Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (82)

All (82) (30 to 40 of 82 results)

  • Articles and reports: 92F0138M2008002
    Description:

    On November 26 2006, the Organization for Economic Co-operation and Development (OECD) held an international workshop on defining and measuring metropolitan regions. The reasons the OECD organized this workshop are listed below.

    1. Metropolitan Regions have become a crucial economic actor in today's highly integrated world. Not only do they play their traditional role of growth poles in their countries but they function as essential nodes of the global economy.2. Policy makers, international organisations and research networks are increasingly called to compare the economic and social performances of Metropolitan Regions across countries. Examples of this work undertaken in international organisation and networks include the UN-Habitat, the EU Urban Audit, ESPON and the OECD Competitive Cities.3. The scope of what we can learn from these international comparisons, however, is limited by the lack of a comparable definition of Metropolitan Regions. Although most countries have their own definitions, these vary significantly from one country to another. Furthermore, in search for higher cross-country comparability, international initiatives have - somehow paradoxically - generated an even larger number of definitions.4. In principle, there is no clear reason to prefer one definition to another. As each definition has been elaborated for a specific analytical purpose, it captures some features of a Metropolitan Region while it tends to overlook others. The issue, rather, is that we do not know the pros and the cons of different definitions nor, most important, the analytical implications of using one definition rather than another. 5. In order to respond to these questions, the OECD hosted an international workshop on 'Defining and Measuring Metropolitan Regions'. The workshop brought together major international organisations (the UN, Eurostat, the World Bank, and the OECD), National Statistical Offices and researchers from this field. The aim of the workshop was to develop some 'guiding principles', which could be agreed upon among the participants and would eventually provide the basis for some form of 'International Guidance' for comparing Metropolitan Regions across countries.

    This working paper was presented at this workshop. It provides the conceptual and methodological basis for the definition of metropolitan areas in Canada and provides a detailed comparison of Canada's methodology to that of the USA. The intent was to encourage discussion regarding Canada's approach to defining metropolitan areas in the effort to identify the 'guiding principles'. It is being made available as a working paper to continue this discussion and to provide background to the user community to encourage dialogue and commentary from the user community regarding Canada's metropolitan area methodology.

    Release date: 2008-02-20

  • Articles and reports: 92F0138M2007001
    Description:

    Statistics Canada creates files that provide the link between postal codes and the geographic areas by which it disseminates statistical data. By linking postal codes to the Statistics Canada geographic areas, Statistics Canada facilitates the extraction and subsequent aggregation of data for selected geographic areas from files available to users. Users can then take data from Statistics Canada for their areas and tabulate this with other data for these same areas to create a combined statistical profile for these areas.

    An issue has been the methodology used by Statistics Canada to establish the linkage of postal codes to geographic areas. In order to address this issue, Statistics Canada decided to create a conceptual framework on which to base the rules for linking postal codes and Statistics Canada's geographic areas. This working paper presents the conceptual framework and the geocoding rules. The methodology described in this paper will be the basis for linking postal codes to the 2006 Census geographic areas. This paper is presented for feedback from users of Statistics Canada's postal codes related products.

    Release date: 2007-02-12

  • Articles and reports: 12-001-X20060019257
    Description:

    In the presence of item nonreponse, two approaches have been traditionally used to make inference on parameters of interest. The first approach assumes uniform response within imputation cells whereas the second approach assumes ignorable response but make use of a model on the variable of interest as the basis for inference. In this paper, we propose a third appoach that assumes a specified ignorable response mechanism without having to specify a model on the variable of interest. In this case, we show how to obtain imputed values which lead to estimators of a total that are approximately unbiased under the proposed approach as well as the second approach. Variance estimators of the imputed estimators that are approximately unbiased are also obtained using an approach of Fay (1991) in which the order of sampling and response is reversed. Finally, simulation studies are conducted to investigate the finite sample performance of the methods in terms of bias and mean square error.

    Release date: 2006-07-20

  • Articles and reports: 11F0024M20050008805
    Description:

    This paper reports on the potential development of sub-annual indicators for selected service industries using Goods and Services Tax (GST) data. The services sector is now of central importance to advanced economies; however, our knowledge of this sector remains incomplete, partly due to a lack of data. The Voorburg Group on Service Statistics has been meeting for almost twenty years to develop and incorporate better measures for the services sector. Despite this effort, many sub-annual economic measures continue to rely on output data for the goods-producing sector and, with the exception of distributive trades, on employment data for service industries.

    The development of sub-annual indicators for service industries raises two questions regarding the national statistical program. First, is there a need for service output indicators to supplement existing sub-annual measures? And second, what service industries are the most promising for development? The paper begins by reviewing the importance of service industries and how they behave during economic downturns. Next, it examines considerations in determining which service industries to select as GST-based, sub-annual indicators. A case study of the accommodation services industry serves to illustrate improving timeliness and accuracy. We conclude by discussing the opportunities for, and limitations of, these indicators.

    Release date: 2005-10-20

  • Articles and reports: 12-002-X20050018030
    Description:

    People often wish to use survey micro-data to study whether the rate of occurrence of a particular condition in a subpopulation is the same as the rate of occurrence in the full population. This paper describes some alternatives for making inferences about such a rate difference and shows whether and how these alternatives may be implemented in three different survey software packages. The software packages illustrated - SUDAAN, WesVar and Bootvar - all can make use of bootstrap weights provided by the analyst to carry out variance estimation.

    Release date: 2005-06-23

  • Articles and reports: 12-001-X20040027753
    Description:

    Samplers often distrust model-based approaches to survey inference because of concerns about misspecification when models are applied to large samples from complex populations. We suggest that the model-based paradigm can work very successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In Zheng and Little (2003, 2004) we used penalized splines (p-splines) to model smoothly - varying relationships between the outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that p spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen for a common equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In situations that most favor the HT estimator, the model-based estimators have comparable efficiency.

    Release date: 2005-02-03

  • Articles and reports: 11-522-X20030017700
    Description:

    This paper suggests a useful framework for exploring the effects of moderate deviations from idealized conditions. It offers evaluation criteria for point estimators and interval estimators.

    Release date: 2005-01-26

  • Articles and reports: 11-522-X20030017722
    Description:

    This paper shows how to adapt design-based and model-based frameworks to the case of two-stage sampling.

    Release date: 2005-01-26

  • Surveys and statistical programs – Documentation: 12-002-X20040027035
    Description:

    As part of the processing of the National Longitudinal Survey of Children and Youth (NLSCY) cycle 4 data, historical revisions have been made to the data of the first 3 cycles, either to correct errors or to update the data. During processing, particular attention was given to the PERSRUK (Person Identifier) and the FIELDRUK (Household Identifier). The same level of attention has not been given to the other identifiers that are included in the data base, the CHILDID (Person identifier) and the _IDHD01 (Household identifier). These identifiers have been created for the public files and can also be found in the master files by default. The PERSRUK should be used to link records between files and the FIELDRUK to determine the household when using the master files.

    Release date: 2004-10-05

  • Articles and reports: 11-522-X20020016708
    Description:

    In this paper, we discuss the analysis of complex health survey data by using multivariate modelling techniques. Main interests are in various design-based and model-based methods that aim at accounting for the design complexities, including clustering, stratification and weighting. Methods covered include generalized linear modelling based on pseudo-likelihood and generalized estimating equations, linear mixed models estimated by restricted maximum likelihood, and hierarchical Bayes techniques using Markov Chain Monte Carlo (MCMC) methods. The methods will be compared empirically, using data from an extensive health interview and examination survey conducted in Finland in 2000 (Health 2000 Study).

    The data of the Health 2000 Study were collected using personal interviews, questionnaires and clinical examinations. A stratified two-stage cluster sampling design was used in the survey. The sampling design involved positive intra-cluster correlation for many study variables. For a closer investigation, we selected a small number of study variables from the health interview and health examination phases. In many cases, the different methods produced similar numerical results and supported similar statistical conclusions. Methods that failed to account for the design complexities sometimes led to conflicting conclusions. We also discuss the application of the methods in this paper by using standard statistical software products.

    Release date: 2004-09-13
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (69)

Analysis (69) (50 to 60 of 69 results)

  • Articles and reports: 11-522-X19990015654
    Description:

    A meta analysis was performed to estimate the proportion of liver carcinogens, the proportion of chemicals carcinogenic at any site, and the corresponding proportion of anticarcinogens among chemicals tested in 397 long-term cancer bioassays conducted by the U.S. National Toxicology Program. Although the estimator used was negatively biased, the study provided persuasive evidence for a larger proportion of liver carcinogens (0.43,90%CI: 0.35,0.51) than was identified by the NTP (0.28). A larger proportion of chemicals carcinogenic at any site was also estimated (0.59,90%CI: 0.49,0.69) than was identified by the NTP (0.51), although this excess was not statistically significant. A larger proportion of anticarcinogens (0.66) was estimated than carcinogens (0.59). Despite the negative bias, it was estimated that 85% of the chemicals were either carcinogenic or anticarcinogenic at some site in some sex-species group. This suggests that most chemicals tested at high enough doses will cause some sort of perturbation in tumor rates.

    Release date: 2000-03-02

  • Articles and reports: 92F0138M2000003
    Description:

    Statistics Canada's interest in a common delineation of the north for statistical analysis purposes evolved from research to devise a classification to further differentiate the largely rural and remote areas that make up 96% of Canada's land area. That research led to the establishment of the census metropolitan area and census agglomeration influenced zone (MIZ) concept. When applied to census subdivisions, the MIZ categories did not work as well in northern areas as in the south. Therefore, the Geography Division set out to determine a north-south divide that would differentiate the north from the south independent of any standard geographic area boundaries.

    This working paper describes the methodology used to define a continuous line across Canada to separate the north from the south, as well as lines marking transition zones on both sides of the north-south line. It also describes the indicators selected to derive the north-south line and makes comparisons to alternative definitions of the north. The resulting classification of the north complements the MIZ classification. Together, census metropolitan areas, census agglomerations, MIZ and the North form a new Statistical Area Classification (SAC) for Canada.

    Two related Geography working papers (catalogue no. 92F0138MPE) provide further details about the MIZ classification. Working paper no. 2000-1 (92F0138MPE00001) briefly describes MIZ and includes tables of selected socio-economic characteristics from the 1991 Census tabulated by the MIZ categories, and working paper no. 2000-2 (92F0138MPE00002) describes the methodology used to define the MIZ classification.

    Release date: 2000-02-03

  • Articles and reports: 62F0014M1998013
    Geography: Canada
    Description:

    The reference population for the Consumer Price Index (CPI) has been represented, since the 1992 updating of the basket of goods and services, by families and unattached individuals living in private urban or rural households. The official CPI is a measure of the average percentage change over time in the cost of a fixed basket of goods and services purchased by Canadian consumers.

    Because of the broadly defined target population of the CPI, the measure has been criticised for failing to reflect the inflationary experiences of certain socio-economic groups. This study examines this question for three sub-groups of the reference population of the CPI. It is an extension of earlier studies on the subject done at Statistics Canada.

    In this document, analytical consumer price indexes sub-group indexes are compared to the analytical index for the whole population calculated at the national geographic level.

    The findings tend to point to those of earlier Statistics Canada studies on sub-groups in the CPI reference population. Those studies have consistently concluded that a consumer price index established for a given sub-group does not differ substantially from the index for the whole reference population.

    Release date: 1999-05-13

  • Surveys and statistical programs – Documentation: 12-001-X19970013101
    Description:

    In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings. Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19970013102
    Description:

    The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of practical importance when the number of variables available is large. An approach is developed in which a mean squared error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects the properties of standard variance estimators and thus leads to a problem of variance estimation.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19960022980
    Description:

    In this paper, we study a confidence interval estimation method for a finite population average when some auxiliairy information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing methods to construct confidence intervals for population averages may result in very poor conditional coverage probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to improve the precision of the normal approximation. The transformed data are then used to make inference on the original population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation is needed, our approach performs well compared to the usual regression method.

    Release date: 1997-01-30

  • Articles and reports: 91F0015M1996001
    Geography: Canada
    Description:

    This paper describes the methodology for fertility projections used in the 1993-based population projections by age and sex for Canada, provinces and territories, 1993-2016. A new version of the parametric model known as the Pearsonian Type III curve was applied for projecting fertility age pattern. The Pearsonian Type III model is considered as an improvement over the Type I used in the past projections. This is because the Type III curve better portrays both the distribution of the age-specific fertility rates and the estimates of births. Since the 1993-based population projections are the first official projections to incorporate the net census undercoverage in the population base, it has been necessary to recalculate fertility rates based on the adjusted population estimates. This recalculation resulted in lowering the historical series of age-specific and total fertility rates, 1971-1993. The three sets of fertility assumptions and projections were developed with these adjusted annual fertility rates.

    It is hoped that this paper will provide valuable information about the technical and analytical aspects of the current fertility projection model. Discussions on the current and future levels and age pattern of fertility in Canada, provinces and territories are also presented in the paper.

    Release date: 1996-08-02

  • Articles and reports: 12-001-X199600114385
    Description:

    The multiple capture-recapture census is reconsidered by relaxing the traditional perfect matching assumption. We propose matching error models to characterize error-prone matching mechanisms. The observed data take the form of an incomplete 2^k contingency table with one missing cell and follow a multinomial distribution. We develop a procedure for the estimation of the population size. Our approach applies to both standard log-linear models for contingency tables and log-linear models for heterogeneity of catchability. We illustrate the method and estimation using a 1988 dress rehearsal study for the 1990 census conducted by the U.S. Bureau of the Census.

    Release date: 1996-06-14

  • Articles and reports: 12-001-X199500214398
    Description:

    We present empirical evidence from 14 surveys in six countries concerning the existence and magnitude of design effects (defts) for five designs of two major types. The first type concerns deft (p_i – p_j), the difference of two proportions from a polytomous variable of three or more categories. The second type uses Chi-square tests for differences from two samples. We find that for all variables in all designs deft (p_i – p_j) \cong [deft (p_i) + deft (p_j)] / 2 are good approximations. These are empirical results, and exceptions disprove the existence of mere analytical inequalities. These results hold despite great variations of defts between variables and also between categories of the same variables. They also show the need for sample survey treatment of survey data even for analytical statistics. Furthermore they permit useful approximations of deft (p_i – p_j) from more accessible deft (p_i) values.

    Release date: 1995-12-15

  • Articles and reports: 12-001-X199500114408
    Description:

    The problem of estimating the median of a finite population when an auxiliary variable is present is considered. Point and interval estimators based on a non-informative Bayesian approach are proposed. The point estimator is compared to other possible estimators and is seen to perform well in a variety of situations.

    Release date: 1995-06-15
Reference (16)

Reference (16) (10 to 20 of 16 results)

  • Surveys and statistical programs – Documentation: 11-522-X19990015650
    Description:

    The U.S. Manufacturing Plant Ownership Change Database (OCD) was constructed using plant-level data taken from the Census Bureau's Longitudinal Research Database (LRD). It contains data on all manufacturing plants that have experienced ownership change at least once during the period 1963-92. This paper reports the status of the OCD and discuss its research possibilities. For an empirical demonstration, data taken from the database are used to study the effects of ownership changes on plant closure.

    Release date: 2000-03-02

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05

  • Surveys and statistical programs – Documentation: 12-001-X19970013101
    Description:

    In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings. Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19970013102
    Description:

    The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of practical importance when the number of variables available is large. An approach is developed in which a mean squared error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects the properties of standard variance estimators and thus leads to a problem of variance estimation.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19960022980
    Description:

    In this paper, we study a confidence interval estimation method for a finite population average when some auxiliairy information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing methods to construct confidence intervals for population averages may result in very poor conditional coverage probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to improve the precision of the normal approximation. The transformed data are then used to make inference on the original population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation is needed, our approach performs well compared to the usual regression method.

    Release date: 1997-01-30
Date modified: