Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (82)

All (82) (40 to 50 of 82 results)

  • Articles and reports: 11-522-X20020016717
    Description:

    In the United States, the National Health and Nutrition Examination Survey (NHANES) is linked to the National Health Interview Survey (NHIS) at the primary sampling unit level (the same counties, but not necessarily the same persons, are in both surveys). The NHANES examines about 5,000 persons per year, while the NHIS samples about 100,000 persons per year. In this paper, we present and develop properties of models that allow NHIS and administrative data to be used as auxiliary information for estimating quantities of interest in the NHANES. The methodology, related to Fay-Herriot (1979) small-area models and to calibration estimators in Deville and Sarndal (1992), accounts for the survey designs in the error structure.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016719
    Description:

    This study takes a look at the modelling methods used for public health data. Public health has a renewed interest in the impact of the environment on health. Ecological or contextual studies ideally investigate these relationships using public health data augmented with environmental characteristics in multilevel or hierarchical models. In these models, individual respondents in health data are the first level and community data are the second level. Most public health data use complex sample survey designs, which require analyses accounting for the clustering, nonresponse, and poststratification to obtain representative estimates of prevalence of health risk behaviours.

    This study uses the Behavioral Risk Factor Surveillance System (BRFSS), a state-specific US health risk factor surveillance system conducted by the Center for Disease Control and Prevention, which assesses health risk factors in over 200,000 adults annually. BRFSS data are now available at the metropolitan statistical area (MSA) level and provide quality health information for studies of environmental effects. MSA-level analyses combining health and environmental data are further complicated by joint requirements of the survey sample design and the multilevel analyses.

    We compare three modelling methods in a study of physical activity and selected environmental factors using BRFSS 2000 data. Each of the methods described here is a valid way to analyse complex sample survey data augmented with environmental information, although each accounts for the survey design and multilevel data structure in a different manner and is thus appropriate for slightly different research questions.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016727
    Description:

    The census data are widely used in the distribution and targeting of resources at national, regional and local levels. In the United Kingdom (UK), a population census is conducted every 10 years. As time elapses, the census data become outdated and less relevant, thus making the distribution of resources less equitable. This paper examines alternative methods in rectifying this.

    A number of small area methods have been developed for producing postcensal estimates, including the Structural Preserving Estimation technique as a result of Purcell and Kish (1980). This paper develops an alternative approach that is based on a linear mixed modelling approach to producing postcensal estimates. The validity of the methodology is tested on simulated data from the Finnish population register and the technique is applied to producing updated estimates for a number of the 1991 UK census variables.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016730
    Description:

    A wide class of models of interest in social and economic research can be represented by specifying a parametric structure for the covariances of observed variables. The availability of software, such as LISREL (Jöreskog and Sörbom 1988) and EQS (Bentler 1995), has enabled these models to be fitted to survey data in many applications. In this paper, we consider approaches to inference about such models using survey data derived by complex sampling schemes. We consider evidence of finite sample biases in parameter estimation and ways to reduce such biases (Altonji and Segal 1996) and associated issues of efficiency of estimation, standard error estimation and testing. We use longitudinal data from the British Household Panel Survey for illustration. As these data are subject to attrition, we also consider the issue of how to use nonresponse weights in the modelling.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016731
    Description:

    Behavioural researchers use a variety of techniques to predict respondent scores on constructs that are not directly observable. Examples of such constructs include job satisfaction, work stress, aptitude for graduate study, children's mathematical ability, etc. The techniques commonly used for modelling and predicting scores on such constructs include factor analysis, classical psychometric scaling and item response theory (IRT), and for each technique there are often several different strategies that can be used to generate individual scores. However, researchers are seldom satisfied with simply measuring these constructs. They typically use the derived scores in multiple regression, analysis of variance and numerous multivariate procedures. Though using predicted scores in this way can result in biased estimates of model parameters, not all researchers are aware of this difficulty. The paper will review the literature on this issue, with particular emphasis on IRT methods. Problems will be illustrated, some remedies suggested, and areas for further research will be identified.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016733
    Description:

    While censuses and surveys are often said to measure populations as they are, most reflect information about individuals as they were at the time of measurement, or even at some prior time point. Inferences from such data therefore should take into account change over time at both the population and individual levels. In this paper, we provide a unifying framework for such inference problems, illustrating it through a diverse series of examples including: (1) estimating residency status on Census Day using multiple administrative records, (2) combining administrative records for estimating the size of the US population, (3) using rolling averages from the American Community Survey, and (4) estimating the prevalence of human rights abuses.

    Specifically, at the population level, the estimands of interest, such as the size or mean characteristics of a population, might be changing. At the same time, individual subjects might be moving in and out of the frame of the study or changing their characteristics. Such changes over time can affect statistical studies of government data that combine information from multiple data sources, including censuses, surveys and administrative records, an increasingly common practice. Inferences from the resulting merged databases often depend heavily on specific choices made in combining, editing and analysing the data that reflect assumptions about how populations of interest change or remain stable over time.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016743
    Description:

    There is much interest in using data from longitudinal surveys to help understand life history processes such as education, employment, fertility, health and marriage. The analysis of data on the durations of spells or sojourns that individuals spend in certain states (e.g., employment, marriage) is a primary tool in studying such processes. This paper examines methods for analysing duration data that address important features associated with longitudinal surveys: the use of complex survey designs in heterogeneous populations; missing or inaccurate information about the timing of events; and the possibility of non-ignorable dropout or censoring mechanisms. Parametric and non-parametric techniques for estimation and for model checking are considered. Both new and existing methodology are proposed and applied to duration data from Canada's Survey of Labour and Income Dynamics (SLID).

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016745
    Description:

    The attractiveness of the Regression Discontinuity Design (RDD) rests on its close similarity to a normal experimental design. On the other hand, it is of limited applicability since it is not often the case that units are assigned to the treatment group on the basis of an observable (to the analyst) pre-program measure. Besides, it only allows identification of the mean impact on a very specific subpopulation. In this technical paper, we show that the RDD straightforwardly generalizes to the instances in which the units' eligibility is established on an observable pre-program measure with eligible units allowed to freely self-select into the program. This set-up also proves to be very convenient for building a specification test on conventional non-experimental estimators of the program mean impact. The data requirements are clearly described.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016750
    Description:

    Analyses of data from social and economic surveys sometimes use generalized variance function models to approximate the design variance of point estimators of population means and proportions. Analysts may use the resulting standard error estimates to compute associated confidence intervals or test statistics for the means and proportions of interest. In comparison with design-based variance estimators computed directly from survey microdata, generalized variance function models have several potential advantages, as will be discussed in this paper, including operational simplicity; increased stability of standard errors; and, for cases involving public-use datasets, reduction of disclosure limitation problems arising from the public release of stratum and cluster indicators.

    These potential advantages, however, may be offset in part by several inferential issues. First, the properties of inferential statistics based on generalized variance functions (e.g., confidence interval coverage rates and widths) depend heavily on the relative empirical magnitudes of the components of variability associated, respectively, with:

    (a) the random selection of a subset of items used in estimation of the generalized variance function model(b) the selection of sample units under a complex sample design (c) the lack of fit of the generalized variance function model (d) the generation of a finite population under a superpopulation model.

    Second, under conditions, one may link each of components (a) through (d) with different empirical measures of the predictive adequacy of a generalized variance function model. Consequently, these measures of predictive adequacy can offer us some insight into the extent to which a given generalized variance function model may be appropriate for inferential use in specific applications.

    Some of the proposed diagnostics are applied to data from the US Survey of Doctoral Recipients and the US Current Employment Survey. For the Survey of Doctoral Recipients, components (a), (c) and (d) are of principal concern. For the Current Employment Survey, components (b), (c) and (d) receive principal attention, and the availability of population microdata allow the development of especially detailed models for components (b) and (c).

    Release date: 2004-09-13

  • Articles and reports: 12-001-X20030026785
    Description:

    To avoid disclosures, one approach is to release partially synthetic, public use microdata sets. These comprise the units originally surveyed, but some collected values, for example sensitive values at high risk of disclosure or values of key identifiers, are replaced with multiple imputations. Although partially synthetic approaches are currently used to protect public use data, valid methods of inference have not been developed for them. This article presents such methods. They are based on the concepts of multiple imputation for missing data but use different rules for combining point and variance estimates. The combining rules also differ from those for fully synthetic data sets developed by Raghunathan, Reiter and Rubin (2003). The validity of these new rules is illustrated in simulation studies.

    Release date: 2004-01-27
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (69)

Analysis (69) (60 to 70 of 69 results)

  • Articles and reports: 12-001-X199200214487
    Description:

    This paper reviews the idea of robustness for randomisation and model-based inference for descriptive and analytic surveys. The lack of robustness for model-based procedures can be partially overcome by careful design. In this paper a robust model-based approach to analysis is proposed based on smoothing methods.

    Release date: 1992-12-15

  • Articles and reports: 12-001-X199200214488
    Description:

    In many finite population sampling problems the design that is optimal in the sense of minimizing the variance of the best linear unbiased estimator under a particular working model is bad in the sense of robustness - it leaves the estimator extremely vulnerable to bias if the working model is incorrect. However there are some important models under which one design provides both efficiency and robustness. We present a theorem that identifies such models and their optimal designs.

    Release date: 1992-12-15

  • Articles and reports: 12-001-X199100214504
    Description:

    Simple or marginal quota surveys are analyzed using two methods: (1) behaviour modelling (superpopulation model) and prediction estimation, and (2) sample modelling (simple restricted random sampling) and estimation derived from the sample distribution. In both cases the limitations of the theory used to establish the variance formulas and estimates when measuring totals are described. An extension of the quota method (non-proportional quotas) is also briefly described and analyzed. In some cases, this may provide a very significant improvement in survey precision. The advantages of the quota method are compared with those of random sampling. The latter remains indispensable in the case of large scale surveys within the framework of Official Statistics.

    Release date: 1991-12-16

  • Articles and reports: 12-001-X199100114521
    Description:

    Marginal and approximate conditional likelihoods are given for the correlation parameters in a normal linear regression model with correlated errors. This general likelihood approach is applied to obtain marginal and approximate conditional likelihoods for the correlation parameters in sampling on successive occasions under both simple random sampling on each occasion and more complex surveys.

    Release date: 1991-06-14

  • Articles and reports: 12-001-X199000114560
    Description:

    Early developments in sampling theory and methods largely concentrated on efficient sampling designs and associated estimation techniques for population totals or means. More recently, the theoretical foundations of survey based estimation have also been critically examined, and formal frameworks for inference on totals or means have emerged. During the past 10 years or so, rapid progress has also been made in the development of methods for the analysis of survey data that take account of the complexity of the sampling design. The scope of this paper is restricted to an overview and appraisal of some of these developments.

    Release date: 1990-06-15

  • Articles and reports: 12-001-X198900214568
    Description:

    The paper describes a Monte Carlo study of simultaneous confidence interval procedures for k > 2 proportions, under a model of two-stage cluster sampling. The procedures investigated include: (i) standard multinomial intervals; (ii) Scheffé intervals based on sample estimates of the variances of cell proportions; (iii) Quesenberry-Hurst intervals adapted for clustered data using Rao and Scott’s first and second order adjustments to X^2; (iv) simple Bonferroni intervals; (v) Bonferroni intervals based on transformations of the estimated proportions; (vi) Bonferroni intervals computed using the critical points of Student’s t. In several realistic situations, actual coverage rates of the multinomial procedures were found to be seriously depressed compared to the nominal rate. The best performing intervals, from the point of view of coverage rates and coverage symmetry (an extension of an idea due to Jennings), were the t-based Bonferroni intervals derived using log and logit transformations. Of the Scheffé-like procedures, the best performance was provided by Quesenberry-Hurst intervals in combination with first-order Rao-Scott adjustments.

    Release date: 1989-12-15

  • Articles and reports: 12-001-X198500114364
    Description:

    Conventional methods of inference in survey sampling are critically examined. The need for conditioning the inference on recognizable subsets of the population is emphasized. A number of real examples involving random sample sizes are presented to illustrate inferences conditional on the realized sample configuration and associated difficulties. The examples include the following: estimation of (a) population mean under simple random sampling; (b) population mean in the presence of outliers; (c) domain total and domain mean; (d) population mean with two-way stratification; (e) population mean in the presence of non-responses; (f) population mean under general designs. The conditional bias and the conditional variance of estimators of a population mean (or a domain mean or total), and the associated confidence intervals, are examined.

    Release date: 1985-06-14

  • Articles and reports: 12-001-X198400114351
    Description:

    Most sample surveys conducted by organizations such as Statistics Canada or the U.S. Bureau of the Census employ complex designs. The design-based approach to statistical inference, typically the institutional standard of inference for simple population statistics such as means and totals, may be extended to parameters of analytic models as well. Most of this paper focuses on application of design-based inferences to such models, but rationales are offered for use of model-based alternatives in some instances, by way of explanation for the author’s observation that both modes of inference are used in practice at his own institution.

    Within the design-based approach to inference, the paper briefly describes experience with linear regression analysis. Recently, variance computations for a number of surveys of the Census Bureau have been implemented through “replicate weighting”; the principal application has been for variances of simple statistics, but this technique also facilitates variance computation for virtually any complex analytic model. Finally, approaches and experience with log-linear models are reported.

    Release date: 1984-06-15

  • Articles and reports: 12-001-X198100214319
    Description:

    The problems associated with making analytical inferences from data based on complex sample designs are reviewed. A basic issue is the definition of the parameter of interest and whether it is a superpopulation model parameter or a finite population parameter. General methods based on a generalized Wald Statistics and its modification or on modifications of classical test statistics are discussed. More detail is given on specific methods-on linear models and regression and on categorical data analysis.

    Release date: 1981-12-15
Reference (16)

Reference (16) (10 to 20 of 16 results)

  • Surveys and statistical programs – Documentation: 11-522-X19990015650
    Description:

    The U.S. Manufacturing Plant Ownership Change Database (OCD) was constructed using plant-level data taken from the Census Bureau's Longitudinal Research Database (LRD). It contains data on all manufacturing plants that have experienced ownership change at least once during the period 1963-92. This paper reports the status of the OCD and discuss its research possibilities. For an empirical demonstration, data taken from the database are used to study the effects of ownership changes on plant closure.

    Release date: 2000-03-02

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05

  • Surveys and statistical programs – Documentation: 12-001-X19970013101
    Description:

    In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings. Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19970013102
    Description:

    The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of practical importance when the number of variables available is large. An approach is developed in which a mean squared error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects the properties of standard variance estimators and thus leads to a problem of variance estimation.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19960022980
    Description:

    In this paper, we study a confidence interval estimation method for a finite population average when some auxiliairy information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing methods to construct confidence intervals for population averages may result in very poor conditional coverage probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to improve the precision of the normal approximation. The transformed data are then used to make inference on the original population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation is needed, our approach performs well compared to the usual regression method.

    Release date: 1997-01-30
Date modified: