rental rates for non-irrigated cropland using data from the 2009 Cash Rent Survey and auxiliary variables from external sources such as the 2007 Census of Agriculture. We use Bayesian methods for inference and present results for Iowa, Kansas, and Texas. Incorporating the 2009 survey data through a bivariate model leads to predictors with smaller mean squared errors than predictors based on a univariate model.
Release date: 2019-06-27 - 4. Statistical matching using fractional imputation ArchivedArticles and reports: 12-001-X201600114539Description:
Statistical matching is a technique for integrating two or more data sets when information available for matching records for individual participants across data sets is incomplete. Statistical matching can be viewed as a missing data problem where a researcher wants to perform a joint analysis of variables that are never jointly observed. A conditional independence assumption is often used to create imputed data for statistical matching. We consider a general approach to statistical matching using parametric fractional imputation of Kim (2011) to create imputed data under the assumption that the specified model is fully identified. The proposed method does not have a convergent EM sequence if the model is not identified. We also present variance estimators appropriate for the imputation procedure. We explain how the method applies directly to the analysis of data from split questionnaire designs and measurement error models.
Release date: 2016-06-22