Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Year of publication

1 facets displayed. 0 facets selected.

Author(s)

2 facets displayed. 1 facets selected.

Content

1 facets displayed. 1 facets selected.
Sort Help
entries

Results

All (1)

All (1) ((1 result))

  • Articles and reports: 12-001-X202200200012
    Description:

    In many applications, the population means of geographically adjacent small areas exhibit a spatial variation. If available auxiliary variables do not adequately account for the spatial pattern, the residual variation will be included in the random effects. As a result, the independent and identical distribution assumption on random effects of the Fay-Herriot model will fail. Furthermore, limited resources often prevent numerous sub-populations from being included in the sample, resulting in non-sampled small areas. The problem can be exacerbated for predicting means of non-sampled small areas using the above Fay-Herriot model as the predictions will be made based solely on the auxiliary variables. To address such inadequacy, we consider Bayesian spatial random-effect models that can accommodate multiple non-sampled areas. Under mild conditions, we establish the propriety of the posterior distributions for various spatial models for a useful class of improper prior densities on model parameters. The effectiveness of these spatial models is assessed based on simulated and real data. Specifically, we examine predictions of statewide four-person family median incomes based on the 1990 Current Population Survey and the 1980 Census for the United States of America.

    Release date: 2022-12-15
Stats in brief (0)

Stats in brief (0) (0 results)

No content available at this time.

Articles and reports (1)

Articles and reports (1) ((1 result))

  • Articles and reports: 12-001-X202200200012
    Description:

    In many applications, the population means of geographically adjacent small areas exhibit a spatial variation. If available auxiliary variables do not adequately account for the spatial pattern, the residual variation will be included in the random effects. As a result, the independent and identical distribution assumption on random effects of the Fay-Herriot model will fail. Furthermore, limited resources often prevent numerous sub-populations from being included in the sample, resulting in non-sampled small areas. The problem can be exacerbated for predicting means of non-sampled small areas using the above Fay-Herriot model as the predictions will be made based solely on the auxiliary variables. To address such inadequacy, we consider Bayesian spatial random-effect models that can accommodate multiple non-sampled areas. Under mild conditions, we establish the propriety of the posterior distributions for various spatial models for a useful class of improper prior densities on model parameters. The effectiveness of these spatial models is assessed based on simulated and real data. Specifically, we examine predictions of statewide four-person family median incomes based on the 1990 Current Population Survey and the 1980 Census for the United States of America.

    Release date: 2022-12-15
Journals and periodicals (0)

Journals and periodicals (0) (0 results)

No content available at this time.

Date modified: