Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (82)

All (82) (20 to 30 of 82 results)

  • Articles and reports: 12-001-X201100211602
    Description:

    This article attempts to answer the three questions appearing in the title. It starts by discussing unique features of complex survey data not shared by other data sets, which require special attention but suggest a large variety of diverse inference procedures. Next a large number of different approaches proposed in the literature for handling these features are reviewed with discussion on their merits and limitations. The approaches differ in the conditions underlying their use, additional data required for their application, goodness of fit testing, the inference objectives that they accommodate, statistical efficiency, computational demands, and the skills required from analysts fitting the model. The last part of the paper presents simulation results, which compare the approaches when estimating linear regression coefficients from a stratified sample in terms of bias, variance, and coverage rates. It concludes with a short discussion of pending issues.

    Release date: 2011-12-21

  • Surveys and statistical programs – Documentation: 12-001-X201100211603
    Description:

    In many sample surveys there are items requesting binary response (e.g., obese, not obese) from a number of small areas. Inference is required about the probability for a positive response (e.g., obese) in each area, the probability being the same for all individuals in each area and different across areas. Because of the sparseness of the data within areas, direct estimators are not reliable, and there is a need to use data from other areas to improve inference for a specific area. Essentially, a priori the areas are assumed to be similar, and a hierarchical Bayesian model, the standard beta-binomial model, is a natural choice. The innovation is that a practitioner may have much-needed additional prior information about a linear combination of the probabilities. For example, a weighted average of the probabilities is a parameter, and information can be elicited about this parameter, thereby making the Bayesian paradigm appropriate. We have modified the standard beta-binomial model for small areas to incorporate the prior information on the linear combination of the probabilities, which we call a constraint. Thus, there are three cases. The practitioner (a) does not specify a constraint, (b) specifies a constraint and the parameter completely, and (c) specifies a constraint and information which can be used to construct a prior distribution for the parameter. The griddy Gibbs sampler is used to fit the models. To illustrate our method, we use an example on obesity of children in the National Health and Nutrition Examination Survey in which the small areas are formed by crossing school (middle, high), ethnicity (white, black, Mexican) and gender (male, female). We use a simulation study to assess some of the statistical features of our method. We have shown that the gain in precision beyond (a) is in the order with (b) larger than (c).

    Release date: 2011-12-21

  • Articles and reports: 12-001-X201100111446
    Description:

    Small area estimation based on linear mixed models can be inefficient when the underlying relationships are non-linear. In this paper we introduce SAE techniques for variables that can be modelled linearly following a non-linear transformation. In particular, we extend the model-based direct estimator of Chandra and Chambers (2005, 2009) to data that are consistent with a linear mixed model in the logarithmic scale, using model calibration to define appropriate weights for use in this estimator. Our results show that the resulting transformation-based estimator is both efficient and robust with respect to the distribution of the random effects in the model. An application to business survey data demonstrates the satisfactory performance of the method.

    Release date: 2011-06-29

  • Articles and reports: 12-001-X201100111451
    Description:

    In the calibration method proposed by Deville and Särndal (1992), the calibration equations take only exact estimates of auxiliary variable totals into account. This article examines other parameters besides totals for calibration. Parameters that are considered complex include the ratio, median or variance of auxiliary variables.

    Release date: 2011-06-29

  • Surveys and statistical programs – Documentation: 12-001-X201000111250
    Description:

    We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

    Release date: 2010-06-29

  • Articles and reports: 11-536-X200900110806
    Description:

    Recent work using a pseudo empirical likelihood (EL) method for finite population inferences with complex survey data focused primarily on a single survey sample, non-stratified or stratified, with considerable effort devoted to computational procedures. In this talk we present a pseudo empirical likelihood approach to inference from multiple surveys and multiple-frame surveys, two commonly encountered problems in survey practice. We show that inferences about the common parameter of interest and the effective use of various types of auxiliary information can be conveniently carried out through the constrained maximization of joint pseudo EL function. We obtain asymptotic results which are used for constructing the pseudo EL ratio confidence intervals, either using a chi-square approximation or a bootstrap calibration. All related computational problems can be handled using existing algorithms on stratified sampling after suitable re-formulation.

    Release date: 2009-08-11

  • Articles and reports: 12-001-X200800110606
    Description:

    Data from election polls in the US are typically presented in two-way categorical tables, and there are many polls before the actual election in November. For example, in the Buckeye State Poll in 1998 for governor there are three polls, January, April and October; the first category represents the candidates (e.g., Fisher, Taft and other) and the second category represents the current status of the voters (likely to vote and not likely to vote for governor of Ohio). There is a substantial number of undecided voters for one or both categories in all three polls, and we use a Bayesian method to allocate the undecided voters to the three candidates. This method permits modeling different patterns of missingness under ignorable and nonignorable assumptions, and a multinomial-Dirichlet model is used to estimate the cell probabilities which can help to predict the winner. We propose a time-dependent nonignorable nonresponse model for the three tables. Here, a nonignorable nonresponse model is centered on an ignorable nonresponse model to induce some flexibility and uncertainty about ignorabilty or nonignorability. As competitors we also consider two other models, an ignorable and a nonignorable nonresponse model. These latter two models assume a common stochastic process to borrow strength over time. Markov chain Monte Carlo methods are used to fit the models. We also construct a parameter that can potentially be used to predict the winner among the candidates in the November election.

    Release date: 2008-06-26

  • Articles and reports: 11-522-X200600110392
    Description:

    We use a robust Bayesian method to analyze data with possibly nonignorable nonresponse and selection bias. A robust logistic regression model is used to relate the response indicators (Bernoulli random variable) to the covariates, which are available for everyone in the finite population. This relationship can adequately explain the difference between respondents and nonrespondents for the sample. This robust model is obtained by expanding the standard logistic regression model to a mixture of Student's distributions, thereby providing propensity scores (selection probability) which are used to construct adjustment cells. The nonrespondents' values are filled in by drawing a random sample from a kernel density estimator, formed from the respondents' values within the adjustment cells. Prediction uses a linear spline rank-based regression of the response variable on the covariates by areas, sampling the errors from another kernel density estimator; thereby further robustifying our method. We use Markov chain Monte Carlo (MCMC) methods to fit our model. The posterior distribution of a quantile of the response variable is obtained within each sub-area using the order statistic over all the individuals (sampled and nonsampled). We compare our robust method with recent parametric methods

    Release date: 2008-03-17

  • Articles and reports: 11-522-X200600110398
    Description:

    The study of longitudinal data is vital in terms of accurately observing changes in responses of interest for individuals, communities, and larger populations over time. Linear mixed effects models (for continuous responses observed over time) and generalized linear mixed effects models and generalized estimating equations (for more general responses such as binary or count data observed over time) are the most popular techniques used for analyzing longitudinal data from health studies, though, as with all modeling techniques, these approaches have limitations, partly due to their underlying assumptions. In this review paper, we will discuss some advances, including curve-based techniques, which make modeling longitudinal data more flexible. Three examples will be presented from the health literature utilizing these more flexible procedures, with the goal of demonstrating that some otherwise difficult questions can be reasonably answered when analyzing complex longitudinal data in population health studies.

    Release date: 2008-03-17

  • Articles and reports: 11-522-X200600110419
    Description:

    Health services research generally relies on observational data to compare outcomes of patients receiving different therapies. Comparisons of patient groups in observational studies may be biased, in that outcomes differ due to both the effects of treatment and the effects of patient prognosis. In some cases, especially when data are collected on detailed clinical risk factors, these differences can be controlled for using statistical or epidemiological methods. In other cases, when unmeasured characteristics of the patient population affect both the decision to provide therapy and the outcome, these differences cannot be removed using standard techniques. Use of health administrative data requires particular cautions in undertaking observational studies since important clinical information does not exist. We discuss several statistical and epidemiological approaches to remove overt (measurable) and hidden (unmeasurable) bias in observational studies. These include regression model-based case-mix adjustment, propensity-based matching, redefining the exposure variable of interest, and the econometric technique of instrumental variable (IV) analysis. These methods are illustrated using examples from the medical literature including prediction of one-year mortality following heart attack; the return to health care spending in higher spending U.S. regions in terms of clinical and financial benefits; and the long-term survival benefits of invasive cardiac management of heart attack patients. It is possible to use health administrative data for observational studies provided careful attention is paid to addressing issues of reverse causation and unmeasured confounding.

    Release date: 2008-03-17
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (69)

Analysis (69) (60 to 70 of 69 results)

  • Articles and reports: 12-001-X199200214487
    Description:

    This paper reviews the idea of robustness for randomisation and model-based inference for descriptive and analytic surveys. The lack of robustness for model-based procedures can be partially overcome by careful design. In this paper a robust model-based approach to analysis is proposed based on smoothing methods.

    Release date: 1992-12-15

  • Articles and reports: 12-001-X199200214488
    Description:

    In many finite population sampling problems the design that is optimal in the sense of minimizing the variance of the best linear unbiased estimator under a particular working model is bad in the sense of robustness - it leaves the estimator extremely vulnerable to bias if the working model is incorrect. However there are some important models under which one design provides both efficiency and robustness. We present a theorem that identifies such models and their optimal designs.

    Release date: 1992-12-15

  • Articles and reports: 12-001-X199100214504
    Description:

    Simple or marginal quota surveys are analyzed using two methods: (1) behaviour modelling (superpopulation model) and prediction estimation, and (2) sample modelling (simple restricted random sampling) and estimation derived from the sample distribution. In both cases the limitations of the theory used to establish the variance formulas and estimates when measuring totals are described. An extension of the quota method (non-proportional quotas) is also briefly described and analyzed. In some cases, this may provide a very significant improvement in survey precision. The advantages of the quota method are compared with those of random sampling. The latter remains indispensable in the case of large scale surveys within the framework of Official Statistics.

    Release date: 1991-12-16

  • Articles and reports: 12-001-X199100114521
    Description:

    Marginal and approximate conditional likelihoods are given for the correlation parameters in a normal linear regression model with correlated errors. This general likelihood approach is applied to obtain marginal and approximate conditional likelihoods for the correlation parameters in sampling on successive occasions under both simple random sampling on each occasion and more complex surveys.

    Release date: 1991-06-14

  • Articles and reports: 12-001-X199000114560
    Description:

    Early developments in sampling theory and methods largely concentrated on efficient sampling designs and associated estimation techniques for population totals or means. More recently, the theoretical foundations of survey based estimation have also been critically examined, and formal frameworks for inference on totals or means have emerged. During the past 10 years or so, rapid progress has also been made in the development of methods for the analysis of survey data that take account of the complexity of the sampling design. The scope of this paper is restricted to an overview and appraisal of some of these developments.

    Release date: 1990-06-15

  • Articles and reports: 12-001-X198900214568
    Description:

    The paper describes a Monte Carlo study of simultaneous confidence interval procedures for k > 2 proportions, under a model of two-stage cluster sampling. The procedures investigated include: (i) standard multinomial intervals; (ii) Scheffé intervals based on sample estimates of the variances of cell proportions; (iii) Quesenberry-Hurst intervals adapted for clustered data using Rao and Scott’s first and second order adjustments to X^2; (iv) simple Bonferroni intervals; (v) Bonferroni intervals based on transformations of the estimated proportions; (vi) Bonferroni intervals computed using the critical points of Student’s t. In several realistic situations, actual coverage rates of the multinomial procedures were found to be seriously depressed compared to the nominal rate. The best performing intervals, from the point of view of coverage rates and coverage symmetry (an extension of an idea due to Jennings), were the t-based Bonferroni intervals derived using log and logit transformations. Of the Scheffé-like procedures, the best performance was provided by Quesenberry-Hurst intervals in combination with first-order Rao-Scott adjustments.

    Release date: 1989-12-15

  • Articles and reports: 12-001-X198500114364
    Description:

    Conventional methods of inference in survey sampling are critically examined. The need for conditioning the inference on recognizable subsets of the population is emphasized. A number of real examples involving random sample sizes are presented to illustrate inferences conditional on the realized sample configuration and associated difficulties. The examples include the following: estimation of (a) population mean under simple random sampling; (b) population mean in the presence of outliers; (c) domain total and domain mean; (d) population mean with two-way stratification; (e) population mean in the presence of non-responses; (f) population mean under general designs. The conditional bias and the conditional variance of estimators of a population mean (or a domain mean or total), and the associated confidence intervals, are examined.

    Release date: 1985-06-14

  • Articles and reports: 12-001-X198400114351
    Description:

    Most sample surveys conducted by organizations such as Statistics Canada or the U.S. Bureau of the Census employ complex designs. The design-based approach to statistical inference, typically the institutional standard of inference for simple population statistics such as means and totals, may be extended to parameters of analytic models as well. Most of this paper focuses on application of design-based inferences to such models, but rationales are offered for use of model-based alternatives in some instances, by way of explanation for the author’s observation that both modes of inference are used in practice at his own institution.

    Within the design-based approach to inference, the paper briefly describes experience with linear regression analysis. Recently, variance computations for a number of surveys of the Census Bureau have been implemented through “replicate weighting”; the principal application has been for variances of simple statistics, but this technique also facilitates variance computation for virtually any complex analytic model. Finally, approaches and experience with log-linear models are reported.

    Release date: 1984-06-15

  • Articles and reports: 12-001-X198100214319
    Description:

    The problems associated with making analytical inferences from data based on complex sample designs are reviewed. A basic issue is the definition of the parameter of interest and whether it is a superpopulation model parameter or a finite population parameter. General methods based on a generalized Wald Statistics and its modification or on modifications of classical test statistics are discussed. More detail is given on specific methods-on linear models and regression and on categorical data analysis.

    Release date: 1981-12-15
Reference (16)

Reference (16) (10 to 20 of 16 results)

  • Surveys and statistical programs – Documentation: 11-522-X19990015650
    Description:

    The U.S. Manufacturing Plant Ownership Change Database (OCD) was constructed using plant-level data taken from the Census Bureau's Longitudinal Research Database (LRD). It contains data on all manufacturing plants that have experienced ownership change at least once during the period 1963-92. This paper reports the status of the OCD and discuss its research possibilities. For an empirical demonstration, data taken from the database are used to study the effects of ownership changes on plant closure.

    Release date: 2000-03-02

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05

  • Surveys and statistical programs – Documentation: 12-001-X19970013101
    Description:

    In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings. Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19970013102
    Description:

    The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of practical importance when the number of variables available is large. An approach is developed in which a mean squared error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects the properties of standard variance estimators and thus leads to a problem of variance estimation.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19960022980
    Description:

    In this paper, we study a confidence interval estimation method for a finite population average when some auxiliairy information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing methods to construct confidence intervals for population averages may result in very poor conditional coverage probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to improve the precision of the normal approximation. The transformed data are then used to make inference on the original population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation is needed, our approach performs well compared to the usual regression method.

    Release date: 1997-01-30
Date modified: